/* Licensed to the Apache Software Foundation (ASF) under one or more * contributor license agreements. See the NOTICE file distributed with * this work for additional information regarding copyright ownership. * The ASF licenses this file to You under the Apache License, Version 2.0 * (the "License"); you may not use this file except in compliance with * the License. You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "apr.h" #include "apr_portable.h" #include "apr_arch_threadproc.h" #if APR_HAS_THREADS #if APR_HAVE_PTHREAD_H /* Unfortunately the kernel headers do not export the TASK_COMM_LEN macro. So we have to define it here. Used in apr_thread_name_get and apr_thread_name_set functions */ #define TASK_COMM_LEN 16 /* Destroy the threadattr object */ static apr_status_t threadattr_cleanup(void *data) { apr_threadattr_t *attr = data; apr_status_t rv; rv = pthread_attr_destroy(&attr->attr); #ifdef HAVE_ZOS_PTHREADS if (rv) { rv = errno; } #endif return rv; } APR_DECLARE(apr_status_t) apr_threadattr_create(apr_threadattr_t **new, apr_pool_t *pool) { apr_status_t stat; (*new) = apr_palloc(pool, sizeof(apr_threadattr_t)); (*new)->pool = pool; stat = pthread_attr_init(&(*new)->attr); if (stat == 0) { apr_pool_cleanup_register(pool, *new, threadattr_cleanup, apr_pool_cleanup_null); return APR_SUCCESS; } #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif return stat; } #if defined(PTHREAD_CREATE_DETACHED) #define DETACH_ARG(v) ((v) ? PTHREAD_CREATE_DETACHED : PTHREAD_CREATE_JOINABLE) #else #define DETACH_ARG(v) ((v) ? 1 : 0) #endif APR_DECLARE(apr_status_t) apr_threadattr_detach_set(apr_threadattr_t *attr, apr_int32_t on) { apr_status_t stat; #ifdef HAVE_ZOS_PTHREADS int arg = DETACH_ARG(on); if ((stat = pthread_attr_setdetachstate(&attr->attr, &arg)) == 0) { #else if ((stat = pthread_attr_setdetachstate(&attr->attr, DETACH_ARG(on))) == 0) { #endif return APR_SUCCESS; } else { #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif return stat; } } APR_DECLARE(apr_status_t) apr_threadattr_detach_get(apr_threadattr_t *attr) { int state; #ifdef PTHREAD_ATTR_GETDETACHSTATE_TAKES_ONE_ARG state = pthread_attr_getdetachstate(&attr->attr); #else pthread_attr_getdetachstate(&attr->attr, &state); #endif if (state == DETACH_ARG(1)) return APR_DETACH; return APR_NOTDETACH; } APR_DECLARE(apr_status_t) apr_threadattr_stacksize_set(apr_threadattr_t *attr, apr_size_t stacksize) { int stat; stat = pthread_attr_setstacksize(&attr->attr, stacksize); if (stat == 0) { return APR_SUCCESS; } #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif return stat; } APR_DECLARE(apr_status_t) apr_threadattr_guardsize_set(apr_threadattr_t *attr, apr_size_t size) { #ifdef HAVE_PTHREAD_ATTR_SETGUARDSIZE apr_status_t rv; rv = pthread_attr_setguardsize(&attr->attr, size); if (rv == 0) { return APR_SUCCESS; } #ifdef HAVE_ZOS_PTHREADS rv = errno; #endif return rv; #else return APR_ENOTIMPL; #endif } APR_DECLARE(apr_status_t) apr_threadattr_max_free_set(apr_threadattr_t *attr, apr_size_t size) { attr->max_free = size; return APR_SUCCESS; } #if APR_HAS_THREAD_LOCAL static APR_THREAD_LOCAL apr_thread_t *current_thread = NULL; #endif static void *dummy_worker(void *opaque) { apr_thread_t *thread = (apr_thread_t*)opaque; void *ret; #if APR_HAS_THREAD_LOCAL current_thread = thread; #endif apr_pool_owner_set(thread->pool, 0); ret = thread->func(thread, thread->data); if (thread->detached) { apr_pool_destroy(thread->pool); } return ret; } static apr_status_t alloc_thread(apr_thread_t **new, apr_threadattr_t *attr, apr_thread_start_t func, void *data, apr_pool_t *pool) { apr_status_t stat; apr_abortfunc_t abort_fn = apr_pool_abort_get(pool); apr_pool_t *p; /* The thread can be detached anytime (from the creation or later with * apr_thread_detach), so it needs its own pool and allocator to not * depend on a parent pool which could be destroyed before the thread * exits. The allocator needs no mutex obviously since the pool should * not be used nor create children pools outside the thread. Passing * NULL allocator will create one like that. */ stat = apr_pool_create_unmanaged_ex(&p, abort_fn, NULL); if (stat != APR_SUCCESS) { return stat; } if (attr && attr->max_free) { apr_allocator_max_free_set(apr_pool_allocator_get(p), attr->max_free); } (*new) = (apr_thread_t *)apr_pcalloc(p, sizeof(apr_thread_t)); if ((*new) == NULL) { apr_pool_destroy(p); return APR_ENOMEM; } (*new)->pool = p; (*new)->data = data; (*new)->func = func; (*new)->detached = (attr && apr_threadattr_detach_get(attr) == APR_DETACH); (*new)->td = (pthread_t *)apr_pcalloc(p, sizeof(pthread_t)); if ((*new)->td == NULL) { apr_pool_destroy(p); return APR_ENOMEM; } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_thread_create(apr_thread_t **new, apr_threadattr_t *attr, apr_thread_start_t func, void *data, apr_pool_t *pool) { apr_status_t stat; pthread_attr_t *temp; stat = alloc_thread(new, attr, func, data, pool); if (stat != APR_SUCCESS) { return stat; } if (attr) temp = &attr->attr; else temp = NULL; if ((stat = pthread_create((*new)->td, temp, dummy_worker, (*new)))) { #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif apr_pool_destroy((*new)->pool); return stat; } return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_thread_current_create(apr_thread_t **current, apr_threadattr_t *attr, apr_pool_t *pool) { #if APR_HAS_THREAD_LOCAL apr_status_t stat; *current = apr_thread_current(); if (*current) { return APR_EEXIST; } stat = alloc_thread(current, attr, NULL, NULL, pool); if (stat != APR_SUCCESS) { *current = NULL; return stat; } *(*current)->td = apr_os_thread_current(); current_thread = *current; return APR_SUCCESS; #else return APR_ENOTIMPL; #endif } APR_DECLARE(void) apr_thread_current_after_fork(void) { #if APR_HAS_THREAD_LOCAL current_thread = NULL; #endif } APR_DECLARE(apr_thread_t *) apr_thread_current(void) { #if APR_HAS_THREAD_LOCAL return current_thread; #else return NULL; #endif } APR_DECLARE(apr_status_t) apr_thread_name_set(const char *name, apr_thread_t *thread, apr_pool_t *pool) { #if HAVE_PTHREAD_SETNAME_NP pthread_t td; size_t name_len; if (!name) { return APR_BADARG; } if (thread) { td = *thread->td; } else { td = pthread_self(); } name_len = strlen(name); if (name_len >= TASK_COMM_LEN) { name = name + name_len - TASK_COMM_LEN + 1; } return pthread_setname_np(td, name); #else return APR_ENOTIMPL; #endif } APR_DECLARE(apr_status_t) apr_thread_name_get(char **name, apr_thread_t *thread, apr_pool_t *pool) { #if HAVE_PTHREAD_SETNAME_NP pthread_t td; if (thread) { td = *thread->td; } else { td = pthread_self(); } *name = apr_pcalloc(pool, TASK_COMM_LEN); return pthread_getname_np(td, *name, TASK_COMM_LEN); #else return APR_ENOTIMPL; #endif } APR_DECLARE(apr_os_thread_t) apr_os_thread_current(void) { return pthread_self(); } APR_DECLARE(int) apr_os_thread_equal(apr_os_thread_t tid1, apr_os_thread_t tid2) { return pthread_equal(tid1, tid2); } APR_DECLARE(void) apr_thread_exit(apr_thread_t *thd, apr_status_t retval) { thd->exitval = retval; if (thd->detached) { apr_pool_destroy(thd->pool); } pthread_exit(NULL); } APR_DECLARE(apr_status_t) apr_thread_join(apr_status_t *retval, apr_thread_t *thd) { apr_status_t stat; void *thread_stat; if (thd->detached) { return APR_EINVAL; } if ((stat = pthread_join(*thd->td, &thread_stat))) { #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif return stat; } *retval = thd->exitval; apr_pool_destroy(thd->pool); return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_thread_detach(apr_thread_t *thd) { apr_status_t stat; if (thd->detached) { return APR_EINVAL; } #ifdef HAVE_ZOS_PTHREADS if ((stat = pthread_detach(thd->td)) == 0) { #else if ((stat = pthread_detach(*thd->td)) == 0) { #endif thd->detached = 1; return APR_SUCCESS; } else { #ifdef HAVE_ZOS_PTHREADS stat = errno; #endif return stat; } } APR_DECLARE(void) apr_thread_yield(void) { #ifdef HAVE_PTHREAD_YIELD #ifdef HAVE_ZOS_PTHREADS pthread_yield(NULL); #else pthread_yield(); #endif /* HAVE_ZOS_PTHREADS */ #else #ifdef HAVE_SCHED_YIELD sched_yield(); #endif #endif } APR_DECLARE(apr_status_t) apr_thread_data_get(void **data, const char *key, apr_thread_t *thread) { if (thread == NULL) { *data = NULL; return APR_ENOTHREAD; } return apr_pool_userdata_get(data, key, thread->pool); } APR_DECLARE(apr_status_t) apr_thread_data_set(void *data, const char *key, apr_status_t (*cleanup)(void *), apr_thread_t *thread) { if (thread == NULL) { return APR_ENOTHREAD; } return apr_pool_userdata_set(data, key, cleanup, thread->pool); } APR_DECLARE(apr_status_t) apr_os_thread_get(apr_os_thread_t **thethd, apr_thread_t *thd) { *thethd = thd->td; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_os_thread_put(apr_thread_t **thd, apr_os_thread_t *thethd, apr_pool_t *pool) { if (pool == NULL) { return APR_ENOPOOL; } if ((*thd) == NULL) { (*thd) = (apr_thread_t *)apr_pcalloc(pool, sizeof(apr_thread_t)); (*thd)->pool = pool; } (*thd)->td = thethd; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_thread_once_init(apr_thread_once_t **control, apr_pool_t *p) { static const pthread_once_t once_init = PTHREAD_ONCE_INIT; *control = apr_palloc(p, sizeof(**control)); (*control)->once = once_init; return APR_SUCCESS; } APR_DECLARE(apr_status_t) apr_thread_once(apr_thread_once_t *control, void (*func)(void)) { return pthread_once(&control->once, func); } APR_POOL_IMPLEMENT_ACCESSOR(thread) #endif /* HAVE_PTHREAD_H */ #endif /* APR_HAS_THREADS */ #if !APR_HAS_THREADS /* avoid warning for no prototype */ APR_DECLARE(apr_status_t) apr_os_thread_get(void); APR_DECLARE(apr_status_t) apr_os_thread_get(void) { return APR_ENOTIMPL; } #endif