aboutsummaryrefslogtreecommitdiff
path: root/src/backend/executor/spi.c
Commit message (Collapse)AuthorAge
* Avoid using a cursor in plpgsql's RETURN QUERY statement.Tom Lane2020-06-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | plpgsql has always executed the query given in a RETURN QUERY command by opening it as a cursor and then fetching a few rows at a time, which it turns around and dumps into the function's result tuplestore. The point of this was to keep from blowing out memory with an oversized SPITupleTable result (note that while a tuplestore can spill tuples to disk, SPITupleTable cannot). However, it's rather inefficient, both because of extra data copying and because of executor entry/exit overhead. In recent versions, a new performance problem has emerged: use of a cursor prevents use of a parallel plan for the executed query. We can improve matters by skipping use of a cursor and having the executor push result tuples directly into the function's result tuplestore. However, a moderate amount of new infrastructure is needed to make that idea work: * We can use the existing tstoreReceiver.c DestReceiver code to funnel executor output to the tuplestore, but it has to be extended to support plpgsql's requirement for possibly applying a tuple conversion map. * SPI needs to be extended to allow use of a caller-supplied DestReceiver instead of its usual receiver that puts tuples into a SPITupleTable. Two new API calls are needed to handle both the RETURN QUERY and RETURN QUERY EXECUTE cases. I also felt that I didn't want these new API calls to use the legacy method of specifying query parameter values with "char" null flags (the old ' '/'n' convention); rather they should accept ParamListInfo objects containing the parameter type and value info. This required a bit of additional new infrastructure since we didn't yet have any parse analysis callback that would interpret $N parameter symbols according to type data supplied in a ParamListInfo. There seems to be no harm in letting makeParamList install that callback by default, rather than leaving a new ParamListInfo's parserSetup hook as NULL. (Indeed, as of HEAD, I couldn't find anyplace that was using the parserSetup field at all; plpgsql was using parserSetupArg for its own purposes, but parserSetup seemed to be write-only.) We can actually get plpgsql out of the business of using legacy null flags altogether, and using ParamListInfo instead of its ad-hoc PreparedParamsData structure; but this requires inventing one more SPI API call that can replace SPI_cursor_open_with_args. That seems worth doing, though. SPI_execute_with_args and SPI_cursor_open_with_args are now unused anywhere in the core PG distribution. Perhaps someday we could deprecate/remove them. But cleaning up the crufty bits of the SPI API is a task for a different patch. Per bug #16040 from Jeremy Smith. This is unfortunately too invasive to consider back-patching. Patch by me; thanks to Hamid Akhtar for review. Discussion: https://postgr.es/m/16040-eaacad11fecfb198@postgresql.org
* Represent command completion tags as structsAlvaro Herrera2020-03-02
| | | | | | | | | | | | | | | | | | | | | | The backend was using strings to represent command tags and doing string comparisons in multiple places, but that's slow and unhelpful. Create a new command list with a supporting structure to use instead; this is stored in a tag-list-file that can be tailored to specific purposes with a caller-definable C macro, similar to what we do for WAL resource managers. The first first such uses are a new CommandTag enum and a CommandTagBehavior struct. Replace numerous occurrences of char *completionTag with a QueryCompletion struct so that the code no longer stores information about completed queries in a cstring. Only at the last moment, in EndCommand(), does this get converted to a string. EventTriggerCacheItem no longer holds an array of palloc’d tag strings in sorted order, but rather just a Bitmapset over the CommandTags. Author: Mark Dilger, with unsolicited help from Álvaro Herrera Reviewed-by: John Naylor, Tom Lane Discussion: https://postgr.es/m/981A9DB4-3F0C-4DA5-88AD-CB9CFF4D6CAD@enterprisedb.com
* Fix problems with "read only query" checks, and refactor the code.Robert Haas2020-01-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, check_xact_readonly() was responsible for determining which types of queries could not be run in a read-only transaction, standard_ProcessUtility() was responsibility for prohibiting things which were allowed in read only transactions but not in recovery, and utility commands were basically prohibited in bulk in parallel mode by calls to CommandIsReadOnly() in functions.c and spi.c. This situation was confusing and error-prone. Accordingly, move all the checks to a new function ClassifyUtilityCommandAsReadOnly(), which determines the degree to which a given statement is read only. In the old code, check_xact_readonly() inadvertently failed to handle several statement types that actually should have been prohibited, specifically T_CreatePolicyStmt, T_AlterPolicyStmt, T_CreateAmStmt, T_CreateStatsStmt, T_AlterStatsStmt, and T_AlterCollationStmt. As a result, thes statements were erroneously allowed in read only transactions, parallel queries, and standby operation. Generally, they would fail anyway due to some lower-level error check, but we shouldn't rely on that. In the new code structure, future omissions of this type should cause ClassifyUtilityCommandAsReadOnly() to complain about an unrecognized node type. As a fringe benefit, this means we can allow certain types of utility commands in parallel mode, where it's safe to do so. This allows ALTER SYSTEM, CALL, DO, CHECKPOINT, COPY FROM, EXPLAIN, and SHOW. It might be possible to allow additional commands with more work and thought. Along the way, document the thinking process behind the current set of checks, as per discussion especially with Peter Eisentraut. There is some interest in revising some of these rules, but that seems like a job for another patch. Patch by me, reviewed by Tom Lane, Stephen Frost, and Peter Eisentraut. Discussion: http://postgr.es/m/CA+TgmoZ_rLqJt5sYkvh+JpQnfX0Y+B2R+qfi820xNih6x-FQOQ@mail.gmail.com
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Fix inconsistencies and typos in the tree, take 10Michael Paquier2019-08-13
| | | | | | | | | This addresses some issues with unnecessary code comments, fixes various typos in docs and comments, and removes some orphaned structures and definitions. Author: Alexander Lakhin Discussion: https://postgr.es/m/9aabc775-5494-b372-8bcb-4dfc0bd37c68@gmail.com
* Fix inconsistencies and typos in the treeMichael Paquier2019-07-22
| | | | | | | | This is numbered take 7, and addresses a set of issues with code comments, variable names and unreferenced variables. Author: Alexander Lakhin Discussion: https://postgr.es/m/dff75442-2468-f74f-568c-6006e141062f@gmail.com
* Further adjust SPITupleTable to provide a public row-count field.Tom Lane2019-07-18
| | | | | | | | | | | | | | | | | | | | | | | | | Now that commit fec0778c8 drew a clear line between public and private fields in SPITupleTable, it seems pretty silly that the count of valid tuples isn't on the public side of that line. The reason why not was that there wasn't such a count. For reasons lost in the mists of time, spi.c preferred to keep a count of remaining free entries in the array. But that seems pretty pointless: it's unlike the way we handle similar code everywhere else, and it involves extra subtractions that surely outweigh having to do a comparison rather than test-for-zero to check for array-full. Hence, rearrange so that this code does the expansible array logic the same as everywhere else, with a count of valid entries alongside the allocated array length. And document the count as public. I looked for core-code callers where it would make sense to start relying on tuptable->numvals rather than the separate SPI_processed variable. Right now there don't seem to be places where it'd be a win to do so without more code restructuring than I care to undertake today. In principle, though, having SPITupleTables be fully self-contained should be helpful down the line. Discussion: https://postgr.es/m/16852.1563395722@sss.pgh.pa.us
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* Fix problems with auto-held portals.Tom Lane2019-04-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | HoldPinnedPortals() did things in the wrong order: it must not mark a portal autoHeld until it's been successfully held. Otherwise, a failure while persisting the portal results in a server crash because we think the portal is in a good state when it's not. Also add a check that portal->status is READY before attempting to hold a pinned portal. We have such a check before the only other use of HoldPortal(), so it seems unwise not to check it here. Lastly, rethink the responsibility for where to call HoldPinnedPortals. The comment for it imagined that it was optional for any individual PL to call it or not, but that cannot be the case: if some outer level of procedure has a pinned portal, failing to persist it when an inner procedure commits is going to be trouble. Let's have SPI do it instead of the individual PLs. That's not a complete solution, since in theory a PL might not be using SPI to perform commit/rollback, but such a PL is going to have to be aware of lots of related requirements anyway. (This change doesn't cause an API break for any external PLs that might be calling HoldPinnedPortals per the old regime, because calling it twice during a commit or rollback sequence won't hurt.) Per bug #15703 from Julian Schauder. Back-patch to v11 where this code came in. Discussion: https://postgr.es/m/15703-c12c5bc0ea34ba26@postgresql.org
* Transaction chainingPeter Eisentraut2019-03-24
| | | | | | | | | | | | | Add command variants COMMIT AND CHAIN and ROLLBACK AND CHAIN, which start new transactions with the same transaction characteristics as the just finished one, per SQL standard. Support for transaction chaining in PL/pgSQL is also added. This functionality is especially useful when running COMMIT in a loop in PL/pgSQL. Reviewed-by: Fabien COELHO <coelho@cri.ensmp.fr> Discussion: https://www.postgresql.org/message-id/flat/28536681-324b-10dc-ade8-ab46f7645a5a@2ndquadrant.com
* Refactor ParamListInfo initializationPeter Eisentraut2019-03-14
| | | | | There were six copies of identical nontrivial code. Put it into a function.
* More unconstify usePeter Eisentraut2019-02-13
| | | | | | | Replace casts whose only purpose is to cast away const with the unconstify() macro. Discussion: https://www.postgresql.org/message-id/flat/53a28052-f9f3-1808-fed9-460fd43035ab%402ndquadrant.com
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Remove WITH OIDS support, change oid catalog column visibility.Andres Freund2018-11-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
* Make TupleTableSlots extensible, finish split of existing slot type.Andres Freund2018-11-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This commit completes the work prepared in 1a0586de36, splitting the old TupleTableSlot implementation (which could store buffer, heap, minimal and virtual slots) into four different slot types. As described in the aforementioned commit, this is done with the goal of making tuple table slots extensible, to allow for pluggable table access methods. To achieve runtime extensibility for TupleTableSlots, operations on slots that can differ between types of slots are performed using the TupleTableSlotOps struct provided at slot creation time. That includes information from the size of TupleTableSlot struct to be allocated, initialization, deforming etc. See the struct's definition for more detailed information about callbacks TupleTableSlotOps. I decided to rename TTSOpsBufferTuple to TTSOpsBufferHeapTuple and ExecCopySlotTuple to ExecCopySlotHeapTuple, as that seems more consistent with other naming introduced in recent patches. There's plenty optimization potential in the slot implementation, but according to benchmarking the state after this commit has similar performance characteristics to before this set of changes, which seems sufficient. There's a few changes in execReplication.c that currently need to poke through the slot abstraction, that'll be repaired once the pluggable storage patchset provides the necessary infrastructure. Author: Andres Freund and Ashutosh Bapat, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Correct constness of system attributes in heap.c & prerequisites.Andres Freund2018-10-16
| | | | | | | | | | | | | | | | This allows the compiler / linker to mark affected pages as read-only. There's a fair number of pre-requisite changes, to allow the const properly be propagated. Most of consts were already required for correctness anyway, just not represented on the type-level. Arguably we could be more aggressive in using consts in related code, but.. This requires using a few of the types underlying typedefs that removes pointers (e.g. const NameData *) as declaring the typedefed type constant doesn't have the same meaning (it makes the variable const, not what it points to). Discussion: https://postgr.es/m/20181015200754.7y7zfuzsoux2c4ya@alap3.anarazel.de
* Advance transaction timestamp for intra-procedure transactions.Tom Lane2018-10-08
| | | | | | | | Per discussion, this behavior seems less astonishing than not doing so. Peter Eisentraut and Tom Lane Discussion: https://postgr.es/m/20180920234040.GC29981@momjian.us
* Save/restore SPI's global variables in SPI_connect() and SPI_finish().Tom Lane2018-09-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch removes two sources of interference between nominally independent functions when one SPI-using function calls another, perhaps without knowing that it does so. Chapman Flack pointed out that xml.c's query_to_xml_internal() expects SPI_tuptable and SPI_processed to stay valid across datatype output function calls; but it's possible that such a call could involve re-entrant use of SPI. It seems likely that there are similar hazards elsewhere, if not in the core code then in third-party SPI users. Previously SPI_finish() reset SPI's API globals to zeroes/nulls, which would typically make for a crash in such a situation. Restoring them to the values they had at SPI_connect() seems like a considerably more useful behavior, and it still meets the design goal of not leaving any dangling pointers to tuple tables of the function being exited. Also, cause SPI_connect() to reset these variables to zeroes/nulls after saving them. This prevents interference in the opposite direction: it's possible that a SPI-using function that's only ever been tested standalone contains assumptions that these variables start out as zeroes. That was the case as long as you were the outermost SPI user, but not so much for an inner user. Now it's consistent. Report and fix suggestion by Chapman Flack, actual patch by me. Back-patch to all supported branches. Discussion: https://postgr.es/m/9fa25bef-2e4f-1c32-22a4-3ad0723c4a17@anastigmatix.net
* Fix assert in nested SQL procedure callPeter Eisentraut2018-07-06
| | | | | | | | | | | | | | | | | When executing CALL in PL/pgSQL, we need to set a snapshot before invoking the to-be-called procedure. Otherwise, the to-be-called procedure might end up running without a snapshot. For LANGUAGE SQL procedures, this would result in an assertion failure. (For most other languages, this is usually not a problem, because those use SPI and SPI sets snapshots in most cases.) Setting the snapshot restores the behavior of how CALL worked when it was handled as a generic SQL statement in PL/pgSQL (exec_stmt_execsql()). This change revealed another problem: In SPI_commit(), we popped the active snapshot before committing the transaction, to avoid "snapshot %p still active" errors. However, there is no particular reason why only at most one snapshot should be on the stack. So change this to pop all active snapshots instead of only one.
* Fix SPI error cleanup and memory leakPeter Eisentraut2018-05-03
| | | | | | | | | | | | Since the SPI stack has been moved from TopTransactionContext to TopMemoryContext, setting _SPI_stack to NULL in AtEOXact_SPI() leaks memory. In fact, we don't need to do that anymore: We just leave the allocated stack around for the next SPI use. Also, refactor the SPI cleanup so that it is run both at transaction end and when returning to the main loop on an exception. The latter is necessary when a procedure calls a COMMIT or ROLLBACK command that itself causes an error.
* Revert MERGE patchSimon Riggs2018-04-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commits d204ef63776b8a00ca220adec23979091564e465, 83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter (complete list at the end) related to MERGE feature. While the feature was fully functional, with sufficient test coverage and necessary documentation, it was felt that some parts of the executor and parse-analyzer can use a different design and it wasn't possible to do that in the available time. So it was decided to revert the patch for PG11 and retry again in the future. Thanks again to all reviewers and bug reporters. List of commits reverted, in reverse chronological order: f1464c5380 Improve parse representation for MERGE ddb4158579 MERGE syntax diagram correction 530e69e59b Allow cpluspluscheck to pass by renaming variable 01b88b4df5 MERGE minor errata 3af7b2b0d4 MERGE fix variable warning in non-assert builds a5d86181ec MERGE INSERT allows only one VALUES clause 4b2d44031f MERGE post-commit review 4923550c20 Tab completion for MERGE aa3faa3c7a WITH support in MERGE 83454e3c2b New files for MERGE d204ef6377 MERGE SQL Command following SQL:2016 Author: Pavan Deolasee Reviewed-by: Michael Paquier
* MERGE SQL Command following SQL:2016Simon Riggs2018-04-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | MERGE performs actions that modify rows in the target table using a source table or query. MERGE provides a single SQL statement that can conditionally INSERT/UPDATE/DELETE rows a task that would other require multiple PL statements. e.g. MERGE INTO target AS t USING source AS s ON t.tid = s.sid WHEN MATCHED AND t.balance > s.delta THEN UPDATE SET balance = t.balance - s.delta WHEN MATCHED THEN DELETE WHEN NOT MATCHED AND s.delta > 0 THEN INSERT VALUES (s.sid, s.delta) WHEN NOT MATCHED THEN DO NOTHING; MERGE works with regular and partitioned tables, including column and row security enforcement, as well as support for row, statement and transition triggers. MERGE is optimized for OLTP and is parameterizable, though also useful for large scale ETL/ELT. MERGE is not intended to be used in preference to existing single SQL commands for INSERT, UPDATE or DELETE since there is some overhead. MERGE can be used statically from PL/pgSQL. MERGE does not yet support inheritance, write rules, RETURNING clauses, updatable views or foreign tables. MERGE follows SQL Standard per the most recent SQL:2016. Includes full tests and documentation, including full isolation tests to demonstrate the concurrent behavior. This version written from scratch in 2017 by Simon Riggs, using docs and tests originally written in 2009. Later work from Pavan Deolasee has been both complex and deep, leaving the lead author credit now in his hands. Extensive discussion of concurrency from Peter Geoghegan, with thanks for the time and effort contributed. Various issues reported via sqlsmith by Andreas Seltenreich Authors: Pavan Deolasee, Simon Riggs Reviewer: Peter Geoghegan, Amit Langote, Tomas Vondra, Simon Riggs Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
* Revert "Modified files for MERGE"Simon Riggs2018-04-02
| | | | This reverts commit 354f13855e6381d288dfaa52bcd4f2cb0fd4a5eb.
* Modified files for MERGESimon Riggs2018-04-02
|
* PL/pgSQL: Nested CALL with transactionsPeter Eisentraut2018-03-28
| | | | | | | | | | So far, a nested CALL or DO in PL/pgSQL would not establish a context where transaction control statements were allowed. This fixes that by handling CALL and DO specially in PL/pgSQL, passing the atomic/nonatomic execution context through and doing the required management around transaction boundaries. Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com>
* Transaction control in PL proceduresPeter Eisentraut2018-01-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In each of the supplied procedural languages (PL/pgSQL, PL/Perl, PL/Python, PL/Tcl), add language-specific commit and rollback functions/commands to control transactions in procedures in that language. Add similar underlying functions to SPI. Some additional cleanup so that transaction commit or abort doesn't blow away data structures still used by the procedure call. Add execution context tracking to CALL and DO statements so that transaction control commands can only be issued in top-level procedure and block calls, not function calls or other procedure or block calls. - SPI Add a new function SPI_connect_ext() that is like SPI_connect() but allows passing option flags. The only option flag right now is SPI_OPT_NONATOMIC. A nonatomic SPI connection can execute transaction control commands, otherwise it's not allowed. This is meant to be passed down from CALL and DO statements which themselves know in which context they are called. A nonatomic SPI connection uses different memory management. A normal SPI connection allocates its memory in TopTransactionContext. For nonatomic connections we use PortalContext instead. As the comment in SPI_connect_ext() (previously SPI_connect()) indicates, one could potentially use PortalContext in all cases, but it seems safest to leave the existing uses alone, because this stuff is complicated enough already. SPI also gets new functions SPI_start_transaction(), SPI_commit(), and SPI_rollback(), which can be used by PLs to implement their transaction control logic. - portalmem.c Some adjustments were made in the code that cleans up portals at transaction abort. The portal code could already handle a command *committing* a transaction and continuing (e.g., VACUUM), but it was not quite prepared for a command *aborting* a transaction and continuing. In AtAbort_Portals(), remove the code that marks an active portal as failed. As the comment there already predicted, this doesn't work if the running command wants to keep running after transaction abort. And it's actually not necessary, because pquery.c is careful to run all portal code in a PG_TRY block and explicitly runs MarkPortalFailed() if there is an exception. So the code in AtAbort_Portals() is never used anyway. In AtAbort_Portals() and AtCleanup_Portals(), we need to be careful not to clean up active portals too much. This mirrors similar code in PreCommit_Portals(). - PL/Perl Gets new functions spi_commit() and spi_rollback() - PL/pgSQL Gets new commands COMMIT and ROLLBACK. Update the PL/SQL porting example in the documentation to reflect that transactions are now possible in procedures. - PL/Python Gets new functions plpy.commit and plpy.rollback. - PL/Tcl Gets new commands commit and rollback. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
* Revert "Move portal pinning from PL/pgSQL to SPI"Peter Eisentraut2018-01-10
| | | | | | | This reverts commit b3617cdfbba1b5381e9d1c6bc0839500e8eb7273. This broke returning unnamed cursors from PL/pgSQL functions. Apparently, there are no test cases for this.
* Move portal pinning from PL/pgSQL to SPIPeter Eisentraut2018-01-10
| | | | | | | | | | | | | | | | PL/pgSQL "pins" internally generated (unnamed) portals so that user code cannot close them by guessing their names. This logic is also useful in other languages and really for any code. So move that logic into SPI. An unnamed portal obtained through SPI_cursor_open() and related functions is now automatically pinned, and SPI_cursor_close() automatically unpins a portal that is pinned. In the core distribution, this affects PL/Perl and PL/Python, preventing users from manually closing cursors created by spi_query and plpy.cursor, respectively. (PL/Tcl does not currently offer any cursor functionality.) Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
* Update portal-related memory context names and APIPeter Eisentraut2018-01-09
| | | | | | | | | | | | | Rename PortalMemory to TopPortalContext, to avoid confusion with PortalContext and align naming with similar top-level memory contexts. Rename PortalData's "heap" field to portalContext. The "heap" naming seems quite antiquated and confusing. Also get rid of the PortalGetHeapMemory() macro and access the field directly, which we do for other portal fields, so this abstraction doesn't buy anything. Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com> Reviewed-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Rearrange execution of PARAM_EXTERN Params for plpgsql's benefit.Tom Lane2017-12-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch does three interrelated things: * Create a new expression execution step type EEOP_PARAM_CALLBACK and add the infrastructure needed for add-on modules to generate that. As discussed, the best control mechanism for that seems to be to add another hook function to ParamListInfo, which will be called by ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found. For stand-alone expressions, we add a new entry point to allow the ParamListInfo to be specified directly, since it can't be retrieved from the parent plan node's EState. * Redesign the API for the ParamListInfo paramFetch hook so that the ParamExternData array can be entirely virtual. This also lets us get rid of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to decide which param IDs should be accessible or not. plpgsql_param_fetch was already doing the identical masking check, so having callers do it too seemed redundant. While I was at it, I added a "speculative" flag to paramFetch that the planner can specify as TRUE to avoid unwanted failures. This solves an ancient problem for plpgsql that it couldn't provide values of non-DTYPE_VAR variables to the planner for fear of triggering premature "record not assigned yet" or "field not found" errors during planning. * Rework plpgsql to get rid of the need for "unshared" parameter lists, by dint of turning the single ParamListInfo per estate into a nearly read-only data structure that doesn't instantiate any per-variable data. Instead, the paramFetch hook controls access to per-variable data and can make the right decisions on the fly, replacing the cases that we used to need multiple ParamListInfos for. This might perhaps have been a performance loss on its own, but by using a paramCompile hook we can bypass plpgsql_param_fetch entirely during normal query execution. (It's now only called when, eg, we copy the ParamListInfo into a cursor portal. copyParamList() or SerializeParamList() effectively instantiate the virtual parameter array as a simple physical array without a paramFetch hook, which is what we want in those cases.) This allows reverting most of commit 6c82d8d1f, though I kept the cosmetic code-consolidation aspects of that (eg the assign_simple_var function). Performance testing shows this to be at worst a break-even change, and it can provide wins ranging up to 20% in test cases involving accesses to fields of "record" variables. The fact that values of such variables can now be exposed to the planner might produce wins in some situations, too, but I've not pursued that angle. In passing, remove the "parent" pointer from the arguments to ExecInitExprRec and related functions, instead storing that pointer in a transient field in ExprState. The ParamListInfo pointer for a stand-alone expression is handled the same way; we'd otherwise have had to add yet another recursively-passed-down argument in expression compilation. Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
* Fix corner-case coredump in _SPI_error_callback().Tom Lane2017-12-11
| | | | | | | | | | | I noticed that _SPI_execute_plan initially sets spierrcontext.arg = NULL, and only fills it in some time later. If an error were to happen in between, _SPI_error_callback would try to dereference the null pointer. This is unlikely --- there's not much between those points except push-snapshot calls --- but it's clearly not impossible. Tweak the callback to do nothing if the pointer isn't set yet. It's been like this for awhile, so back-patch to all supported branches.
* Change TRUE/FALSE to true/falsePeter Eisentraut2017-11-08
| | | | | | | | | | | | | | The lower case spellings are C and C++ standard and are used in most parts of the PostgreSQL sources. The upper case spellings are only used in some files/modules. So standardize on the standard spellings. The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so those are left as is when using those APIs. In code comments, we use the lower-case spelling for the C concepts and keep the upper-case spelling for the SQL concepts. Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
* Fix crash when logical decoding is invoked from a PL function.Tom Lane2017-10-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The logical decoding functions do BeginInternalSubTransaction and RollbackAndReleaseCurrentSubTransaction to clean up after themselves. It turns out that AtEOSubXact_SPI has an unrecognized assumption that we always need to cancel the active SPI operation in the SPI context that surrounds the subtransaction (if there is one). That's true when the RollbackAndReleaseCurrentSubTransaction call is coming from the SPI-using function itself, but not when it's happening inside some unrelated function invoked by a SPI query. In practice the affected callers are the various PLs. To fix, record the current subtransaction ID when we begin a SPI operation, and clean up only if that ID is the subtransaction being canceled. Also, remove AtEOSubXact_SPI's assertion that it must have cleaned up the surrounding SPI context's active tuptable. That's proven wrong by the same test case. Also clarify (or, if you prefer, reinterpret) the calling conventions for _SPI_begin_call and _SPI_end_call. The memory context cleanup in the latter means that these have always had the flavor of a matched resource-management pair, but they weren't documented that way before. Per report from Ben Chobot. Back-patch to 9.4 where logical decoding came in. In principle, the SPI changes should go all the way back, since the problem dates back to commit 7ec1c5a86. But given the lack of field complaints it seems few people are using internal subtransactions in this way. So I don't feel a need to take any risks in 9.2/9.3. Discussion: https://postgr.es/m/73FBA179-C68C-4540-9473-71E865408B15@silentmedia.com
* Change tupledesc->attrs[n] to TupleDescAttr(tupledesc, n).Andres Freund2017-08-20
| | | | | | | | | | | This is a mechanical change in preparation for a later commit that will change the layout of TupleDesc. Introducing a macro to abstract the details of where attributes are stored will allow us to change that in separate step and revise it in future. Author: Thomas Munro, editorialized by Andres Freund Reviewed-By: Andres Freund Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
* Phase 3 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Provide an error cursor for "can't call an SRF here" errors.Tom Lane2017-04-18
| | | | | | | | | | | | | | | | | | | | | | | | | Since it appears that v10 is going to move the goalposts by some amount in terms of where you can and can't invoke set-returning functions, arrange for the executor's "set-valued function called in context that cannot accept a set" errors to include a syntax position if possible, pointing to the specific SRF that can't be called where it's located. The main bit of infrastructure needed for this is to make the query source text accessible in the executor; but it turns out that commit 4c728f382 already did that. We just need a new function executor_errposition() modeled on parser_errposition(), and we're ready to rock. While experimenting with this, I noted that the error position wasn't properly reported if it occurred in a plpgsql FOR-over-query loop, which turned out to be because SPI_cursor_open_internal wasn't providing an error context callback during PortalStart. Fix that. There's a whole lot more that could be done with this infrastructure now that it's there, but this is not the right time in the development cycle for that sort of work. Hence, resist the temptation to plaster executor_errposition() calls everywhere ... for the moment. Discussion: https://postgr.es/m/5263.1492471571@sss.pgh.pa.us
* Improve castNode notation by introducing list-extraction-specific variants.Tom Lane2017-04-10
| | | | | | | | | | | | | | | | | This extends the castNode() notation introduced by commit 5bcab1114 to provide, in one step, extraction of a list cell's pointer and coercion to a concrete node type. For example, "lfirst_node(Foo, lc)" is the same as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode that have appeared so far include a list extraction call, so this is pretty widely useful, and it saves a few more keystrokes compared to the old way. As with the previous patch, back-patch the addition of these macros to pg_list.h, so that the notation will be available when back-patching. Patch by me, after an idea of Andrew Gierth's. Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
* Capitalize names of PLs consistentlyPeter Eisentraut2017-04-05
| | | | Author: Daniel Gustafsson <daniel@yesql.se>
* Follow-on cleanup for the transition table patch.Kevin Grittner2017-04-04
| | | | | | | | | | | | | | | | | | | | | | Commit 59702716 added transition table support to PL/pgsql so that SQL queries in trigger functions could access those transient tables. In order to provide the same level of support for PL/perl, PL/python and PL/tcl, refactor the relevant code into a new function SPI_register_trigger_data. Call the new function in the trigger handler of all four PLs, and document it as a public SPI function so that authors of out-of-tree PLs can do the same. Also get rid of a second QueryEnvironment object that was maintained by PL/pgsql. That was previously used to deal with cursors, but the same approach wasn't appropriate for PLs that are less tangled up with core code. Instead, have SPI_cursor_open install the connection's current QueryEnvironment, as already happens for SPI_execute_plan. While in the docs, remove the note that transition tables were only supported in C and PL/pgSQL triggers, and correct some ommissions. Thomas Munro with some work by Kevin Grittner (mostly docs)
* Fix two undocumented parameters to functions from ENR patch.Kevin Grittner2017-04-01
| | | | | | | | | | | | On ProcessUtility document the parameter, to match others. On CreateCachedPlan drop the queryEnv parameter. It was not referenced within the function, and had been added on the assumption that with some unknown future usage of QueryEnvironment it might be useful to do something there. We have avoided other "just in case" implementation of unused paramters, so drop it here. Per gripe from Tom Lane
* Add infrastructure to support EphemeralNamedRelation references.Kevin Grittner2017-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others
* Improve access to parallel query from procedural languages.Robert Haas2017-03-24
| | | | | | | | | | | | | | | | | | | | | | | | | In SQL, the ability to use parallel query was previous contingent on fcache->readonly_func, which is only set for non-volatile functions; but the volatility of a function has no bearing on whether queries inside it can use parallelism. Remove that condition. SPI_execute and SPI_execute_with_args always run the plan just once, though not necessarily to completion. Given the changes in commit 691b8d59281b5177f16fe80858df921f77a8e955, it's sensible to pass CURSOR_OPT_PARALLEL_OK here, so do that. This improves access to parallelism for any caller that uses these functions to execute queries. Such callers include plperl, plpython, pltcl, and plpgsql, though it's not the case that they all use these functions exclusively. In plpgsql, allow parallel query for plain SELECT queries (as opposed to PERFORM, which already worked) and for plain expressions (which probably won't go through the executor at all, because they will likely be simple expressions, but if they do then this helps). Rafia Sabih and Robert Haas, reviewed by Dilip Kumar and Amit Kapila Discussion: http://postgr.es/m/CAOGQiiMfJ+4SQwgG=6CVHWoisiU0+7jtXSuiyXBM3y=A=eJzmg@mail.gmail.com
* Allow for parallel execution whenever ExecutorRun() is done only once.Robert Haas2017-03-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, it was unsafe to execute a plan in parallel if ExecutorRun() might be called with a non-zero row count. However, it's quite easy to fix things up so that we can support that case, provided that it is known that we will never call ExecutorRun() a second time for the same QueryDesc. Add infrastructure to signal this, and cross-checks to make sure that a caller who claims this is true doesn't later reneg. While that pattern never happens with queries received directly from a client -- there's no way to know whether multiple Execute messages will be sent unless the first one requests all the rows -- it's pretty common for queries originating from procedural languages, which often limit the result to a single tuple or to a user-specified number of tuples. This commit doesn't actually enable parallelism in any additional cases, because currently none of the places that would be able to benefit from this infrastructure pass CURSOR_OPT_PARALLEL_OK in the first place, but it makes it much more palatable to pass CURSOR_OPT_PARALLEL_OK in places where we currently don't, because it eliminates some cases where we'd end up having to run the parallel plan serially. Patch by me, based on some ideas from Rafia Sabih and corrected by Rafia Sabih based on feedback from Dilip Kumar and myself. Discussion: http://postgr.es/m/CA+TgmobXEhvHbJtWDuPZM9bVSLiTj-kShxQJ2uM5GPDze9fRYA@mail.gmail.com
* Use castNode() in a bunch of statement-list-related code.Tom Lane2017-01-26
| | | | | | | | | | | | | When I wrote commit ab1f0c822, I really missed the castNode() macro that Peter E. had proposed shortly before. This back-fills the uses I would have put it to. It's probably not all that significant, but there are more assertions here than there were before, and conceivably they will help catch any bugs associated with those representation changes. I left behind a number of usages like "(Query *) copyObject(query_var)". Those could have been converted as well, but Peter has proposed another notational improvement that would handle copyObject cases automatically, so I let that be for now.
* Change representation of statement lists, and add statement location info.Tom Lane2017-01-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes several changes that improve the consistency of representation of lists of statements. It's always been the case that the output of parse analysis is a list of Query nodes, whatever the types of the individual statements in the list. This patch brings similar consistency to the outputs of raw parsing and planning steps: * The output of raw parsing is now always a list of RawStmt nodes; the statement-type-dependent nodes are one level down from that. * The output of pg_plan_queries() is now always a list of PlannedStmt nodes, even for utility statements. In the case of a utility statement, "planning" just consists of wrapping a CMD_UTILITY PlannedStmt around the utility node. This list representation is now used in Portal and CachedPlan plan lists, replacing the former convention of intermixing PlannedStmts with bare utility-statement nodes. Now, every list of statements has a consistent head-node type depending on how far along it is in processing. This allows changing many places that formerly used generic "Node *" pointers to use a more specific pointer type, thus reducing the number of IsA() tests and casts needed, as well as improving code clarity. Also, the post-parse-analysis representation of DECLARE CURSOR is changed so that it looks more like EXPLAIN, PREPARE, etc. That is, the contained SELECT remains a child of the DeclareCursorStmt rather than getting flipped around to be the other way. It's now true for both Query and PlannedStmt that utilityStmt is non-null if and only if commandType is CMD_UTILITY. That allows simplifying a lot of places that were testing both fields. (I think some of those were just defensive programming, but in many places, it was actually necessary to avoid confusing DECLARE CURSOR with SELECT.) Because PlannedStmt carries a canSetTag field, we're also able to get rid of some ad-hoc rules about how to reconstruct canSetTag for a bare utility statement; specifically, the assumption that a utility is canSetTag if and only if it's the only one in its list. While I see no near-term need for relaxing that restriction, it's nice to get rid of the ad-hocery. The API of ProcessUtility() is changed so that what it's passed is the wrapper PlannedStmt not just the bare utility statement. This will affect all users of ProcessUtility_hook, but the changes are pretty trivial; see the affected contrib modules for examples of the minimum change needed. (Most compilers should give pointer-type-mismatch warnings for uncorrected code.) There's also a change in the API of ExplainOneQuery_hook, to pass through cursorOptions instead of expecting hook functions to know what to pick. This is needed because of the DECLARE CURSOR changes, but really should have been done in 9.6; it's unlikely that any extant hook functions know about using CURSOR_OPT_PARALLEL_OK. Finally, teach gram.y to save statement boundary locations in RawStmt nodes, and pass those through to Query and PlannedStmt nodes. This allows more intelligent handling of cases where a source query string contains multiple statements. This patch doesn't actually do anything with the information, but a follow-on patch will. (Passing this information through cleanly is the true motivation for these changes; while I think this is all good cleanup, it's unlikely we'd have bothered without this end goal.) catversion bump because addition of location fields to struct Query affects stored rules. This patch is by me, but it owes a good deal to Fabien Coelho who did a lot of preliminary work on the problem, and also reviewed the patch. Discussion: https://postgr.es/m/alpine.DEB.2.20.1612200926310.29821@lancre
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Simplify code by getting rid of SPI_push, SPI_pop, SPI_restore_connection.Tom Lane2016-11-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The idea behind SPI_push was to allow transitioning back into an "unconnected" state when a SPI-using procedure calls unrelated code that might or might not invoke SPI. That sounds good, but in practice the only thing it does for us is to catch cases where a called SPI-using function forgets to call SPI_connect --- which is a highly improbable failure mode, since it would be exposed immediately by direct testing of said function. As against that, we've had multiple bugs induced by forgetting to call SPI_push/SPI_pop around code that might invoke SPI-using functions; these are much harder to catch and indeed have gone undetected for years in some cases. And we've had to band-aid around some problems of this ilk by introducing conditional push/pop pairs in some places, which really kind of defeats the purpose altogether; if we can't draw bright lines between connected and unconnected code, what's the point? Hence, get rid of SPI_push[_conditional], SPI_pop[_conditional], and the underlying state variable _SPI_curid. It turns out SPI_restore_connection can go away too, which is a nice side benefit since it was never more than a kluge. Provide no-op macros for the deleted functions so as to avoid an API break for external modules. A side effect of this removal is that SPI_palloc and allied functions no longer permit being called when unconnected; they'll throw an error instead. The apparent usefulness of the previous behavior was a mirage as well, because it was depended on by only a few places (which I fixed in preceding commits), and it posed a risk of allocations being unexpectedly long-lived if someone forgot a SPI_push call. Discussion: <20808.1478481403@sss.pgh.pa.us>