| Commit message (Collapse) | Author | Age |
|
|
|
| |
This is cosmetic, and no supported release has the affected fields.
|
|
|
|
|
|
|
|
|
|
|
|
| |
The way that PartialAggregate and FinalizeAggregate plan nodes were
displaying output columns before was bogus. Now, FinalizeAggregate
produces the same outputs as an Aggregate would have produced, while
PartialAggregate produces each of those outputs prefixed by the word
PARTIAL.
Discussion: 12585.1460737650@sss.pgh.pa.us
Patch by me, reviewed by David Rowley.
|
|
|
|
|
|
| |
It's not ready yet, revert two commits
690c543550b0d2852060c18d270cdb534d339d9a - unstable test output
386e3d7609c49505e079c40c65919d99feb82505 - patch itself
|
|
|
|
|
|
|
|
|
|
| |
Now indexes (but only B-tree for now) can contain "extra" column(s) which
doesn't participate in index structure, they are just stored in leaf
tuples. It allows to use index only scan by using single index instead
of two or more indexes.
Author: Anastasia Lubennikova with minor editorializing by me
Reviewers: David Rowley, Peter Geoghegan, Jeff Janes
|
|
|
|
|
| |
Getting annoyed at the amount of unrelated chatter I get from pgindent'ing
Rowley's unique-joins patch. Re-indent all the files it touches.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces a new dependency type which marks an object as depending
on an extension, such that if the extension is dropped, the object
automatically goes away; and also, if the database is dumped, the object
is included in the dump output. Currently the grammar supports this for
indexes, triggers, materialized views and functions only, although the
utility code is generic so adding support for more object types is a
matter of touching the parser rules only.
Author: Abhijit Menon-Sen
Reviewed-by: Alexander Korotkov, Álvaro Herrera
Discussion: http://www.postgresql.org/message-id/20160115062649.GA5068@toroid.org
|
|
|
|
|
|
|
|
|
| |
This is necessary infrastructure for supporting parallel aggregation
for aggregates whose transition type is "internal". Such values
can't be passed between cooperating processes, because they are
just pointers.
David Rowley, reviewed by Tomas Vondra and by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This enables external code to create access methods. This is useful so
that extensions can add their own access methods which can be formally
tracked for dependencies, so that DROP operates correctly. Also, having
explicit support makes pg_dump work correctly.
Currently only index AMs are supported, but we expect different types to
be added in the future.
Authors: Alexander Korotkov, Petr Jelínek
Reviewed-By: Teodor Sigaev, Petr Jelínek, Jim Nasby
Commitfest-URL: https://commitfest.postgresql.org/9/353/
Discussion: https://www.postgresql.org/message-id/CAPpHfdsXwZmojm6Dx+TJnpYk27kT4o7Ri6X_4OSWcByu1Rm+VA@mail.gmail.com
|
|
|
|
|
|
|
|
|
| |
Parallel workers can now partially aggregate the data and pass the
transition values back to the leader, which can combine the partial
results to produce the final answer.
David Rowley, based on earlier work by Haribabu Kommi. Reviewed by
Álvaro Herrera, Tomas Vondra, Amit Kapila, James Sewell, and me.
|
|
|
|
|
|
|
|
|
| |
postgres_fdw can now sent an UPDATE or DELETE statement directly to
the foreign server in simple cases, rather than sending a SELECT FOR
UPDATE statement and then updating or deleting rows one-by-one.
Etsuro Fujita, reviewed by Rushabh Lathia, Shigeru Hanada, Kyotaro
Horiguchi, Albe Laurenz, Thom Brown, and me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I've been saying we needed to do this for more than five years, and here it
finally is. This patch removes the ever-growing tangle of spaghetti logic
that grouping_planner() used to use to try to identify the best plan for
post-scan/join query steps. Now, there is (nearly) independent
consideration of each execution step, and entirely separate construction of
Paths to represent each of the possible ways to do that step. We choose
the best Path or set of Paths using the same add_path() logic that's been
used inside query_planner() for years.
In addition, this patch removes the old restriction that subquery_planner()
could return only a single Plan. It now returns a RelOptInfo containing a
set of Paths, just as query_planner() does, and the parent query level can
use each of those Paths as the basis of a SubqueryScanPath at its level.
This allows finding some optimizations that we missed before, wherein a
subquery was capable of returning presorted data and thereby avoiding a
sort in the parent level, making the overall cost cheaper even though
delivering sorted output was not the cheapest plan for the subquery in
isolation. (A couple of regression test outputs change in consequence of
that. However, there is very little change in visible planner behavior
overall, because the point of this patch is not to get immediate planning
benefits but to create the infrastructure for future improvements.)
There is a great deal left to do here. This patch unblocks a lot of
planner work that was basically impractical in the old code structure,
such as allowing FDWs to implement remote aggregation, or rewriting
plan_set_operations() to allow consideration of multiple implementation
orders for set operations. (The latter will likely require a full
rewrite of plan_set_operations(); what I've done here is only to fix it
to return Paths not Plans.) I have also left unfinished some localized
refactoring in createplan.c and planner.c, because it was not necessary
to get this patch to a working state.
Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An extensible node is always tagged T_Extensible, but the extnodename
field identifies it more specifically; it may also include arbitrary
private data. Extensible nodes can be copied, tested for equality,
serialized, and deserialized, but the core system doesn't know
anything about them otherwise. Some extensions may find it useful to
include these nodes in fdw_private or custom_private lists in lieu of
arm-wrestling their data into a format that the core code can
understand.
Along the way, so as not to burden the authors of such extensible
node types too much, expose the functions for writing serialized
tokens, and for serializing and deserializing bitmapsets.
KaiGai Kohei, per a design suggested by me. Reviewed by Andres Freund
and by me, and further edited by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When force_parallel_mode = true, we enable the parallel mode restrictions
for all queries for which this is believed to be safe. For the subset of
those queries believed to be safe to run entirely within a worker, we spin
up a worker and run the query there instead of running it in the
original process. When force_parallel_mode = regress, make additional
changes to allow the regression tests to run cleanly even though parallel
workers have been injected under the hood.
Taken together, this facilitates both better user testing and better
regression testing of the parallelism code.
Robert Haas, with help from Amit Kapila and Rushabh Lathia.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the foreign join pushdown infrastructure left the question
of security entirely up to individual FDWs, but it would be easy for
a foreign data wrapper to inadvertently open up subtle security holes
that way. So, make it the core code's job to determine which user
mapping OID is relevant, and don't attempt join pushdown unless it's
the same for all relevant relations.
Per a suggestion from Tom Lane. Shigeru Hanada and Ashutosh Bapat,
reviewed by Etsuro Fujita and KaiGai Kohei, with some further
changes by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Aggregate nodes now have two new modes: a "partial" mode where they
output the unfinalized transition state, and a "finalize" mode where
they accept unfinalized transition states rather than individual
values as input.
These new modes are not used anywhere yet, but they will be necessary
for parallel aggregation. The infrastructure also figures to be
useful for cases where we want to aggregate local data and remote
data via the FDW interface, and want to bring back partial aggregates
from the remote side that can then be combined with locally generated
partial aggregates to produce the final value. It may also be useful
even when neither FDWs nor parallelism are in play, as explained in
the comments in nodeAgg.c.
David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki
Linnakangas, Haribabu Kommi, and me.
|
|
|
|
| |
Backpatch certain files through 9.1
|
|
|
|
|
|
|
|
|
|
| |
Omitted boundaries represent the upper or lower limit of the corresponding
array subscript. This allows simpler specification of many common
use-cases.
(Revised version of commit 9246af6799819847faa33baf441251003acbb8fe)
YUriy Zhuravlev
|
|
|
|
| |
I miss too much. Patch is returned to commitfest process.
|
|
|
|
|
|
|
| |
Allow to omiy lower or upper or both boundaries in array subscript
for selecting slice of array.
Author: YUriy Zhuravlev
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
I originally modeled this data structure on SpecialJoinInfo, but after
commit acfcd45cacb6df23 that looks like a pretty poor decision.
All we really need is relid sets identifying laterally-referenced rels;
and most of the time, what we want to know about includes indirect lateral
references, a case the LateralJoinInfo data was unsuited to compute with
any efficiency. The previous commit redefined RelOptInfo.lateral_relids
as the transitive closure of lateral references, so that it easily supports
checking indirect references. For the places where we really do want just
direct references, add a new RelOptInfo field direct_lateral_relids, which
is easily set up as a copy of lateral_relids before we perform the
transitive closure calculation. Then we can just drop lateral_info_list
and LateralJoinInfo and the supporting code. This makes the planner's
handling of lateral references noticeably more efficient, and shorter too.
Such a change can't be back-patched into stable branches for fear of
breaking extensions that might be looking at the planner's data structures;
but it seems not too late to push it into 9.5, so I've done so.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In addition, this path fills in a number of missing bits and pieces in
the parallel infrastructure. Paths and plans now have a parallel_aware
flag indicating whether whatever parallel-aware logic they have should
be engaged. It is believed that we will need this flag for a number of
path/plan types, not just sequential scans, which is why the flag is
generic rather than part of the SeqScan structures specifically.
Also, execParallel.c now gives parallel nodes a chance to initialize
their PlanState nodes from the DSM during parallel worker startup.
Amit Kapila, with a fair amount of adjustment by me. Review of previous
patch versions by Haribabu Kommi and others.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This fixes a long-standing bug which was discovered while investigating
the interaction between the new join pushdown code and the EvalPlanQual
machinery: if a ForeignScan appears on the inner side of a paramaterized
nestloop, an EPQ recheck would re-return the original tuple even if
it no longer satisfied the pushed-down quals due to changed parameter
values.
This fix adds a new member to ForeignScan and ForeignScanState and a
new argument to make_foreignscan, and requires changes to FDWs which
push down quals to populate that new argument with a list of quals they
have chosen to push down. Therefore, I'm only back-patching to 9.5,
even though the bug is not new in 9.5.
Etsuro Fujita, reviewed by me and by Kyotaro Horiguchi.
|
|
|
|
|
|
|
|
|
|
| |
The WithCheckOptions list in Query are only populated during rewrite and
do not need to be written out or read in as part of a Query structure.
Further, move WithCheckOptions to the bottom and add comments to clarify
that it is only populated during rewrite.
Back-patch to 9.5 with a catversion bump, as we are still in alpha.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream. It can also run the plan itself, if the workers are
unavailable or haven't started up yet. It is intended to work with
the Partial Seq Scan node which will be added in future commits.
It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used. In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results. So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes. Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.
There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne. But we're getting
close.
Amit Kapila. Some designs suggestions were provided by me, and I also
reviewed the patch. Single-copy mode, documentation, and other minor
changes also by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This code provides infrastructure for a parallel leader to start up
parallel workers to execute subtrees of the plan tree being executed
in the master. User-supplied parameters from ParamListInfo are passed
down, but PARAM_EXEC parameters are not. Various other constructs,
such as initplans, subplans, and CTEs, are also not currently shared.
Nevertheless, there's enough here to support a basic implementation of
parallel query, and we can lift some of the current restrictions as
needed.
Amit Kapila and Robert Haas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 924bcf4f16d54c55310b28f77686608684734f42 introduced a framework
for parallel computation in PostgreSQL that makes most but not all
built-in functions safe to execute in parallel mode. In order to have
parallel query, we'll need to be able to determine whether that query
contains functions (either built-in or user-defined) that cannot be
safely executed in parallel mode. This requires those functions to be
labeled, so this patch introduces an infrastructure for that. Some
functions currently labeled as safe may need to be revised depending on
how pending issues related to heavyweight locking under paralllelism
are resolved.
Parallel plans can't be used except for the case where the query will
run to completion. If portal execution were suspended, the parallel
mode restrictions would need to remain in effect during that time, but
that might make other queries fail. Therefore, this patch introduces
a framework that enables consideration of parallel plans only when it
is known that the plan will be run to completion. This probably needs
some refinement; for example, at bind time, we do not know whether a
query run via the extended protocol will be execution to completion or
run with a limited fetch count. Having the client indicate its
intentions at bind time would constitute a wire protocol break. Some
contexts in which parallel mode would be safe are not adjusted by this
patch; the default is not to try parallel plans except from call sites
that have been updated to say that such plans are OK.
This commit doesn't introduce any parallel paths or plans; it just
provides a way to determine whether they could potentially be used.
I'm committing it on the theory that the remaining parallel sequential
scan patches will also get committed to this release, hopefully in the
not-too-distant future.
Robert Haas and Amit Kapila. Reviewed (in earlier versions) by Noah
Misch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This refactors rewrite/rowsecurity.c to simplify the handling of the
default deny case (reducing the number of places where we check for and
add the default deny policy from three to one) by splitting up the
retrival of the policies from the application of them.
This also allowed us to do away with the policy_id field. A policy_name
field was added for WithCheckOption policies and is used in error
reporting, when available.
Patch by Dean Rasheed, with various mostly cosmetic changes by me.
Back-patch to 9.5 where RLS was introduced to avoid unnecessary
differences, since we're still in alpha, per discussion with Robert.
|
|
|
|
|
|
|
|
|
|
|
| |
To avoid confusion, rename CreatePolicyStmt's 'cmd' to 'cmd_name',
parse_policy_command's 'cmd' to 'polcmd', and AlterPolicy's 'cmd_datum'
to 'polcmd_datum', per discussion with Noah and as a follow-up to his
correction of copynodes/equalnodes handling of the CreatePolicyStmt
'cmd' field.
Back-patch to 9.5 where the CreatePolicyStmt was introduced, as we
are still only in alpha.
|
|
|
|
|
|
|
|
|
| |
A few of the discrepancies had semantic significance, but I did not
track down the resulting user-visible bugs, if any. Back-patch to 9.5,
where all but one discrepancy appeared. The _equalCreateEventTrigStmt()
situation dates to 9.3 but does not affect semantics.
catversion bump due to readfuncs.c field order changes.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The original implementation of TABLESAMPLE modeled the tablesample method
API on index access methods, which wasn't a good choice because, without
specialized DDL commands, there's no way to build an extension that can
implement a TSM. (Raw inserts into system catalogs are not an acceptable
thing to do, because we can't undo them during DROP EXTENSION, nor will
pg_upgrade behave sanely.) Instead adopt an API more like procedural
language handlers or foreign data wrappers, wherein the only SQL-level
support object needed is a single handler function identified by having
a special return type. This lets us get rid of the supporting catalog
altogether, so that no custom DDL support is needed for the feature.
Adjust the API so that it can support non-constant tablesample arguments
(the original coding assumed we could evaluate the argument expressions at
ExecInitSampleScan time, which is undesirable even if it weren't outright
unsafe), and discourage sampling methods from looking at invisible tuples.
Make sure that the BERNOULLI and SYSTEM methods are genuinely repeatable
within and across queries, as required by the SQL standard, and deal more
honestly with methods that can't support that requirement.
Make a full code-review pass over the tablesample additions, and fix
assorted bugs, omissions, infelicities, and cosmetic issues (such as
failure to put the added code stanzas in a consistent ordering).
Improve EXPLAIN's output of tablesample plans, too.
Back-patch to 9.5 so that we don't have to support the original API
in production.
|
|
|
|
|
|
|
|
|
| |
Other options cannot be changed, as it's not totally clear if cached plans
would need to be invalidated if one of the other options change. Selectivity
estimator functions only change plan costs, not correctness of plans, so
those should be safe.
Original patch by Uriy Zhuravlev, heavily edited by me.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, INSERT with ON CONFLICT DO UPDATE specified used a new
command tag -- UPSERT. It was introduced out of concern that INSERT as
a command tag would be a misrepresentation for ON CONFLICT DO UPDATE, as
some affected rows may actually have been updated.
Alvaro Herrera noticed that the implementation of that new command tag
was incomplete; in subsequent discussion we concluded that having it
doesn't provide benefits that are in line with the compatibility breaks
it requires.
Catversion bump due to the removal of PlannedStmt->isUpsert.
Author: Peter Geoghegan
Discussion: 20150520215816.GI5885@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Defer lookup of opfamily and input type of a of a user specified opclass
until the optimizer selects among available unique indexes; and store
the opclass in the parse analyzed tree instead. The primary reason for
doing this is that for rule deparsing it's easier to use the opclass
than the previous representation.
While at it also rename a variable in the inference code to better fit
it's purpose.
This is separate from the actual fixes for deparsing to make review
easier.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This oversight results in a crash at executor startup if the plan has
been copied. outfuncs.c was missed as well.
While we could probably have taught both those files to cope with the
originally chosen representation of an Oid array, it would have been
painful, not least because there'd be no easy way to verify the array
length. An Oid List is far easier to work with. And AFAICS, there is
no particular notational benefit to using an array rather than a list
in the existing parts of the patch either. So just change it to a list.
Error in commit 35fcb1b3d038a501f3f4c87c05630095abaaadab, which is new,
so no need for back-patch.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This SQL standard functionality allows to aggregate data by different
GROUP BY clauses at once. Each grouping set returns rows with columns
grouped by in other sets set to NULL.
This could previously be achieved by doing each grouping as a separate
query, conjoined by UNION ALLs. Besides being considerably more concise,
grouping sets will in many cases be faster, requiring only one scan over
the underlying data.
The current implementation of grouping sets only supports using sorting
for input. Individual sets that share a sort order are computed in one
pass. If there are sets that don't share a sort order, additional sort &
aggregation steps are performed. These additional passes are sourced by
the previous sort step; thus avoiding repeated scans of the source data.
The code is structured in a way that adding support for purely using
hash aggregation or a mix of hashing and sorting is possible. Sorting
was chosen to be supported first, as it is the most generic method of
implementation.
Instead of, as in an earlier versions of the patch, representing the
chain of sort and aggregation steps as full blown planner and executor
nodes, all but the first sort are performed inside the aggregation node
itself. This avoids the need to do some unusual gymnastics to handle
having to return aggregated and non-aggregated tuples from underlying
nodes, as well as having to shut down underlying nodes early to limit
memory usage. The optimizer still builds Sort/Agg node to describe each
phase, but they're not part of the plan tree, but instead additional
data for the aggregation node. They're a convenient and preexisting way
to describe aggregation and sorting. The first (and possibly only) sort
step is still performed as a separate execution step. That retains
similarity with existing group by plans, makes rescans fairly simple,
avoids very deep plans (leading to slow explains) and easily allows to
avoid the sorting step if the underlying data is sorted by other means.
A somewhat ugly side of this patch is having to deal with a grammar
ambiguity between the new CUBE keyword and the cube extension/functions
named cube (and rollup). To avoid breaking existing deployments of the
cube extension it has not been renamed, neither has cube been made a
reserved keyword. Instead precedence hacking is used to make GROUP BY
cube(..) refer to the CUBE grouping sets feature, and not the function
cube(). To actually group by a function cube(), unlikely as that might
be, the function name has to be quoted.
Needs a catversion bump because stored rules may change.
Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund
Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas
Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule
Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a TABLESAMPLE clause to SELECT statements that allows
user to specify random BERNOULLI sampling or block level
SYSTEM sampling. Implementation allows for extensible
sampling functions to be written, using a standard API.
Basic version follows SQLStandard exactly. Usable
concrete use cases for the sampling API follow in later
commits.
Petr Jelinek
Reviewed by Michael Paquier and Simon Riggs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When this option is specified, a progress report is printed as each index
is reindexed.
Per discussion, we agreed on the following syntax for the extensibility of
the options.
REINDEX (flexible options) { INDEX | ... } name
Sawada Masahiko.
Reviewed by Robert Haas, Fabrízio Mello, Alvaro Herrera, Kyotaro Horiguchi,
Jim Nasby and me.
Discussion: CAD21AoA0pK3YcOZAFzMae+2fcc3oGp5zoRggDyMNg5zoaWDhdQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature lets user code inspect and take action on DDL events.
Whenever a ddl_command_end event trigger is installed, DDL actions
executed are saved to a list which can be inspected during execution of
a function attached to ddl_command_end.
The set-returning function pg_event_trigger_ddl_commands can be used to
list actions so captured; it returns data about the type of command
executed, as well as the affected object. This is sufficient for many
uses of this feature. For the cases where it is not, we also provide a
"command" column of a new pseudo-type pg_ddl_command, which is a
pointer to a C structure that can be accessed by C code. The struct
contains all the info necessary to completely inspect and even
reconstruct the executed command.
There is no actual deparse code here; that's expected to come later.
What we have is enough infrastructure that the deparsing can be done in
an external extension. The intention is that we will add some deparsing
code in a later release, as an in-core extension.
A new test module is included. It's probably insufficient as is, but it
should be sufficient as a starting point for a more complete and
future-proof approach.
Authors: Álvaro Herrera, with some help from Andres Freund, Ian Barwick,
Abhijit Menon-Sen.
Reviews by Andres Freund, Robert Haas, Amit Kapila, Michael Paquier,
Craig Ringer, David Steele.
Additional input from Chris Browne, Dimitri Fontaine, Stephen Frost,
Petr Jelínek, Tom Lane, Jim Nasby, Steven Singer, Pavel Stěhule.
Based on original work by Dimitri Fontaine, though I didn't use his
code.
Discussion:
https://www.postgresql.org/message-id/m2txrsdzxa.fsf@2ndQuadrant.fr
https://www.postgresql.org/message-id/20131108153322.GU5809@eldon.alvh.no-ip.org
https://www.postgresql.org/message-id/20150215044814.GL3391@alvh.no-ip.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments. Clean up
as follows:
* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function. In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs. Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.
* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.
* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that. Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.
* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries. The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks. It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway. I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.
* Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.
* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.
* Lots of cleanup of documentation and missed comments. Re-order some
code additions into more logical places.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, relation range table entries used a single Bitmapset field
representing which columns required either UPDATE or INSERT privileges,
despite the fact that INSERT and UPDATE privileges are separately
cataloged, and may be independently held. As statements so far required
either insert or update privileges but never both, that was
sufficient. The required permission could be inferred from the top level
statement run.
The upcoming INSERT ... ON CONFLICT UPDATE feature needs to
independently check for both privileges in one statement though, so that
is not sufficient anymore.
Bumps catversion as stored rules change.
Author: Peter Geoghegan
Reviewed-By: Andres Freund
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Foreign data wrappers can use this capability for so-called "join
pushdown"; that is, instead of executing two separate foreign scans
and then joining the results locally, they can generate a path which
performs the join on the remote server and then is scanned locally.
This commit does not extend postgres_fdw to take advantage of this
capability; it just provides the infrastructure.
Custom scan providers can use this in a similar way. Previously,
it was only possible for a custom scan provider to scan a single
relation. Now, it can scan an entire join tree, provided of course
that it knows how to produce the same results that the join would
have produced if executed normally.
KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
|
|
|
|
|
|
|
|
| |
This provides a mechanism for specifying conversions between SQL data
types and procedural languages. As examples, there are transforms
for hstore and ltree for PL/Perl and PL/Python.
reviews by Pavel Stěhule and Andres Freund
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The RLS capability is built on top of the WITH CHECK OPTION
system which was added for auto-updatable views, however, unlike
WCOs on views (which are mandated by the SQL spec to not fire until
after all other constraints and checks are done), it makes much more
sense for RLS checks to happen earlier than constraint and uniqueness
checks.
This patch reworks the structure which holds the WCOs a bit to be
explicitly either VIEW or RLS checks and the RLS-related checks are
done prior to the constraint and uniqueness checks. This also allows
better error reporting as we are now reporting when a violation is due
to a WITH CHECK OPTION and when it's due to an RLS policy violation,
which was independently noted by Craig Ringer as being confusing.
The documentation is also updated to include a paragraph about when RLS
WITH CHECK handling is performed, as there have been a number of
questions regarding that and the documentation was previously silent on
the matter.
Author: Dean Rasheed, with some kabitzing and comment changes by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We were involving the parser too much in setting up initial vacuuming
parameters. This patch moves that responsibility elsewhere to simplify
code, and also to make future additions easier. To do this, create a
new struct VacuumParams which is filled just prior to vacuum execution,
instead of at parse time; for user-invoked vacuuming this is set up in a
new function ExecVacuum, while autovacuum sets it up by itself.
While at it, add a new member VACOPT_SKIPTOAST to enum VacuumOption,
only set by autovacuum, which is used to disable vacuuming of the toast
table instead of the old do_toast parameter; this relieves the argument
list of vacuum() and some callees a bit. This partially makes up for
having added more arguments in an effort to avoid having autovacuum from
constructing a VacuumStmt parse node.
Author: Michael Paquier. Some tweaks by Álvaro
Reviewed by: Robert Haas, Stephen Frost, Álvaro Herrera
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes two inadequacies of the PlanRowMark representation.
First, that the original LockingClauseStrength isn't stored (and cannot be
inferred for foreign tables, which always get ROW_MARK_COPY). Since some
PlanRowMarks are created out of whole cloth and don't actually have an
ancestral RowMarkClause, this requires adding a dummy LCS_NONE value to
enum LockingClauseStrength, which is fairly annoying but the alternatives
seem worse. This fix allows getting rid of the use of get_parse_rowmark()
in FDWs (as per the discussion around commits 462bd95705a0c23b and
8ec8760fc87ecde0), and it simplifies some things elsewhere.
Second, that the representation assumed that all child tables in an
inheritance hierarchy would use the same RowMarkType. That's true today
but will soon not be true. We add an "allMarkTypes" field that identifies
the union of mark types used in all a parent table's children, and use
that where appropriate (currently, only in preprocess_targetlist()).
In passing fix a couple of minor infelicities left over from the SKIP
LOCKED patch, notably that _outPlanRowMark still thought waitPolicy
is a bool.
Catversion bump is required because the numeric values of enum
LockingClauseStrength can appear in on-disk rules.
Extracted from a much larger patch to support foreign table inheritance;
it seemed worth breaking this out, since it's a separable concern.
Shigeru Hanada and Etsuro Fujita, somewhat modified by me
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If we have a semijoin, say
SELECT * FROM x WHERE x1 IN (SELECT y1 FROM y)
and we're estimating the cost of a parameterized indexscan on x, the number
of repetitions of the indexscan should not be taken as the size of y; it'll
really only be the number of distinct values of y1, because the only valid
plan with y on the outside of a nestloop would require y to be unique-ified
before joining it to x. Most of the time this doesn't make that much
difference, but sometimes it can lead to drastically underestimating the
cost of the indexscan and hence choosing a bad plan, as pointed out by
David Kubečka.
Fixing this is a bit difficult because parameterized indexscans are costed
out quite early in the planning process, before we have the information
that would be needed to call estimate_num_groups() and thereby estimate the
number of distinct values of the join column(s). However we can move the
code that extracts a semijoin RHS's unique-ification columns, so that it's
done in initsplan.c rather than on-the-fly in create_unique_path(). That
shouldn't make any difference speed-wise and it's really a bit cleaner too.
The other bit of information we need is the size of the semijoin RHS,
which is easy if it's a single relation (we make those estimates before
considering indexscan costs) but problematic if it's a join relation.
The solution adopted here is just to use the product of the sizes of the
join component rels. That will generally be an overestimate, but since
estimate_num_groups() only uses this input as a clamp, an overestimate
shouldn't hurt us too badly. In any case we don't allow this new logic
to produce a value larger than we would have chosen before, so that at
worst an overestimate leaves us no wiser than we were before.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commands such as ALTER USER, ALTER GROUP, ALTER ROLE, GRANT, and the
various ALTER OBJECT / OWNER TO, as well as ad-hoc clauses related to
roles such as the AUTHORIZATION clause of CREATE SCHEMA, the FOR clause
of CREATE USER MAPPING, and the FOR ROLE clause of ALTER DEFAULT
PRIVILEGES can now take the keywords CURRENT_USER and SESSION_USER as
user specifiers in place of an explicit user name.
This commit also fixes some quite ugly handling of special standards-
mandated syntax in CREATE USER MAPPING, which in particular would fail
to work in presence of a role named "current_user".
The special role specifiers PUBLIC and NONE also have more consistent
handling now.
Also take the opportunity to add location tracking to user specifiers.
Authors: Kyotaro Horiguchi. Heavily reworked by Álvaro Herrera.
Reviewed by: Rushabh Lathia, Adam Brightwell, Marti Raudsepp.
|
|
|
|
|
|
|
|
|
|
|
| |
The RLS patch added a hasRowSecurity field to PlannerGlobal and
PlannedStmt but didn't update nodes/copyfuncs.c and nodes/outfuncs.c to
reflect those additional fields.
Correct that by adding entries to the appropriate functions for those
fields.
Pointed out by Robert.
|