aboutsummaryrefslogtreecommitdiff
path: root/contrib/pgcrypto/fortuna.c
diff options
context:
space:
mode:
Diffstat (limited to 'contrib/pgcrypto/fortuna.c')
-rw-r--r--contrib/pgcrypto/fortuna.c146
1 files changed, 83 insertions, 63 deletions
diff --git a/contrib/pgcrypto/fortuna.c b/contrib/pgcrypto/fortuna.c
index 4645076109f..1b13337301c 100644
--- a/contrib/pgcrypto/fortuna.c
+++ b/contrib/pgcrypto/fortuna.c
@@ -26,7 +26,7 @@
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*
- * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.4 2005/07/18 17:12:54 tgl Exp $
+ * $PostgreSQL: pgsql/contrib/pgcrypto/fortuna.c,v 1.5 2005/10/15 02:49:06 momjian Exp $
*/
#include "postgres.h"
@@ -43,16 +43,16 @@
* Why Fortuna-like: There does not seem to be any definitive reference
* on Fortuna in the net. Instead this implementation is based on
* following references:
- *
+ *
* http://en.wikipedia.org/wiki/Fortuna_(PRNG)
- * - Wikipedia article
+ * - Wikipedia article
* http://jlcooke.ca/random/
- * - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
+ * - Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.
*/
/*
* There is some confusion about whether and how to carry forward
- * the state of the pools. Seems like original Fortuna does not
+ * the state of the pools. Seems like original Fortuna does not
* do it, resetting hash after each request. I guess expecting
* feeding to happen more often that requesting. This is absolutely
* unsuitable for pgcrypto, as nothing asynchronous happens here.
@@ -76,7 +76,7 @@
* How many pools.
*
* Original Fortuna uses 32 pools, that means 32'th pool is
- * used not earlier than in 13th year. This is a waste in
+ * used not earlier than in 13th year. This is a waste in
* pgcrypto, as we have very low-frequancy seeding. Here
* is preferable to have all entropy usable in reasonable time.
*
@@ -89,12 +89,12 @@
#define NUM_POOLS 23
/* in microseconds */
-#define RESEED_INTERVAL 100000 /* 0.1 sec */
+#define RESEED_INTERVAL 100000 /* 0.1 sec */
/* for one big request, reseed after this many bytes */
#define RESEED_BYTES (1024*1024)
-/*
+/*
* Skip reseed if pool 0 has less than this many
* bytes added since last reseed.
*/
@@ -114,17 +114,18 @@
#define MD_CTX SHA256_CTX
#define CIPH_CTX rijndael_ctx
-struct fortuna_state {
- uint8 counter[CIPH_BLOCK];
- uint8 result[CIPH_BLOCK];
- uint8 key[BLOCK];
- MD_CTX pool[NUM_POOLS];
- CIPH_CTX ciph;
- unsigned reseed_count;
- struct timeval last_reseed_time;
- unsigned pool0_bytes;
- unsigned rnd_pos;
- int counter_init;
+struct fortuna_state
+{
+ uint8 counter[CIPH_BLOCK];
+ uint8 result[CIPH_BLOCK];
+ uint8 key[BLOCK];
+ MD_CTX pool[NUM_POOLS];
+ CIPH_CTX ciph;
+ unsigned reseed_count;
+ struct timeval last_reseed_time;
+ unsigned pool0_bytes;
+ unsigned rnd_pos;
+ int counter_init;
};
typedef struct fortuna_state FState;
@@ -137,29 +138,35 @@ typedef struct fortuna_state FState;
* - No memory allocations.
*/
-static void ciph_init(CIPH_CTX *ctx, const uint8 *key, int klen)
+static void
+ciph_init(CIPH_CTX * ctx, const uint8 *key, int klen)
{
- rijndael_set_key(ctx, (const uint32 *)key, klen, 1);
+ rijndael_set_key(ctx, (const uint32 *) key, klen, 1);
}
-static void ciph_encrypt(CIPH_CTX *ctx, const uint8 *in, uint8 *out)
+static void
+ciph_encrypt(CIPH_CTX * ctx, const uint8 *in, uint8 *out)
{
- rijndael_encrypt(ctx, (const uint32 *)in, (uint32 *)out);
+ rijndael_encrypt(ctx, (const uint32 *) in, (uint32 *) out);
}
-static void md_init(MD_CTX *ctx)
+static void
+md_init(MD_CTX * ctx)
{
SHA256_Init(ctx);
}
-static void md_update(MD_CTX *ctx, const uint8 *data, int len)
+static void
+md_update(MD_CTX * ctx, const uint8 *data, int len)
{
SHA256_Update(ctx, data, len);
}
-static void md_result(MD_CTX *ctx, uint8 *dst)
+static void
+md_result(MD_CTX * ctx, uint8 *dst)
{
- SHA256_CTX tmp;
+ SHA256_CTX tmp;
+
memcpy(&tmp, ctx, sizeof(*ctx));
SHA256_Final(dst, &tmp);
memset(&tmp, 0, sizeof(tmp));
@@ -168,9 +175,11 @@ static void md_result(MD_CTX *ctx, uint8 *dst)
/*
* initialize state
*/
-static void init_state(FState *st)
+static void
+init_state(FState * st)
{
- int i;
+ int i;
+
memset(st, 0, sizeof(*st));
for (i = 0; i < NUM_POOLS; i++)
md_init(&st->pool[i]);
@@ -180,9 +189,11 @@ static void init_state(FState *st)
* Endianess does not matter.
* It just needs to change without repeating.
*/
-static void inc_counter(FState *st)
+static void
+inc_counter(FState * st)
{
- uint32 *val = (uint32*)st->counter;
+ uint32 *val = (uint32 *) st->counter;
+
if (++val[0])
return;
if (++val[1])
@@ -195,7 +206,8 @@ static void inc_counter(FState *st)
/*
* This is called 'cipher in counter mode'.
*/
-static void encrypt_counter(FState *st, uint8 *dst)
+static void
+encrypt_counter(FState * st, uint8 *dst)
{
ciph_encrypt(&st->ciph, st->counter, dst);
inc_counter(st);
@@ -206,12 +218,13 @@ static void encrypt_counter(FState *st, uint8 *dst)
* The time between reseed must be at least RESEED_INTERVAL
* microseconds.
*/
-static int too_often(FState *st)
+static int
+too_often(FState * st)
{
- int ok;
+ int ok;
struct timeval tv;
struct timeval *last = &st->last_reseed_time;
-
+
gettimeofday(&tv, NULL);
ok = 0;
@@ -229,19 +242,19 @@ static int too_often(FState *st)
/*
* generate new key from all the pools
*/
-static void reseed(FState *st)
+static void
+reseed(FState * st)
{
- unsigned k;
- unsigned n;
- MD_CTX key_md;
- uint8 buf[BLOCK];
+ unsigned k;
+ unsigned n;
+ MD_CTX key_md;
+ uint8 buf[BLOCK];
/* set pool as empty */
st->pool0_bytes = 0;
/*
- * Both #0 and #1 reseed would use only pool 0.
- * Just skip #0 then.
+ * Both #0 and #1 reseed would use only pool 0. Just skip #0 then.
*/
n = ++st->reseed_count;
@@ -249,7 +262,8 @@ static void reseed(FState *st)
* The goal: use k-th pool only 1/(2^k) of the time.
*/
md_init(&key_md);
- for (k = 0; k < NUM_POOLS; k++) {
+ for (k = 0; k < NUM_POOLS; k++)
+ {
md_result(&st->pool[k], buf);
md_update(&key_md, buf, BLOCK);
@@ -272,11 +286,12 @@ static void reseed(FState *st)
}
/*
- * Pick a random pool. This uses key bytes as random source.
+ * Pick a random pool. This uses key bytes as random source.
*/
-static unsigned get_rand_pool(FState *st)
+static unsigned
+get_rand_pool(FState * st)
{
- unsigned rnd;
+ unsigned rnd;
/*
* This slightly prefers lower pools - thats OK.
@@ -293,11 +308,12 @@ static unsigned get_rand_pool(FState *st)
/*
* update pools
*/
-static void add_entropy(FState *st, const uint8 *data, unsigned len)
+static void
+add_entropy(FState * st, const uint8 *data, unsigned len)
{
- unsigned pos;
- uint8 hash[BLOCK];
- MD_CTX md;
+ unsigned pos;
+ uint8 hash[BLOCK];
+ MD_CTX md;
/* hash given data */
md_init(&md);
@@ -305,14 +321,13 @@ static void add_entropy(FState *st, const uint8 *data, unsigned len)
md_result(&md, hash);
/*
- * Make sure the pool 0 is initialized,
- * then update randomly.
+ * Make sure the pool 0 is initialized, then update randomly.
*/
if (st->reseed_count == 0 && st->pool0_bytes < POOL0_FILL)
pos = 0;
else
pos = get_rand_pool(st);
- md_update( &st->pool[pos], hash, BLOCK);
+ md_update(&st->pool[pos], hash, BLOCK);
if (pos == 0)
st->pool0_bytes += len;
@@ -324,7 +339,8 @@ static void add_entropy(FState *st, const uint8 *data, unsigned len)
/*
* Just take 2 next blocks as new key
*/
-static void rekey(FState *st)
+static void
+rekey(FState * st)
{
encrypt_counter(st, st->key);
encrypt_counter(st, st->key + CIPH_BLOCK);
@@ -336,7 +352,8 @@ static void rekey(FState *st)
* In case it does not, slow down the attacker by initialising
* the couter to random value.
*/
-static void init_counter(FState *st)
+static void
+init_counter(FState * st)
{
/* Use next block as counter. */
encrypt_counter(st, st->counter);
@@ -348,10 +365,11 @@ static void init_counter(FState *st)
st->counter_init = 1;
}
-static void extract_data(FState *st, unsigned count, uint8 *dst)
+static void
+extract_data(FState * st, unsigned count, uint8 *dst)
{
- unsigned n;
- unsigned block_nr = 0;
+ unsigned n;
+ unsigned block_nr = 0;
/* Can we reseed? */
if (st->pool0_bytes >= POOL0_FILL && !too_often(st))
@@ -361,7 +379,8 @@ static void extract_data(FState *st, unsigned count, uint8 *dst)
if (!st->counter_init)
init_counter(st);
- while (count > 0) {
+ while (count > 0)
+ {
/* produce bytes */
encrypt_counter(st, st->result);
@@ -391,9 +410,10 @@ static void extract_data(FState *st, unsigned count, uint8 *dst)
*/
static FState main_state;
-static int init_done = 0;
+static int init_done = 0;
-void fortuna_add_entropy(const uint8 *data, unsigned len)
+void
+fortuna_add_entropy(const uint8 *data, unsigned len)
{
if (!init_done)
{
@@ -405,7 +425,8 @@ void fortuna_add_entropy(const uint8 *data, unsigned len)
add_entropy(&main_state, data, len);
}
-void fortuna_get_bytes(unsigned len, uint8 *dst)
+void
+fortuna_get_bytes(unsigned len, uint8 *dst)
{
if (!init_done)
{
@@ -416,4 +437,3 @@ void fortuna_get_bytes(unsigned len, uint8 *dst)
return;
extract_data(&main_state, len, dst);
}
-