aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/nodeProjectSet.c
Commit message (Collapse)AuthorAge
* Reduce memory usage of targetlist SRFs.Andres Freund2017-10-08
| | | | | | | | | | | | | | | | | | | | Previously nodeProjectSet only released memory once per input tuple, rather than once per returned tuple. If the computation of an individual returned tuple requires a lot of memory, that can lead to problems. Instead change things so that the expression context can be reset once per output tuple, which requires a new memory context to store SRF arguments in. This is a longstanding issue, but was hard to fix before 9.6, due to the way tSRFs where evaluated. But it's fairly easy to fix now. We could backpatch this into 10, but given there've been fewc omplaints that doesn't seem worth the risk so far. Reported-By: Lucas Fairchild Author: Andres Freund, per discussion with Tom Lane Discussion: https://postgr.es/m/4514.1507318623@sss.pgh.pa.us
* Fix intra-query memory leakage in nodeProjectSet.c.Tom Lane2017-10-06
| | | | | | | | | | | | Both ExecMakeFunctionResultSet() and evaluation of simple expressions need to be done in the per-tuple memory context, not per-query, else we leak data until end of query. This is a consideration that was missed while refactoring code in the ProjectSet patch (note that in pre-v10, ExecMakeFunctionResult is called in the per-tuple context). Per bug #14843 from Ben M. Diagnosed independently by Andres and myself. Discussion: https://postgr.es/m/20171005230321.28561.15927@wrigleys.postgresql.org
* Move ExecProcNode from dispatch to function pointer based model.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | | | | | | This allows us to add stack-depth checks the first time an executor node is called, and skip that overhead on following calls. Additionally it yields a nice speedup. While it'd probably have been a good idea to have that check all along, it has become more important after the new expression evaluation framework in b8d7f053c5c2bf2a7e - there's no stack depth check in common paths anymore now. We previously relied on ExecEvalExpr() being executed somewhere. We should move towards that model for further routines, but as this is required for v10, it seems better to only do the necessary (which already is quite large). Author: Andres Freund, Tom Lane Reported-By: Julien Rouhaud Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us https://postgr.es/m/b0af9eaa-130c-60d0-9e4e-7a135b1e0c76@dalibo.com
* Move interrupt checking from ExecProcNode() to executor nodes.Andres Freund2017-07-30
| | | | | | | | | | | | | | | | | In a followup commit ExecProcNode(), and especially the large switch it contains, will largely be replaced by a function pointer directly to the correct node. The node functions will then get invoked by a thin inline function wrapper. To avoid having to include miscadmin.h in headers - CHECK_FOR_INTERRUPTS() - move the interrupt checks into the individual executor routines. While looking through all executor nodes, I noticed a number of arguably missing interrupt checks, add these too. Author: Andres Freund, Tom Lane Reviewed-By: Tom Lane Discussion: https://postgr.es/m/22833.1490390175@sss.pgh.pa.us
* Initial pgindent run with pg_bsd_indent version 2.0.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The new indent version includes numerous fixes thanks to Piotr Stefaniak. The main changes visible in this commit are: * Nicer formatting of function-pointer declarations. * No longer unexpectedly removes spaces in expressions using casts, sizeof, or offsetof. * No longer wants to add a space in "struct structname *varname", as well as some similar cases for const- or volatile-qualified pointers. * Declarations using PG_USED_FOR_ASSERTS_ONLY are formatted more nicely. * Fixes bug where comments following declarations were sometimes placed with no space separating them from the code. * Fixes some odd decisions for comments following case labels. * Fixes some cases where comments following code were indented to less than the expected column 33. On the less good side, it now tends to put more whitespace around typedef names that are not listed in typedefs.list. This might encourage us to put more effort into typedef name collection; it's not really a bug in indent itself. There are more changes coming after this round, having to do with comment indentation and alignment of lines appearing within parentheses. I wanted to limit the size of the diffs to something that could be reviewed without one's eyes completely glazing over, so it seemed better to split up the changes as much as practical. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Faster expression evaluation and targetlist projection.Andres Freund2017-03-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This replaces the old, recursive tree-walk based evaluation, with non-recursive, opcode dispatch based, expression evaluation. Projection is now implemented as part of expression evaluation. This both leads to significant performance improvements, and makes future just-in-time compilation of expressions easier. The speed gains primarily come from: - non-recursive implementation reduces stack usage / overhead - simple sub-expressions are implemented with a single jump, without function calls - sharing some state between different sub-expressions - reduced amount of indirect/hard to predict memory accesses by laying out operation metadata sequentially; including the avoidance of nearly all of the previously used linked lists - more code has been moved to expression initialization, avoiding constant re-checks at evaluation time Future just-in-time compilation (JIT) has become easier, as demonstrated by released patches intended to be merged in a later release, for primarily two reasons: Firstly, due to a stricter split between expression initialization and evaluation, less code has to be handled by the JIT. Secondly, due to the non-recursive nature of the generated "instructions", less performance-critical code-paths can easily be shared between interpreted and compiled evaluation. The new framework allows for significant future optimizations. E.g.: - basic infrastructure for to later reduce the per executor-startup overhead of expression evaluation, by caching state in prepared statements. That'd be helpful in OLTPish scenarios where initialization overhead is measurable. - optimizing the generated "code". A number of proposals for potential work has already been made. - optimizing the interpreter. Similarly a number of proposals have been made here too. The move of logic into the expression initialization step leads to some backward-incompatible changes: - Function permission checks are now done during expression initialization, whereas previously they were done during execution. In edge cases this can lead to errors being raised that previously wouldn't have been, e.g. a NULL array being coerced to a different array type previously didn't perform checks. - The set of domain constraints to be checked, is now evaluated once during expression initialization, previously it was re-built every time a domain check was evaluated. For normal queries this doesn't change much, but e.g. for plpgsql functions, which caches ExprStates, the old set could stick around longer. The behavior around might still change. Author: Andres Freund, with significant changes by Tom Lane, changes by Heikki Linnakangas Reviewed-By: Tom Lane, Heikki Linnakangas Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
* Remove obsoleted code relating to targetlist SRF evaluation.Andres Freund2017-01-19
| | | | | | | | | | | | | Since 69f4b9c plain expression evaluation (and thus normal projection) can't return sets of tuples anymore. Thus remove code dealing with that possibility. This will require adjustments in external code using ExecEvalExpr()/ExecProject() - that should neither be hard nor very common. Author: Andres Freund and Tom Lane Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
* Move targetlist SRF handling from expression evaluation to new executor node.Andres Freund2017-01-18
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT generate_series(1,5)) so far was done in the expression evaluation (i.e. ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code. This meant that most executor nodes performing projection, and most expression evaluation functions, had to deal with the possibility that an evaluated expression could return a set of return values. That's bad because it leads to repeated code in a lot of places. It also, and that's my (Andres's) motivation, made it a lot harder to implement a more efficient way of doing expression evaluation. To fix this, introduce a new executor node (ProjectSet) that can evaluate targetlists containing one or more SRFs. To avoid the complexity of the old way of handling nested expressions returning sets (e.g. having to pass up ExprDoneCond, and dealing with arguments to functions returning sets etc.), those SRFs can only be at the top level of the node's targetlist. The planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is only necessary in ProjectSet nodes and that SRFs are only present at the top level of the node's targetlist. If there are nested SRFs the planner creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get input from an underlying node. We also discussed and prototyped evaluating targetlist SRFs using ROWS FROM(), but that turned out to be more complicated than we'd hoped. While moving SRF evaluation to ProjectSet would allow to retain the old "least common multiple" behavior when multiple SRFs are present in one targetlist (i.e. continue returning rows until all SRFs are at the end of their input at the same time), we decided to instead only return rows till all SRFs are exhausted, returning NULL for already exhausted ones. We deemed the previous behavior to be too confusing, unexpected and actually not particularly useful. As a side effect, the previously prohibited case of multiple set returning arguments to a function, is now allowed. Not because it's particularly desirable, but because it ends up working and there seems to be no argument for adding code to prohibit it. Currently the behavior for COALESCE and CASE containing SRFs has changed, returning multiple rows from the expression, even when the SRF containing "arm" of the expression is not evaluated. That's because the SRFs are evaluated in a separate ProjectSet node. As that's quite confusing, we're likely to instead prohibit SRFs in those places. But that's still being discussed, and the code would reside in places not touched here, so that's a task for later. There's a lot of, now superfluous, code dealing with set return expressions around. But as the changes to get rid of those are verbose largely boring, it seems better for readability to keep the cleanup as a separate commit. Author: Tom Lane and Andres Freund Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de