aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/execExpr.c
Commit message (Collapse)AuthorAge
* Fix assignment to array of domain over composite, redux.Tom Lane2023-04-15
| | | | | | | | | | | | | | | | Commit 3e310d837 taught isAssignmentIndirectionExpr() to look through CoerceToDomain nodes. That's not sufficient, because since commit 04fe805a1 it's been possible for the planner to simplify CoerceToDomain to RelabelType when the domain has no constraints to enforce. So we need to look through RelabelType too. Per bug #17897 from Alexander Lakhin. Although 3e310d837 was back-patched to v11, it seems sufficient to apply this change to v12 and later, since 04fe805a1 came in in v12. Dmitry Dolgov Discussion: https://postgr.es/m/17897-4216c546c3874044@postgresql.org
* Fix MULTIEXPR_SUBLINK with partitioned target tables, yet again.Tom Lane2023-02-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We already tried to fix this in commits 3f7323cbb et al (and follow-on fixes), but now it emerges that there are still unfixed cases; moreover, these cases affect all branches not only pre-v14. I thought we had eliminated all cases of making multiple clones of an UPDATE's target list when we nuked inheritance_planner. But it turns out we still do that in some partitioned-UPDATE cases, notably including INSERT ... ON CONFLICT UPDATE, because ExecInitPartitionInfo thinks it's okay to clone and modify the parent's targetlist. This fix is based on a suggestion from Andres Freund: let's stop abusing the ParamExecData.execPlan mechanism, which was only ever meant to handle initplans, and instead solve the execution timing problem by having the expression compiler move MULTIEXPR_SUBLINK steps to the front of their expression step lists. This is feasible because (a) all branches still in support compile the entire targetlist of an UPDATE into a single ExprState, and (b) we know that all MULTIEXPR_SUBLINKs do need to be evaluated --- none could be buried inside a CASE, for example. There is a minor semantics change concerning the order of execution of the MULTIEXPR's subquery versus other parts of the parent targetlist, but that seems like something we can get away with. By doing that, we no longer need to worry about whether different clones of a MULTIEXPR_SUBLINK share output Params; their usage of that data structure won't overlap. Per bug #17800 from Alexander Lakhin. Back-patch to all supported branches. In v13 and earlier, we can revert 3f7323cbb and follow-on fixes; however, I chose to keep the SubPlan.subLinkId field added in ccbb54c72. We don't need that anymore in the core code, but it's cheap enough to fill, and removing a plan node field in a minor release seems like it'd be asking for trouble. Andres Freund and Tom Lane Discussion: https://postgr.es/m/17800-ff90866b3906c964@postgresql.org
* Revert applying column aliases to the output of whole-row Vars.Tom Lane2022-03-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit bf7ca1587, I had the bright idea that we could make the result of a whole-row Var (that is, foo.*) track any column aliases that had been applied to the FROM entry the Var refers to. However, that's not terribly logically consistent, because now the output of the Var is no longer of the named composite type that the Var claims to emit. bf7ca1587 tried to handle that by changing the output tuple values to be labeled with a blessed RECORD type, but that's really pretty disastrous: we can wind up storing such tuples onto disk, whereupon they're not readable by other sessions. The only practical fix I can see is to give up on what bf7ca1587 tried to do, and say that the column names of tuples produced by a whole-row Var are always those of the underlying named composite type, query aliases or no. While this introduces some inconsistencies, it removes others, so it's not that awful in the abstract. What *is* kind of awful is to make such a behavioral change in a back-patched bug fix. But corrupt data is worse, so back-patched it will be. (A workaround available to anyone who's unhappy about this is to introduce an extra level of sub-SELECT, so that the whole-row Var is referring to the sub-SELECT's output and not to a named table type. Then the Var is of type RECORD to begin with and there's no issue.) Per report from Miles Delahunty. The faulty commit dates to 9.5, so back-patch to all supported branches. Discussion: https://postgr.es/m/2950001.1638729947@sss.pgh.pa.us
* Fix variable lifespan in ExecInitCoerceToDomain().Tom Lane2021-11-02
| | | | | | | | | | | | This undoes a mistake in 1ec7679f1: domainval and domainnull were meant to live across loop iterations, but they were incorrectly moved inside the loop. The effect was only to emit useless extra EEOP_MAKE_READONLY steps, so it's not a big deal; nonetheless, back-patch to v13 where the mistake was introduced. Ranier Vilela Discussion: https://postgr.es/m/CAEudQAqXuhbkaAp-sGH6dR6Nsq7v28_0TPexHOm6FiDYqwQD-w@mail.gmail.com
* Fix assignment to array of domain over composite.Tom Lane2021-10-19
| | | | | | | | | | | | | | | An update such as "UPDATE ... SET fld[n].subfld = whatever" failed if the array elements were domains rather than plain composites. That's because isAssignmentIndirectionExpr() failed to cope with the CoerceToDomain node that would appear in the expression tree in this case. The result would typically be a crash, and even if we accidentally didn't crash, we'd not correctly preserve other fields of the same array element. Per report from Onder Kalaci. Back-patch to v11 where arrays of domains came in. Discussion: https://postgr.es/m/PH0PR21MB132823A46AA36F0685B7A29AD8BD9@PH0PR21MB1328.namprd21.prod.outlook.com
* Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.Tom Lane2021-05-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present. If it happens, the ON CONFLICT UPDATE code path would end up storing tuples that include the values of the extra resjunk columns. That's fairly harmless in the short run, but if new columns are added to the table then the values would become accessible, possibly leading to malfunctions if they don't match the datatypes of the new columns. This had escaped notice through a confluence of missing sanity checks, including * There's no cross-check that a tuple presented to heap_insert or heap_update matches the table rowtype. While it's difficult to check that fully at reasonable cost, we can easily add assertions that there aren't too many columns. * The output-column-assignment cases in execExprInterp.c lacked any sanity checks on the output column numbers, which seems like an oversight considering there are plenty of assertion checks on input column numbers. Add assertions there too. * We failed to apply nodeModifyTable's ExecCheckPlanOutput() to the ON CONFLICT UPDATE tlist. That wouldn't have caught this specific error, since that function is chartered to ignore resjunk columns; but it sure seems like a bad omission now that we've seen this bug. In HEAD, the right way to fix this is to make the processing of ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists now do, that is don't add "SET x = x" entries, and use ExecBuildUpdateProjection to evaluate the tlist and combine it with old values of the not-set columns. This adds a little complication to ExecBuildUpdateProjection, but allows removal of a comparable amount of now-dead code from the planner. In the back branches, the most expedient solution seems to be to (a) use an output slot for the ON CONFLICT UPDATE projection that actually matches the target table, and then (b) invent a variant of ExecBuildProjectionInfo that can be told to not store values resulting from resjunk columns, so it doesn't try to store into nonexistent columns of the output slot. (We can't simply ignore the resjunk columns altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.) This works back to v10. In 9.6, projections work much differently and we can't cheaply give them such an option. The 9.6 version of this patch works by inserting a JunkFilter when it's necessary to get rid of resjunk columns. In addition, v11 and up have the reverse problem when trying to perform ON CONFLICT UPDATE on a partitioned table. Through a further oversight, adjust_partition_tlist() discarded resjunk columns when re-ordering the ON CONFLICT UPDATE tlist to match a partition. This accidentally prevented the storing-bogus-tuples problem, but at the cost that MULTIEXPR_SUBLINK cases didn't work, typically crashing if more than one row has to be updated. Fix by preserving resjunk columns in that routine. (I failed to resist the temptation to add more assertions there too, and to do some minor code beautification.) Per report from Andres Freund. Back-patch to all supported branches. Security: CVE-2021-32028
* Redesign the caching done by get_cached_rowtype().Tom Lane2021-04-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, get_cached_rowtype() cached a pointer to a reference-counted tuple descriptor from the typcache, relying on the ExprContextCallback mechanism to release the tupdesc refcount when the expression tree using the tupdesc was destroyed. This worked fine when it was designed, but the introduction of within-DO-block COMMITs broke it. The refcount is logged in a transaction-lifespan resource owner, but plpgsql won't destroy simple expressions made within the DO block (before its first commit) until the DO block is exited. That results in a warning about a leaked tupdesc refcount when the COMMIT destroys the original resource owner, and then an error about the active resource owner not holding a matching refcount when the expression is destroyed. To fix, get rid of the need to have a shutdown callback at all, by instead caching a pointer to the relevant typcache entry. Those survive for the life of the backend, so we needn't worry about the pointer becoming stale. (For registered RECORD types, we can still cache a pointer to the tupdesc, knowing that it won't change for the life of the backend.) This mechanism has been in use in plpgsql and expandedrecord.c since commit 4b93f5799, and seems to work well. This change requires modifying the ExprEvalStep structs used by the relevant expression step types, which is slightly worrisome for back-patching. However, there seems no good reason for extensions to be familiar with the details of these particular sub-structs. Per report from Rohit Bhogate. Back-patch to v11 where within-DO-block COMMITs became a thing. Discussion: https://postgr.es/m/CAAV6ZkQRCVBh8qAY+SZiHnz+U+FqAGBBDaDTjF2yiKa2nJSLKg@mail.gmail.com
* Speedup ScalarArrayOpExpr evaluationDavid Rowley2021-04-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand side have traditionally been evaluated by using a linear search over the array. When these arrays contain large numbers of elements then this linear search could become a significant part of execution time. Here we add a new method of evaluating ScalarArrayOpExpr expressions to allow them to be evaluated by first building a hash table containing each element, then on subsequent evaluations, we just probe that hash table to determine if there is a match. The planner is in charge of determining when this optimization is possible and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The executor will only perform the hash table evaluation when the hashfuncid is set. This means that not all cases are optimized. For example CHECK constraints containing an IN clause won't go through the planner, so won't get the hashfuncid set. We could maybe do something about that at some later date. The reason we're not doing it now is from fear that we may slow down cases where the expression is evaluated only once. Those cases can be common, for example, a single row INSERT to a table with a CHECK constraint containing an IN clause. In the planner, we enable this when there are suitable hash functions for the ScalarArrayOpExpr's operator and only when there is at least MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is currently set to 9. Author: James Coleman, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
* Add Result Cache executor node (take 2)David Rowley2021-04-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
* Revert b6002a796David Rowley2021-04-01
| | | | | | | | | | | | | This removes "Add Result Cache executor node". It seems that something weird is going on with the tracking of cache hits and misses as highlighted by many buildfarm animals. It's not yet clear what the problem is as other parts of the plan indicate that the cache did work correctly, it's just the hits and misses that were being reported as 0. This is especially a bad time to have the buildfarm so broken, so reverting before too many more animals go red. Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
* Add Result Cache executor nodeDavid Rowley2021-04-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
* Rework planning and execution of UPDATE and DELETE.Tom Lane2021-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
* Don't add bailout adjustment for non-strict deserialize calls.Andrew Gierth2021-01-28
| | | | | | | | | | | | | | | | | | | | When building aggregate expression steps, strict checks need a bailout jump for when a null value is encountered, so there is a list of steps that require later adjustment. Adding entries to that list for steps that aren't actually strict would be harmless, except that there is an Assert which catches them. This leads to spurious errors on asserts builds, for data sets that trigger parallel aggregation of an aggregate with a non-strict deserialization function (no such aggregates exist in the core system). Repair by not adding the adjustment entry when it's not needed. Backpatch back to 11 where the code was introduced. Per a report from Darafei (Komzpa) of the PostGIS project; analysis and patch by me. Discussion: https://postgr.es/m/87mty7peb3.fsf@news-spur.riddles.org.uk
* Update copyright for 2021Bruce Momjian2021-01-02
| | | | Backpatch-through: 9.5
* Provide an error cursor for "can't subscript" error messages.Tom Lane2020-12-11
| | | | | | | | | | Commit c7aba7c14 didn't add this, but after more fooling with the feature I feel that it'd be useful. To make this possible, refactor getSubscriptingRoutines() so that the caller is responsible for throwing any error. (In clauses.c, I just chose to make the most conservative assumption rather than throwing an error. We don't expect failures there anyway really, so the code space for an error message would be a poor investment.)
* Support subscripting of arbitrary types, not only arrays.Tom Lane2020-12-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch generalizes the subscripting infrastructure so that any data type can be subscripted, if it provides a handler function to define what that means. Traditional variable-length (varlena) arrays all use array_subscript_handler(), while the existing fixed-length types that support subscripting use raw_array_subscript_handler(). It's expected that other types that want to use subscripting notation will define their own handlers. (This patch provides no such new features, though; it only lays the foundation for them.) To do this, move the parser's semantic processing of subscripts (including coercion to whatever data type is required) into a method callback supplied by the handler. On the execution side, replace the ExecEvalSubscriptingRef* layer of functions with direct calls to callback-supplied execution routines. (Thus, essentially no new run-time overhead should be caused by this patch. Indeed, there is room to remove some overhead by supplying specialized execution routines. This patch does a little bit in that line, but more could be done.) Additional work is required here and there to remove formerly hard-wired assumptions about the result type, collation, etc of a SubscriptingRef expression node; and to remove assumptions that the subscript values must be integers. One useful side-effect of this is that we now have a less squishy mechanism for identifying whether a data type is a "true" array: instead of wiring in weird rules about typlen, we can look to see if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER. For this to be bulletproof, we have to forbid user-defined types from using that handler directly; but there seems no good reason for them to do so. This patch also removes assumptions that the number of subscripts is limited to MAXDIM (6), or indeed has any hard-wired limit. That limit still applies to types handled by array_subscript_handler or raw_array_subscript_handler, but to discourage other dependencies on this constant, I've moved it from c.h to utils/array.h. Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov, Peter Eisentraut, Pavel Stehule Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
* Move per-agg and per-trans duplicate finding to the planner.Heikki Linnakangas2020-11-24
| | | | | | | | | | This has the advantage that the cost estimates for aggregates can count the number of calls to transition and final functions correctly. Bump catalog version, because views can contain Aggrefs. Reviewed-by: Andres Freund Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
* Fix some grammar and typos in comments and docsMichael Paquier2020-11-02
| | | | | | | | The documentation fixes are backpatched down to where they apply. Author: Justin Pryzby Discussion: https://postgr.es/m/20201031020801.GD3080@telsasoft.com Backpatch-through: 9.6
* Move resolution of AlternativeSubPlan choices to the planner.Tom Lane2020-09-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When commit bd3daddaf introduced AlternativeSubPlans, I had some ambitions towards allowing the choice of subplan to change during execution. That has not happened, or even been thought about, in the ensuing twelve years; so it seems like a failed experiment. So let's rip that out and resolve the choice of subplan at the end of planning (in setrefs.c) rather than during executor startup. This has a number of positive benefits: * Removal of a few hundred lines of executor code, since AlternativeSubPlans need no longer be supported there. * Removal of executor-startup overhead (particularly, initialization of subplans that won't be used). * Removal of incidental costs of having a larger plan tree, such as tree-scanning and copying costs in the plancache; not to mention setrefs.c's own costs of processing the discarded subplans. * EXPLAIN no longer has to print a weird (and undocumented) representation of an AlternativeSubPlan choice; it sees only the subplan actually used. This should mean less confusion for users. * Since setrefs.c knows which subexpression of a plan node it's working on at any instant, it's possible to adjust the estimated number of executions of the subplan based on that. For example, we should usually estimate more executions of a qual expression than a targetlist expression. The implementation used here is pretty simplistic, because we don't want to expend a lot of cycles on the issue; but it's better than ignoring the point entirely, as the executor had to. That last point might possibly result in shifting the choice between hashed and non-hashed EXISTS subplans in a few cases, but in general this patch isn't meant to change planner choices. Since we're doing the resolution so late, it's really impossible to change any plan choices outside the AlternativeSubPlan itself. Patch by me; thanks to David Rowley for review. Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
* Initial pgindent and pgperltidy run for v13.Tom Lane2020-05-14
| | | | | | | | | | | Includes some manual cleanup of places that pgindent messed up, most of which weren't per project style anyway. Notably, it seems some people didn't absorb the style rules of commit c9d297751, because there were a bunch of new occurrences of function calls with a newline just after the left paren, all with faulty expectations about how the rest of the call would get indented.
* Fix collection of typos and grammar mistakes in the treeMichael Paquier2020-04-10
| | | | | | | This fixes some comments and documentation new as of Postgres 13. Author: Justin Pryzby Discussion: https://postgr.es/m/20200408165653.GF2228@telsasoft.com
* Remove utils/acl.h from catalog/objectaddress.hPeter Eisentraut2020-03-10
| | | | | | | | | | | | | | | | | | The need for this was removed by 8b9e9644dc6a9bd4b7a97950e6212f63880cf18b. A number of files now need to include utils/acl.h or parser/parse_node.h explicitly where they previously got it indirectly somehow. Since parser/parse_node.h already includes nodes/parsenodes.h, the latter is then removed where the former was added. Also, remove nodes/pg_list.h from objectaddress.h, since that's included via nodes/parsenodes.h. Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Reviewed-by: Alvaro Herrera <alvherre@2ndquadrant.com> Discussion: https://www.postgresql.org/message-id/flat/7601e258-26b2-8481-36d0-dc9dca6f28f1%402ndquadrant.com
* Extend ExecBuildAggTrans() to support a NULL pointer check.Jeff Davis2020-03-04
| | | | | | | | | | | | | | | | | Optionally push a step to check for a NULL pointer to the pergroup state. This will be important for disk-based hash aggregation in combination with grouping sets. When memory limits are reached, a given tuple may find its per-group state for some grouping sets but not others. For the former, it advances the per-group state as normal; for the latter, it skips evaluation and the calling code will have to spill the tuple and reprocess it in a later batch. Add the NULL check as a separate expression step because in some common cases it's not needed. Discussion: https://postgr.es/m/20200221202212.ssb2qpmdgrnx52sj%40alap3.anarazel.de
* expression eval: Reduce number of steps for agg transition invocations.Andres Freund2020-02-24
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Do so by combining the various steps that are part of aggregate transition function invocation into one larger step. As some of the current steps are only necessary for some aggregates, have one variant of the aggregate transition step for each possible combination. To avoid further manual copies of code in the different transition step implementations, move most of the code into helper functions marked as "always inline". The benefit of this change is an increase in performance when aggregating lots of rows. This comes in part due to the reduced number of indirect jumps due to the reduced number of steps, and in part by reducing redundant setup code across steps. This mainly benefits interpreted execution, but the code generated by JIT is also improved a bit. As a nice side-effect it also ends up making the code a bit simpler. A small additional optimization is removing the need to set aggstate->curaggcontext before calling ExecAggInitGroup, choosing to instead passign curaggcontext as an argument. It was, in contrast to other aggregate related functions, only needed to fetch a memory context to copy the transition value into. Author: Andres Freund Discussion: https://postgr.es/m/20191023163849.sosqbfs5yenocez3@alap3.anarazel.de https://postgr.es/m/5c371df7cee903e8cd4c685f90c6c72086d3a2dc.camel@j-davis.com
* expression eval: Don't redundantly keep track of AggState.Andres Freund2020-02-06
| | | | | | | | | | It's already tracked via ExprState->parent, so we don't need to also include it in ExprEvalStep. When that code originally was written ExprState->parent didn't exist, but it since has been introduced in 6719b238e8f. Author: Andres Freund Discussion: https://postgr.es/m/20191023163849.sosqbfs5yenocez3@alap3.anarazel.de
* expression eval, jit: Minor code cleanups.Andres Freund2020-02-06
| | | | | | | | | | This mostly consists of using C99 style for loops, moving variables into narrower scopes, and a smattering of other minor improvements. Done separately to make it easier to review patches with actual functional changes. Author: Andres Freund Discussion: https://postgr.es/m/20191023163849.sosqbfs5yenocez3@alap3.anarazel.de
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Remove redundant not-null testBruce Momjian2019-12-17
| | | | | | | | | | Reported-by: Ranier Vilela Discussion: https://postgr.es/m/MN2PR18MB2927E73FADCA8967B2302469E3490@MN2PR18MB2927.namprd18.prod.outlook.com Author: Ranier Vilela Backpatch-through: master
* Don't generate EEOP_*_FETCHSOME operations for slots know to be virtual.Andres Freund2019-09-30
| | | | | | | | | | | | That avoids unnecessary work during both interpreted execution, and JIT compiled expression evaluation. Both benefit from fewer expression steps needing be processed, and for interpreted execution there now is a fastpath dedicated to just fetching a value from a virtual slot. That's e.g. beneficial for hashjoins over nodes that perform projections, as the hashed columns are currently fetched individually. Author: Soumyadeep Chakraborty, Andres Freund Discussion: https://postgr.es/m/CAE-ML+9OKSN71+mHtfMD-L24oDp8dGTfaVjDU6U+j+FNAW5kRQ@mail.gmail.com
* Fix determination when slot types for upper executor nodes are fixed.Andres Freund2019-09-29
| | | | | | | | | | | | | | | | | | | | | | | | | For many queries the fact that the tuple descriptor from the lower node was not taken into account when determining whether the type of a slot is fixed, lead to tuple deforming for such upper nodes not to be JIT accelerated. I broke this in 675af5c01e297. There is ongoing work to enable writing regression tests for related behavior (including a patch that would have detected this regression), by optionally showing such details in EXPLAIN. But as it seems unlikely that that will be suitable for stable branches, just merge the fix for now. While it's fairly close to the 12 release window, the fact that 11 continues to perform JITed tuple deforming in these cases, that there's still cases where we do so in 12, and the fact that the performance regression can be sizable, weigh in favor of fixing it now. Author: Andres Freund Discussion: https://postgr.es/m/20190927072053.njf6prdl3vb7y7qb@alap3.anarazel.de Backpatch: 12-, where 675af5c01e297 was merged.
* Fix ExprState's tag to be of type NodeTag rather than Node.Andres Freund2019-09-23
| | | | | | | This appears to have been an oversight in b8d7f053c5c2. As it's effectively harmless, though confusing, only fix in master. Author: Andres Freund
* Fix inconsistencies and typos in the tree, take 11Michael Paquier2019-08-19
| | | | | | | | This fixes various typos in docs and comments, and removes some orphaned definitions. Author: Alexander Lakhin Discussion: https://postgr.es/m/5da8e325-c665-da95-21e0-c8a99ea61fbf@gmail.com
* Don't include utils/array.h from acl.h.Andres Freund2019-08-16
| | | | | | | | | | | | | | | | | | For most uses of acl.h the details of how "Acl" internally looks like are irrelevant. It might make sense to move a lot of the implementation details into a separate header at a later point. The main motivation of this change is to avoid including fmgr.h (via array.h, which needs it for exposed structs) in a lot of files that otherwise don't need it. A subsequent commit will remove the fmgr.h include from a lot of files. Directly include utils/array.h and utils/expandeddatum.h from the files that need them, but previously included them indirectly, via acl.h. Author: Andres Freund Discussion: https://postgr.es/m/20190803193733.g3l3x3o42uv4qj7l@alap3.anarazel.de
* Avoid using lcons and list_delete_first where it's easy to do so.Tom Lane2019-07-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Formerly, lcons was about the same speed as lappend, but with the new List implementation, that's not so; with a long List, data movement imposes an O(N) cost on lcons and list_delete_first, but not lappend. Hence, invent list_delete_last with semantics parallel to list_delete_first (but O(1) cost), and change various places to use lappend and list_delete_last where this can be done without much violence to the code logic. There are quite a few places that construct result lists using lcons not lappend. Some have semantic rationales for that; I added comments about it to a couple that didn't have them already. In many such places though, I think the coding is that way only because back in the dark ages lcons was faster than lappend. Hence, switch to lappend where this can be done without causing semantic changes. In ExecInitExprRec(), this results in aggregates and window functions that are in the same plan node being executed in a different order than before. Generally, the executions of such functions ought to be independent of each other, so this shouldn't result in visibly different query results. But if you push it, as one regression test case does, you can show that the order is different. The new order seems saner; it's closer to the order of the functions in the query text. And we never documented or promised anything about this, anyway. Also, in gistfinishsplit(), don't bother building a reverse-order list; it's easy now to iterate backwards through the original list. It'd be possible to go further towards removing uses of lcons and list_delete_first, but it'd require more extensive logic changes, and I'm not convinced it's worth it. Most of the remaining uses deal with queues that probably never get long enough to be worth sweating over. (Actually, I doubt that any of the changes in this patch will have measurable performance effects either. But better to have good examples than bad ones in the code base.) Patch by me, thanks to David Rowley and Daniel Gustafsson for review. Discussion: https://postgr.es/m/21272.1563318411@sss.pgh.pa.us
* Fix many typos and inconsistenciesMichael Paquier2019-07-01
| | | | | Author: Alexander Lakhin Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* Initial pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | This is still using the 2.0 version of pg_bsd_indent. I thought it would be good to commit this separately, so as to document the differences between 2.0 and 2.1 behavior. Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
* Fix duplicated words in commentsMichael Paquier2019-05-14
| | | | | Author: Stephen Amell Discussion: https://postgr.es/m/539fa271-21b3-777e-a468-d96cffe9c768@gmail.com
* Collations with nondeterministic comparisonPeter Eisentraut2019-03-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a flag "deterministic" to collations. If that is false, such a collation disables various optimizations that assume that strings are equal only if they are byte-wise equal. That then allows use cases such as case-insensitive or accent-insensitive comparisons or handling of strings with different Unicode normal forms. This functionality is only supported with the ICU provider. At least glibc doesn't appear to have any locales that work in a nondeterministic way, so it's not worth supporting this for the libc provider. The term "deterministic comparison" in this context is from Unicode Technical Standard #10 (https://unicode.org/reports/tr10/#Deterministic_Comparison). This patch makes changes in three areas: - CREATE COLLATION DDL changes and system catalog changes to support this new flag. - Many executor nodes and auxiliary code are extended to track collations. Previously, this code would just throw away collation information, because the eventually-called user-defined functions didn't use it since they only cared about equality, which didn't need collation information. - String data type functions that do equality comparisons and hashing are changed to take the (non-)deterministic flag into account. For comparison, this just means skipping various shortcuts and tie breakers that use byte-wise comparison. For hashing, we first need to convert the input string to a canonical "sort key" using the ICU analogue of strxfrm(). Reviewed-by: Daniel Verite <daniel@manitou-mail.org> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
* Standardize some more loops that chase down parallel lists.Tom Lane2019-02-28
| | | | | | | | | | | | | | | | | | | | | | | | | We have forboth() and forthree() macros that simplify iterating through several parallel lists, but not everyplace that could reasonably use those was doing so. Also invent forfour() and forfive() macros to do the same for four or five parallel lists, and use those where applicable. The immediate motivation for doing this is to reduce the number of ad-hoc lnext() calls, to reduce the footprint of a WIP patch. However, it seems like good cleanup and error-proofing anyway; the places that were combining forthree() with a manually iterated loop seem particularly illegible and bug-prone. There was some speculation about restructuring related parsetree representations to reduce the need for parallel list chasing of this sort. Perhaps that's a win, or perhaps not, but in any case it would be considerably more invasive than this patch; and it's not particularly related to my immediate goal of improving the List infrastructure. So I'll leave that question for another day. Patch by me; thanks to David Rowley for review. Discussion: https://postgr.es/m/11587.1550975080@sss.pgh.pa.us
* Renaming for new subscripting mechanismAlvaro Herrera2019-02-01
| | | | | | | | | | | | Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to introduce a more generic subscription mechanism, which allows subscripting not only arrays but also other object types such as JSONB. That functionality is introduced in a largish invasive patch, out of which this internal renaming patch was extracted. Author: Dmitry Dolgov Reviewed-by: Tom Lane, Arthur Zakirov Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
* Refactor planner's header files.Tom Lane2019-01-29
| | | | | | | | | | | | | | | | | | | | | | | | Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
* Change function call information to be variable length.Andres Freund2019-01-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Add some const decorationsPeter Eisentraut2018-12-22
| | | | These mainly help understanding the function signatures better.
* Remove WITH OIDS support, change oid catalog column visibility.Andres Freund2018-11-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
* Compute information about EEOP_*_FETCHSOME at expression init time.Andres Freund2018-11-15
| | | | | | | | | | | | | | Previously this information was computed when JIT compiling an expression. But the information is useful for assertions in the non-JIT case too (for assertions), therefore it makes sense to move it. This will, in a followup commit, allow to treat different slot types differently. E.g. for virtual slots there's no need to generate a JIT function to deform the slot. Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Introduce notion of different types of slots (without implementing them).Andres Freund2018-11-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Fix unused-variable warning.Tom Lane2018-11-04
| | | | Discussion: https://postgr.es/m/CAMkU=1xTHkS6d0iptCWykHc1Xrh3LBic_gZDo3JzDYru815fLQ@mail.gmail.com
* Prevent generating EEOP_AGG_STRICT_INPUT_CHECK operations when nargs == 0.Andres Freund2018-11-03
| | | | | | | | | | | | | | This only became a problem with 4c640f4f38, which didn't synchronize the value agg_strict_input_check.nargs is set to, with the guard condition for emitting the operation. Besides such instructions being unnecessary overhead, currently the LLVM JIT provider doesn't support them. It seems more sensible to avoid generating such instruction than supporting them. Add assertions to make it easier to debug a potential further occurance. Discussion: https://postgr.es/m/2a505161-2727-2473-7c46-591ed108ac52@email.cz Backpatch: 11-, like 4c640f4f38.