aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeIndexscan.c
Commit message (Collapse)AuthorAge
* Refactor planner's header files.Tom Lane2019-01-29
| | | | | | | | | | | | | | | | | | | | | | | | Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
* Rename RelationData.rd_amroutine to rd_indam.Andres Freund2019-01-21
| | | | | | | | | The upcoming table AM support makes rd_amroutine to generic, as its only about index AMs. The new name makes that clear, and is shorter to boot. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Make TupleTableSlots extensible, finish split of existing slot type.Andres Freund2018-11-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit completes the work prepared in 1a0586de36, splitting the old TupleTableSlot implementation (which could store buffer, heap, minimal and virtual slots) into four different slot types. As described in the aforementioned commit, this is done with the goal of making tuple table slots extensible, to allow for pluggable table access methods. To achieve runtime extensibility for TupleTableSlots, operations on slots that can differ between types of slots are performed using the TupleTableSlotOps struct provided at slot creation time. That includes information from the size of TupleTableSlot struct to be allocated, initialization, deforming etc. See the struct's definition for more detailed information about callbacks TupleTableSlotOps. I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more consistent with other naming introduced in recent patches. There's plenty optimization potential in the slot implementation, but according to benchmarking the state after this commit has similar performance characteristics to before this set of changes, which seems sufficient. There's a few changes in execReplication.c that currently need to poke through the slot abstraction, that'll be repaired once the pluggable storage patchset provides the necessary infrastructure. Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Introduce notion of different types of slots (without implementing them).Andres Freund2018-11-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Don't require return slots for nodes without projection.Andres Freund2018-11-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Restore sane locking behavior during parallel query.Tom Lane2018-10-06
| | | | | | | | | | | | | | Commit 9a3cebeaa changed things so that parallel workers didn't obtain any lock of their own on tables they access. That was clearly a bad idea, but I'd mistakenly supposed that it was the intended end result of the series of patches for simplifying the executor's lock management. Undo that change in relation_open(), and adjust ExecOpenScanRelation() so that it gets the correct lock if inside a parallel worker. In passing, clean up some more obsolete comments about when locks are acquired. Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Allow btree comparison functions to return INT_MIN.Tom Lane2018-10-05
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Historically we forbade datatype-specific comparison functions from returning INT_MIN, so that it would be safe to invert the sort order just by negating the comparison result. However, this was never really safe for comparison functions that directly return the result of memcmp(), strcmp(), etc, as POSIX doesn't place any such restriction on those library functions. Buildfarm results show that at least on recent Linux on s390x, memcmp() actually does return INT_MIN sometimes, causing sort failures. The agreed-on answer is to remove this restriction and fix relevant call sites to not make such an assumption; code such as "res = -res" should be replaced by "INVERT_COMPARE_RESULT(res)". The same is needed in a few places that just directly negated the result of memcmp or strcmp. To help find places having this problem, I've also added a compile option to nbtcompare.c that causes some of the commonly used comparators to return INT_MIN/INT_MAX instead of their usual -1/+1. It'd likely be a good idea to have at least one buildfarm member running with "-DSTRESS_SORT_INT_MIN". That's far from a complete test of course, but it should help to prevent fresh introductions of such bugs. This is a longstanding portability hazard, so back-patch to all supported branches. Discussion: https://postgr.es/m/20180928185215.ffoq2xrq5d3pafna@alap3.anarazel.de
* Centralize executor's opening/closing of Relations for rangetable entries.Tom Lane2018-10-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | Create an array estate->es_relations[] paralleling the es_range_table, and store references to Relations (relcache entries) there, so that any given RT entry is opened and closed just once per executor run. Scan nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation is no more; relation closing is now done centrally in ExecEndPlan. This is slightly more complex than one would expect because of the interactions with relcache references held in ResultRelInfo nodes. The general convention is now that ResultRelInfo->ri_RelationDesc does not represent a separate relcache reference and so does not need to be explicitly closed; but there is an exception for ResultRelInfos in the es_trig_target_relations list, which are manufactured by ExecGetTriggerResultRel and have to be cleaned up by ExecCleanUpTriggerState. (That much was true all along, but these ResultRelInfos are now more different from others than they used to be.) To allow the partition pruning logic to make use of es_relations[] rather than having its own relcache references, adjust PartitionedRelPruneInfo to store an RT index rather than a relation OID. Amit Langote, reviewed by David Rowley and Jesper Pedersen, some mods by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Split ExecStoreTuple into ExecStoreHeapTuple and ExecStoreBufferHeapTuple.Andres Freund2018-09-25
| | | | | | | | | | | | | | | | | | | | Upcoming changes introduce further types of tuple table slots, in preparation of making table storage pluggable. New storage methods will have different representation of tuples, therefore the slot accessor should refer explicitly to heap tuples. Instead of just renaming the functions, split it into one function that accepts heap tuples not residing in buffers, and one accepting ones in buffers. Previously one function was used for both, but that was a bit awkward already, and splitting will allow us to represent slot types for tuples in buffers and normal memory separately. This is split out from the patch introducing abstract slots, as this largely consists out of mechanical changes. Author: Ashutosh Bapat Reviewed-By: Andres Freund Discussion: https://postgr.es/m/20180220224318.gw4oe5jadhpmcdnm@alap3.anarazel.de
* Rephrase a few comments for clarity.Heikki Linnakangas2018-07-19
| | | | | | | | I was confused by what "intended to be parallel serially" meant, until Robert Haas and David G. Johnston explained it. Rephrase the comment to make it more clear, using David's suggested wording. Discussion: https://www.postgresql.org/message-id/1fec9022-41e8-e484-70ce-2179b08c2092%40iki.fi
* Indexes with INCLUDE columns and their support in B-treeTeodor Sigaev2018-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces INCLUDE clause to index definition. This clause specifies a list of columns which will be included as a non-key part in the index. The INCLUDE columns exist solely to allow more queries to benefit from index-only scans. Also, such columns don't need to have appropriate operator classes. Expressions are not supported as INCLUDE columns since they cannot be used in index-only scans. Index access methods supporting INCLUDE are indicated by amcaninclude flag in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause. In B-tree indexes INCLUDE columns are truncated from pivot index tuples (tuples located in non-leaf pages and high keys). Therefore, B-tree indexes now might have variable number of attributes. This patch also provides generic facility to support that: pivot tuples contain number of their attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating that. This facility will simplify further support of index suffix truncation. The changes of above are backward-compatible, pg_upgrade doesn't need special handling of B-tree indexes for that. Bump catalog version Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes, David Rowley, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru
* Allow tupleslots to have a fixed tupledesc, use in executor nodes.Andres Freund2018-02-16
| | | | | | | | | | | | | | | | | | | | | The reason for doing so is that it will allow expression evaluation to optimize based on the underlying tupledesc. In particular it will allow to JIT tuple deforming together with the expression itself. For that expression initialization needs to be moved after the relevant slots are initialized - mostly unproblematic, except in the case of nodeWorktablescan.c. After doing so there's no need for ExecAssignResultType() and ExecAssignResultTypeFromTL() anymore, as all former callers have been converted to create a slot with a fixed descriptor. When creating a slot with a fixed descriptor, tts_values/isnull can be allocated together with the main slot, reducing allocation overhead and increasing cache density a bit. Author: Andres Freund Discussion: https://postgr.es/m/20171206093717.vqdxe5icqttpxs3p@alap3.anarazel.de
* Introduce ExecQualAndReset() helper.Andres Freund2018-01-29
| | | | | | | | | | | | | | | | It's a common task to evaluate a qual and reset the corresponding expression context. Currently that requires storing the result of the qual eval, resetting the context, and then reacting on the result. As that's awkward several places only reset the context next time through a node. That's not great, so introduce a helper that evaluates and resets. It's a bit ugly that it currently uses MemoryContextReset() instead of ResetExprContext(), but that seems easier than reordering all of executor.h. Author: Andres Freund Discussion: https://postgr.es/m/20180109222544.f7loxrunqh3xjl5f@alap3.anarazel.de
* Avoid crash during EvalPlanQual recheck of an inner indexscan.Tom Lane2018-01-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 09529a70b changed nodeIndexscan.c and nodeIndexonlyscan.c to postpone initialization of the indexscan proper until the first tuple fetch. It overlooked the question of mark/restore behavior, which means that if some caller attempts to mark the scan before the first tuple fetch, you get a null pointer dereference. The only existing user of mark/restore is nodeMergejoin.c, which (somewhat accidentally) will never attempt to set a mark before the first inner tuple unless the inner child node is a Material node. Hence the case can't arise normally, so it seems sufficient to document the assumption at both ends. However, during an EvalPlanQual recheck, ExecScanFetch doesn't call IndexNext but just returns the jammed-in test tuple. Therefore, if we're doing a recheck in a plan tree with a mergejoin with inner indexscan, it's possible to reach ExecIndexMarkPos with iss_ScanDesc still null, as reported by Guo Xiang Tan in bug #15032. Really, when there's a test tuple supplied during an EPQ recheck, touching the index at all is the wrong thing: rather, the behavior of mark/restore ought to amount to saving and restoring the es_epqScanDone flag. We can avoid finding a place to actually save the flag, for the moment, because given the assumption that no caller will set a mark before fetching a tuple, es_epqScanDone must always be set by the time we try to mark. So the actual behavior change required is just to not reach the index access if a test tuple is supplied. The set of plan node types that need to consider this issue are those that support EPQ test tuples (i.e., call ExecScan()) and also support mark/restore; which is to say, IndexScan, IndexOnlyScan, and perhaps CustomScan. It's tempting to try to fix the problem in one place by teaching ExecMarkPos() itself about EPQ; but ExecMarkPos supports some plan types that aren't Scans, and also it seems risky to make assumptions about what a CustomScan wants to do here. Also, the most likely future change here is to decide that we do need to support marks placed before the first tuple, which would require additional work in IndexScan and IndexOnlyScan in any case. Hence, fix the EPQ issue in nodeIndexscan.c and nodeIndexonlyscan.c, accepting the small amount of code duplicated thereby, and leave it to CustomScan providers to fix this bug if they have it. Back-patch to v10 where commit 09529a70b came in. In earlier branches, the index_markpos() call is a waste of cycles when EPQ is active, but no more than that, so it doesn't seem appropriate to back-patch further. Discussion: https://postgr.es/m/20180126074932.3098.97815@wrigleys.postgresql.org
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Provide DSM segment to ExecXXXInitializeWorker functions.Andres Freund2017-11-16
| | | | | | | | | | | | Previously, executor nodes running in parallel worker processes didn't have access to the dsm_segment object used for parallel execution. In order to support resource management based on DSM segment lifetime, they need that. So create a ParallelWorkerContext object to hold it and pass it to all InitializeWorker functions. Author: Thomas Munro Reviewed-By: Andres Freund Discussion: https://postgr.es/m/CAEepm=2W=cOkiZxcg6qiFQP-dHUe09aqTrEMM7yJDrHMhDv_RA@mail.gmail.com
* Change TRUE/FALSE to true/falsePeter Eisentraut2017-11-08
| | | | | | | | | | | | | | The lower case spellings are C and C++ standard and are used in most parts of the PostgreSQL sources. The upper case spellings are only used in some files/modules. So standardize on the standard spellings. The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so those are left as is when using those APIs. In code comments, we use the lower-case spelling for the C concepts and keep the upper-case spelling for the SQL concepts. Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
* Improve comments for parallel executor estimation functions.Robert Haas2017-10-28
| | | | | | | | | | The previous comment (which was copied as boilerplate from one file to the next) implied that it was the executor node itself which was being serialized, but that's not right. We're not serializing the executor nodes; we're just allowing them to store some additional information in DSM. Adjusts the comment to reflect this. Discussion: http://postgr.es/m/CA+TgmoaHVinxG=3h6qBAsyV8xaDyQwbzK7YZnYfE8nJFMK1=FA@mail.gmail.com
* Separate reinitialization of shared parallel-scan state from ExecReScan.Tom Lane2017-08-30
| | | | | | | | | | | | | | | | | | | | | | | | | | Previously, the parallel executor logic did reinitialization of shared state within the ExecReScan code for parallel-aware scan nodes. This is problematic, because it means that the ExecReScan call has to occur synchronously (ie, during the parent Gather node's ReScan call). That is swimming very much against the tide so far as the ExecReScan machinery is concerned; the fact that it works at all today depends on a lot of fragile assumptions, such as that no plan node between Gather and a parallel-aware scan node is parameterized. Another objection is that because ExecReScan might be called in workers as well as the leader, hacky extra tests are needed in some places to prevent unwanted shared-state resets. Hence, let's separate this code into two functions, a ReInitializeDSM call and the ReScan call proper. ReInitializeDSM is called only in the leader and is guaranteed to run before we start new workers. ReScan is returned to its traditional function of resetting only local state, which means that ExecReScan's usual habits of delaying or eliminating child rescan calls are safe again. As with the preceding commit 7df2c1f8d, it doesn't seem to be necessary to make these changes in 9.6, which is a good thing because the FDW and CustomScan APIs are impacted. Discussion: https://postgr.es/m/CAA4eK1JkByysFJNh9M349u_nNjqETuEnY_y1VUc_kJiU0bxtaQ@mail.gmail.com
* Move ExecProcNode from dispatch to function pointer based model.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | | | | | | This allows us to add stack-depth checks the first time an executor node is called, and skip that overhead on following calls. Additionally it yields a nice speedup. While it'd probably have been a good idea to have that check all along, it has become more important after the new expression evaluation framework in b8d7f053c5c2bf2a7e - there's no stack depth check in common paths anymore now. We previously relied on ExecEvalExpr() being executed somewhere. We should move towards that model for further routines, but as this is required for v10, it seems better to only do the necessary (which already is quite large). Author: Andres Freund, Tom Lane Reported-By: Julien Rouhaud Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us https://postgr.es/m/b0af9eaa-130c-60d0-9e4e-7a135b1e0c76@dalibo.com
* Move interrupt checking from ExecProcNode() to executor nodes.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | In a followup commit ExecProcNode(), and especially the large switch it contains, will largely be replaced by a function pointer directly to the correct node. The node functions will then get invoked by a thin inline function wrapper. To avoid having to include miscadmin.h in headers - CHECK_FOR_INTERRUPTS() - move the interrupt checks into the individual executor routines. While looking through all executor nodes, I noticed a number of arguably missing interrupt checks, add these too. Author: Andres Freund, Tom Lane Reviewed-By: Tom Lane Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us
* Be more consistent about errors for opfamily member lookup failures.Tom Lane2017-07-24
| | | | | | | | | | | | | | | Add error checks in some places that were calling get_opfamily_member or get_opfamily_proc and just assuming that the call could never fail. Also, standardize the wording for such errors in some other places. None of these errors are expected in normal use, hence they're just elog not ereport. But they may be handy for diagnosing omissions in custom opclasses. Rushabh Lathia found the oversight in RelationBuildPartitionKey(); I found the others by grepping for all callers of these functions. Discussion: https://postgr.es/m/CAGPqQf2R9Nk8htpv0FFi+FP776EwMyGuORpc9zYkZKC8sFQE3g@mail.gmail.com
* Phase 3 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Don't be so trusting that shm_toc_lookup() will always succeed.Tom Lane2017-06-05
| | | | | | | | | | | | | | | | | | Given the possibility of race conditions and so on, it seems entirely unsafe to just assume that shm_toc_lookup() always finds the key it's looking for --- but that was exactly what all but one call site were doing. To fix, add a "bool noError" argument, similarly to what we have in many other functions, and throw an error on an unexpected lookup failure. Remove now-redundant Asserts that a rather random subset of call sites had. I doubt this will throw any light on buildfarm member lorikeet's recent failures, because if an unnoticed lookup failure were involved, you'd kind of expect a null-pointer-dereference crash rather than the observed symptom. But you never know ... and this is better coding practice even if it never catches anything. Discussion: https://postgr.es/m/9697.1496675981@sss.pgh.pa.us
* Faster expression evaluation and targetlist projection.Andres Freund2017-03-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
* Fix parallel index and index-only scans to fall back to serial.Robert Haas2017-03-08
| | | | | | | | | | | Parallel executor nodes can't assume that parallel execution will happen in every case where the plan calls for it, because it might not work out that way. However, parallel index scan and parallel index-only scan failed to do the right thing here. Repair. Amit Kapila, per a report from me. Discussion: http://postgr.es/m/CAA4eK1Kq5qb_u2AOoda5XBB91vVWz90w=LgtRLgsssriS8pVTw@mail.gmail.com
* Add optimizer and executor support for parallel index scans.Robert Haas2017-02-15
| | | | | | | | | | | | In combination with 569174f1be92be93f5366212cc46960d28a5c5cd, which taught the btree AM how to perform parallel index scans, this allows parallel index scan plans on btree indexes. This infrastructure should be general enough to support parallel index scans for other index AMs as well, if someone updates them to support parallel scans. Amit Kapila, reviewed and tested by Anastasia Lubennikova, Tushar Ahuja, and Haribabu Kommi, and me.
* Remove obsoleted code relating to targetlist SRF evaluation.Andres Freund2017-01-19
| | | | | | | | | | | | | Since 69f4b9c plain expression evaluation (and thus normal projection) can't return sets of tuples anymore. Thus remove code dealing with that possibility. This will require adjustments in external code using ExecEvalExpr()/ExecProject() - that should neither be hard nor very common. Author: Andres Freund and Tom Lane Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Properly initialize SortSupport for ORDER BY rechecks in nodeIndexscan.c.Tom Lane2016-06-05
| | | | | | | | | | | | | | | | | | Fix still another bug in commit 35fcb1b3d: it failed to fully initialize the SortSupport states it introduced to allow the executor to re-check ORDER BY expressions containing distance operators. That led to a null pointer dereference if the sortsupport code tried to use ssup_cxt. The problem only manifests in narrow cases, explaining the lack of previous field reports. It requires a GiST-indexable distance operator that lacks SortSupport and is on a pass-by-ref data type, which among core+contrib seems to be only btree_gist's interval opclass; and it requires the scan to be done as an IndexScan not an IndexOnlyScan, which explains how btree_gist's regression test didn't catch it. Per bug #14134 from Jihyun Yu. Peter Geoghegan Report: <20160511154904.2603.43889@wrigleys.postgresql.org>
* Revert CREATE INDEX ... INCLUDING ...Teodor Sigaev2016-04-08
| | | | | | It's not ready yet, revert two commits 690c543550b0d2852060c18d270cdb534d339d9a - unstable test output 386e3d7609c49505e079c40c65919d99feb82505 - patch itself
* CREATE INDEX ... INCLUDING (column[, ...])Teodor Sigaev2016-04-08
| | | | | | | | | | Now indexes (but only B-tree for now) can contain "extra" column(s) which doesn't participate in index structure, they are just stored in leaf tuples. It allows to use index only scan by using single index instead of two or more indexes. Author: Anastasia Lubennikova with minor editorializing by me Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
* Restructure index access method API to hide most of it at the C level.Tom Lane2016-01-17
| | | | | | | | | | | | | | | | | | | | | | | | This patch reduces pg_am to just two columns, a name and a handler function. All the data formerly obtained from pg_am is now provided in a C struct returned by the handler function. This is similar to the designs we've adopted for FDWs and tablesample methods. There are multiple advantages. For one, the index AM's support functions are now simple C functions, making them faster to call and much less error-prone, since the C compiler can now check function signatures. For another, this will make it far more practical to define index access methods in installable extensions. A disadvantage is that SQL-level code can no longer see attributes of index AMs; in particular, some of the crosschecks in the opr_sanity regression test are no longer possible from SQL. We've addressed that by adding a facility for the index AM to perform such checks instead. (Much more could be done in that line, but for now we're content if the amvalidate functions more or less replace what opr_sanity used to do.) We might also want to expose some sort of reporting functionality, but this patch doesn't do that. Alexander Korotkov, reviewed by Petr JelĂ­nek, and rather heavily editorialized on by me.
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Fix rescan of IndexScan node with the new lossy GiST distance functions.Heikki Linnakangas2015-05-25
| | | | | | Must reset the "reached end" flag and reorder queue at rescan. Per report from Regina Obe, bug #13349
* pgindent run for 9.5Bruce Momjian2015-05-23
|
* Still more fixes for lossy-GiST-distance-functions patch.Tom Lane2015-05-23
| | | | | | Fix confusion in documentation, substantial memory leakage if float8 or float4 are pass-by-reference, and assorted comments that were obsoleted by commit 98edd617f3b62a02cb2df9b418fcc4ece45c7ec0.
* More fixes for lossy-GiST-distance-functions patch.Tom Lane2015-05-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | Paul Ramsey reported that commit 35fcb1b3d038a501f3f4c87c05630095abaaadab induced a core dump on commuted ORDER BY expressions, because it was assuming that the indexorderby expression could be found verbatim in the relevant equivalence class, but it wasn't there. We really don't need anything that complicated anyway; for the data types likely to be used for index ORDER BY operators in the foreseeable future, the exprType() of the ORDER BY expression will serve fine. (The case where we'd have to work harder is where the ORDER BY expression's result is only binary-compatible with the declared input type of the ordering operator; long before worrying about that, one would need to get rid of GiST's hard-wired assumption that said datatype is float8.) Aside from fixing that crash and adding a regression test for the case, I did some desultory code review: nodeIndexscan.c was likewise overthinking how hard it ought to work to identify the datatype of the ORDER BY expressions. Add comments explaining how come nodeIndexscan.c can get away with simplifying assumptions about NULLS LAST ordering and no backward scan. Revert no-longer-needed changes of find_ec_member_for_tle(); while the new definition was no worse than the old, it wasn't better either, and it might cause back-patching pain. Revert entirely bogus additions to genam.h.
* Fix typo in comment.Heikki Linnakangas2015-05-18
| | | | Jim Nasby
* Fix failure to copy IndexScan.indexorderbyops in copyfuncs.c.Tom Lane2015-05-17
| | | | | | | | | | | | | | | This oversight results in a crash at executor startup if the plan has been copied. outfuncs.c was missed as well. While we could probably have taught both those files to cope with the originally chosen representation of an Oid array, it would have been painful, not least because there'd be no easy way to verify the array length. An Oid List is far easier to work with. And AFAICS, there is no particular notational benefit to using an array rather than a list in the existing parts of the patch either. So just change it to a list. Error in commit 35fcb1b3d038a501f3f4c87c05630095abaaadab, which is new, so no need for back-patch.
* Fix datatype confusion with the new lossy GiST distance functions.Heikki Linnakangas2015-05-15
| | | | | | | | | | | | | | | | | | | | | | | | We can only support a lossy distance function when the distance function's datatype is comparable with the original ordering operator's datatype. The distance function always returns a float8, so we are limited to float8, and float4 (by a hard-coded cast of the float8 to float4). In light of this limitation, it seems like a good idea to have a separate 'recheck' flag for the ORDER BY expressions, so that if you have a non-lossy distance function, it still works with lossy quals. There are cases like that with the build-in or contrib opclasses, but it's plausible. There was a hidden assumption that the ORDER BY values returned by GiST match the original ordering operator's return type, but there are plenty of examples where that's not true, e.g. in btree_gist and pg_trgm. As long as the distance function is not lossy, we can tolerate that and just not return the distance to the executor (or rather, always return NULL). The executor doesn't need the distances if there are no lossy results. There was another little bug: the recheck variable was not initialized before calling the distance function. That revealed the bigger issue, as the executor tried to reorder tuples that didn't need reordering, and that failed because of the datatype mismatch.
* Allow GiST distance function to return merely a lower-bound.Heikki Linnakangas2015-05-15
| | | | | | | | | | | The distance function can now set *recheck = false, like index quals. The executor will then re-check the ORDER BY expressions, and use a queue to reorder the results on the fly. This makes it possible to do kNN-searches on polygons and circles, which don't store the exact value in the index, but just a bounding box. Alexander Korotkov and me
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* pgindent run for 9.4Bruce Momjian2014-05-06
| | | | | This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching.
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Incidental cleanup of matviews code.Tom Lane2013-04-27
| | | | | | | | | | | | | | | | | Move checking for unscannable matviews into ExecOpenScanRelation, which is a better place for it first because the open relation is already available (saving a relcache lookup cycle), and second because this eliminates the problem of telling the difference between rangetable entries that will or will not be scanned by the query. In particular we can get rid of the not-terribly-well-thought-out-or-implemented isResultRel field that the initial matviews patch added to RangeTblEntry. Also get rid of entirely unnecessary scannability check in the rewriter, and a bogus decision about whether RefreshMatViewStmt requires a parse-time snapshot. catversion bump due to removal of a RangeTblEntry field, which changes stored rules.
* Update copyrights for 2013Bruce Momjian2013-01-01
| | | | | Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files.
* Update copyright notices for year 2012.Bruce Momjian2012-01-01
|