aboutsummaryrefslogtreecommitdiff
path: root/src/backend/nodes/copyfuncs.c
Commit message (Collapse)AuthorAge
...
* Add transformed flag to nodes/*funcs.c for CREATE STATISTICSTomas Vondra2021-06-06
| | | | | | | | | | | Commit a4d75c86bf added a new flag, tracking if the statement was processed by transformStatsStmt(), but failed to add this flag to nodes/*funcs.c. Catversion bump, due to adding a flag to copy/equal/out functions. Reported-by: Noah Misch Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
* Standardize nodes/*funcs.c cosmetics for ForeignScan.resultRelation.Noah Misch2021-06-06
| | | | catversion bump due to readfuncs.c field order change.
* Fix mishandling of resjunk columns in ON CONFLICT ... UPDATE tlists.Tom Lane2021-05-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | It's unusual to have any resjunk columns in an ON CONFLICT ... UPDATE list, but it can happen when MULTIEXPR_SUBLINK SubPlans are present. If it happens, the ON CONFLICT UPDATE code path would end up storing tuples that include the values of the extra resjunk columns. That's fairly harmless in the short run, but if new columns are added to the table then the values would become accessible, possibly leading to malfunctions if they don't match the datatypes of the new columns. This had escaped notice through a confluence of missing sanity checks, including * There's no cross-check that a tuple presented to heap_insert or heap_update matches the table rowtype. While it's difficult to check that fully at reasonable cost, we can easily add assertions that there aren't too many columns. * The output-column-assignment cases in execExprInterp.c lacked any sanity checks on the output column numbers, which seems like an oversight considering there are plenty of assertion checks on input column numbers. Add assertions there too. * We failed to apply nodeModifyTable's ExecCheckPlanOutput() to the ON CONFLICT UPDATE tlist. That wouldn't have caught this specific error, since that function is chartered to ignore resjunk columns; but it sure seems like a bad omission now that we've seen this bug. In HEAD, the right way to fix this is to make the processing of ON CONFLICT UPDATE tlists work the same as regular UPDATE tlists now do, that is don't add "SET x = x" entries, and use ExecBuildUpdateProjection to evaluate the tlist and combine it with old values of the not-set columns. This adds a little complication to ExecBuildUpdateProjection, but allows removal of a comparable amount of now-dead code from the planner. In the back branches, the most expedient solution seems to be to (a) use an output slot for the ON CONFLICT UPDATE projection that actually matches the target table, and then (b) invent a variant of ExecBuildProjectionInfo that can be told to not store values resulting from resjunk columns, so it doesn't try to store into nonexistent columns of the output slot. (We can't simply ignore the resjunk columns altogether; they have to be evaluated for MULTIEXPR_SUBLINK to work.) This works back to v10. In 9.6, projections work much differently and we can't cheaply give them such an option. The 9.6 version of this patch works by inserting a JunkFilter when it's necessary to get rid of resjunk columns. In addition, v11 and up have the reverse problem when trying to perform ON CONFLICT UPDATE on a partitioned table. Through a further oversight, adjust_partition_tlist() discarded resjunk columns when re-ordering the ON CONFLICT UPDATE tlist to match a partition. This accidentally prevented the storing-bogus-tuples problem, but at the cost that MULTIEXPR_SUBLINK cases didn't work, typically crashing if more than one row has to be updated. Fix by preserving resjunk columns in that routine. (I failed to resist the temptation to add more assertions there too, and to do some minor code beautification.) Per report from Andres Freund. Back-patch to all supported branches. Security: CVE-2021-32028
* Revert per-index collation version tracking feature.Thomas Munro2021-05-07
| | | | | | | | | | | | | | | | | | | | | | | Design problems were discovered in the handling of composite types and record types that would cause some relevant versions not to be recorded. Misgivings were also expressed about the use of the pg_depend catalog for this purpose. We're out of time for this release so we'll revert and try again. Commits reverted: 1bf946bd: Doc: Document known problem with Windows collation versions. cf002008: Remove no-longer-relevant test case. ef387bed: Fix bogus collation-version-recording logic. 0fb0a050: Hide internal error for pg_collation_actual_version(<bad OID>). ff942057: Suppress "warning: variable 'collcollate' set but not used". d50e3b1f: Fix assertion in collation version lookup. f24b1569: Rethink extraction of collation dependencies. 257836a7: Track collation versions for indexes. cd6f479e: Add pg_depend.refobjversion. 7d1297df: Remove pg_collation.collversion. Discussion: https://postgr.es/m/CA%2BhUKGLhj5t1fcjqAu8iD9B3ixJtsTNqyCCD4V0aTO9kAKAjjA%40mail.gmail.com
* Speedup ScalarArrayOpExpr evaluationDavid Rowley2021-04-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand side have traditionally been evaluated by using a linear search over the array. When these arrays contain large numbers of elements then this linear search could become a significant part of execution time. Here we add a new method of evaluating ScalarArrayOpExpr expressions to allow them to be evaluated by first building a hash table containing each element, then on subsequent evaluations, we just probe that hash table to determine if there is a match. The planner is in charge of determining when this optimization is possible and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The executor will only perform the hash table evaluation when the hashfuncid is set. This means that not all cases are optimized. For example CHECK constraints containing an IN clause won't go through the planner, so won't get the hashfuncid set. We could maybe do something about that at some later date. The reason we're not doing it now is from fear that we may slow down cases where the expression is evaluated only once. Those cases can be common, for example, a single row INSERT to a table with a CHECK constraint containing an IN clause. In the planner, we enable this when there are suitable hash functions for the ScalarArrayOpExpr's operator and only when there is at least MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is currently set to 9. Author: James Coleman, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
* SQL-standard function bodyPeter Eisentraut2021-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds support for writing CREATE FUNCTION and CREATE PROCEDURE statements for language SQL with a function body that conforms to the SQL standard and is portable to other implementations. Instead of the PostgreSQL-specific AS $$ string literal $$ syntax, this allows writing out the SQL statements making up the body unquoted, either as a single statement: CREATE FUNCTION add(a integer, b integer) RETURNS integer LANGUAGE SQL RETURN a + b; or as a block CREATE PROCEDURE insert_data(a integer, b integer) LANGUAGE SQL BEGIN ATOMIC INSERT INTO tbl VALUES (a); INSERT INTO tbl VALUES (b); END; The function body is parsed at function definition time and stored as expression nodes in a new pg_proc column prosqlbody. So at run time, no further parsing is required. However, this form does not support polymorphic arguments, because there is no more parse analysis done at call time. Dependencies between the function and the objects it uses are fully tracked. A new RETURN statement is introduced. This can only be used inside function bodies. Internally, it is treated much like a SELECT statement. psql needs some new intelligence to keep track of function body boundaries so that it doesn't send off statements when it sees semicolons that are inside a function body. Tested-by: Jaime Casanova <jcasanov@systemguards.com.ec> Reviewed-by: Julien Rouhaud <rjuju123@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/1c11f1eb-f00c-43b7-799d-2d44132c02d7@2ndquadrant.com
* Add Result Cache executor node (take 2)David Rowley2021-04-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu, Hou Zhijie Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
* Revert b6002a796David Rowley2021-04-01
| | | | | | | | | | | | | This removes "Add Result Cache executor node". It seems that something weird is going on with the tracking of cache hits and misses as highlighted by many buildfarm animals. It's not yet clear what the problem is as other parts of the plan indicate that the cache did work correctly, it's just the hits and misses that were being reported as 0. This is especially a bad time to have the buildfarm so broken, so reverting before too many more animals go red. Discussion: https://postgr.es/m/CAApHDvq_hydhfovm4=izgWs+C5HqEeRScjMbOgbpC-jRAeK3Yw@mail.gmail.com
* Add Result Cache executor nodeDavid Rowley2021-04-01
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Here we add a new executor node type named "Result Cache". The planner can include this node type in the plan to have the executor cache the results from the inner side of parameterized nested loop joins. This allows caching of tuples for sets of parameters so that in the event that the node sees the same parameter values again, it can just return the cached tuples instead of rescanning the inner side of the join all over again. Internally, result cache uses a hash table in order to quickly find tuples that have been previously cached. For certain data sets, this can significantly improve the performance of joins. The best cases for using this new node type are for join problems where a large portion of the tuples from the inner side of the join have no join partner on the outer side of the join. In such cases, hash join would have to hash values that are never looked up, thus bloating the hash table and possibly causing it to multi-batch. Merge joins would have to skip over all of the unmatched rows. If we use a nested loop join with a result cache, then we only cache tuples that have at least one join partner on the outer side of the join. The benefits of using a parameterized nested loop with a result cache increase when there are fewer distinct values being looked up and the number of lookups of each value is large. Also, hash probes to lookup the cache can be much faster than the hash probe in a hash join as it's common that the result cache's hash table is much smaller than the hash join's due to result cache only caching useful tuples rather than all tuples from the inner side of the join. This variation in hash probe performance is more significant when the hash join's hash table no longer fits into the CPU's L3 cache, but the result cache's hash table does. The apparent "random" access of hash buckets with each hash probe can cause a poor L3 cache hit ratio for large hash tables. Smaller hash tables generally perform better. The hash table used for the cache limits itself to not exceeding work_mem * hash_mem_multiplier in size. We maintain a dlist of keys for this cache and when we're adding new tuples and realize we've exceeded the memory budget, we evict cache entries starting with the least recently used ones until we have enough memory to add the new tuples to the cache. For parameterized nested loop joins, we now consider using one of these result cache nodes in between the nested loop node and its inner node. We determine when this might be useful based on cost, which is primarily driven off of what the expected cache hit ratio will be. Estimating the cache hit ratio relies on having good distinct estimates on the nested loop's parameters. For now, the planner will only consider using a result cache for parameterized nested loop joins. This works for both normal joins and also for LATERAL type joins to subqueries. It is possible to use this new node for other uses in the future. For example, to cache results from correlated subqueries. However, that's not done here due to some difficulties obtaining a distinct estimation on the outer plan to calculate the estimated cache hit ratio. Currently we plan the inner plan before planning the outer plan so there is no good way to know if a result cache would be useful or not since we can't estimate the number of times the subplan will be called until the outer plan is generated. The functionality being added here is newly introducing a dependency on the return value of estimate_num_groups() during the join search. Previously, during the join search, we only ever needed to perform selectivity estimations. With this commit, we need to use estimate_num_groups() in order to estimate what the hit ratio on the result cache will be. In simple terms, if we expect 10 distinct values and we expect 1000 outer rows, then we'll estimate the hit ratio to be 99%. Since cache hits are very cheap compared to scanning the underlying nodes on the inner side of the nested loop join, then this will significantly reduce the planner's cost for the join. However, it's fairly easy to see here that things will go bad when estimate_num_groups() incorrectly returns a value that's significantly lower than the actual number of distinct values. If this happens then that may cause us to make use of a nested loop join with a result cache instead of some other join type, such as a merge or hash join. Our distinct estimations have been known to be a source of trouble in the past, so the extra reliance on them here could cause the planner to choose slower plans than it did previous to having this feature. Distinct estimations are also fairly hard to estimate accurately when several tables have been joined already or when a WHERE clause filters out a set of values that are correlated to the expressions we're estimating the number of distinct value for. For now, the costing we perform during query planning for result caches does put quite a bit of faith in the distinct estimations being accurate. When these are accurate then we should generally see faster execution times for plans containing a result cache. However, in the real world, we may find that we need to either change the costings to put less trust in the distinct estimations being accurate or perhaps even disable this feature by default. There's always an element of risk when we teach the query planner to do new tricks that it decides to use that new trick at the wrong time and causes a regression. Users may opt to get the old behavior by turning the feature off using the enable_resultcache GUC. Currently, this is enabled by default. It remains to be seen if we'll maintain that setting for the release. Additionally, the name "Result Cache" is the best name I could think of for this new node at the time I started writing the patch. Nobody seems to strongly dislike the name. A few people did suggest other names but no other name seemed to dominate in the brief discussion that there was about names. Let's allow the beta period to see if the current name pleases enough people. If there's some consensus on a better name, then we can change it before the release. Please see the 2nd discussion link below for the discussion on the "Result Cache" name. Author: David Rowley Reviewed-by: Andy Fan, Justin Pryzby, Zhihong Yu Tested-By: Konstantin Knizhnik Discussion: https://postgr.es/m/CAApHDvrPcQyQdWERGYWx8J%2B2DLUNgXu%2BfOSbQ1UscxrunyXyrQ%40mail.gmail.com Discussion: https://postgr.es/m/CAApHDvq=yQXr5kqhRviT2RhNKwToaWr9JAN5t+5_PzhuRJ3wvg@mail.gmail.com
* Rework planning and execution of UPDATE and DELETE.Tom Lane2021-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch makes two closely related sets of changes: 1. For UPDATE, the subplan of the ModifyTable node now only delivers the new values of the changed columns (i.e., the expressions computed in the query's SET clause) plus row identity information such as CTID. ModifyTable must re-fetch the original tuple to merge in the old values of any unchanged columns. The core advantage of this is that the changed columns are uniform across all tables of an inherited or partitioned target relation, whereas the other columns might not be. A secondary advantage, when the UPDATE involves joins, is that less data needs to pass through the plan tree. The disadvantage of course is an extra fetch of each tuple to be updated. However, that seems to be very nearly free in context; even worst-case tests don't show it to add more than a couple percent to the total query cost. At some point it might be interesting to combine the re-fetch with the tuple access that ModifyTable must do anyway to mark the old tuple dead; but that would require a good deal of refactoring and it seems it wouldn't buy all that much, so this patch doesn't attempt it. 2. For inherited UPDATE/DELETE, instead of generating a separate subplan for each target relation, we now generate a single subplan that is just exactly like a SELECT's plan, then stick ModifyTable on top of that. To let ModifyTable know which target relation a given incoming row refers to, a tableoid junk column is added to the row identity information. This gets rid of the horrid hack that was inheritance_planner(), eliminating O(N^2) planning cost and memory consumption in cases where there were many unprunable target relations. Point 2 of course requires point 1, so that there is a uniform definition of the non-junk columns to be returned by the subplan. We can't insist on uniform definition of the row identity junk columns however, if we want to keep the ability to have both plain and foreign tables in a partitioning hierarchy. Since it wouldn't scale very far to have every child table have its own row identity column, this patch includes provisions to merge similar row identity columns into one column of the subplan result. In particular, we can merge the whole-row Vars typically used as row identity by FDWs into one column by pretending they are type RECORD. (It's still okay for the actual composite Datums to be labeled with the table's rowtype OID, though.) There is more that can be done to file down residual inefficiencies in this patch, but it seems to be committable now. FDW authors should note several API changes: * The argument list for AddForeignUpdateTargets() has changed, and so has the method it must use for adding junk columns to the query. Call add_row_identity_var() instead of manipulating the parse tree directly. You might want to reconsider exactly what you're adding, too. * PlanDirectModify() must now work a little harder to find the ForeignScan plan node; if the foreign table is part of a partitioning hierarchy then the ForeignScan might not be the direct child of ModifyTable. See postgres_fdw for sample code. * To check whether a relation is a target relation, it's no longer sufficient to compare its relid to root->parse->resultRelation. Instead, check it against all_result_relids or leaf_result_relids, as appropriate. Amit Langote and Tom Lane Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
* Allow an alias to be attached to a JOIN ... USINGPeter Eisentraut2021-03-31
| | | | | | | | | | | | | | | This allows something like SELECT ... FROM t1 JOIN t2 USING (a, b, c) AS x where x has the columns a, b, c and unlike a regular alias it does not hide the range variables of the tables being joined t1 and t2. Per SQL:2016 feature F404 "Range variable for common column names". Reviewed-by: Vik Fearing <vik.fearing@2ndquadrant.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us> Discussion: https://www.postgresql.org/message-id/flat/454638cf-d563-ab76-a585-2564428062af@2ndquadrant.com
* Add support for asynchronous execution.Etsuro Fujita2021-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This implements asynchronous execution, which runs multiple parts of a non-parallel-aware Append concurrently rather than serially to improve performance when possible. Currently, the only node type that can be run concurrently is a ForeignScan that is an immediate child of such an Append. In the case where such ForeignScans access data on different remote servers, this would run those ForeignScans concurrently, and overlap the remote operations to be performed simultaneously, so it'll improve the performance especially when the operations involve time-consuming ones such as remote join and remote aggregation. We may extend this to other node types such as joins or aggregates over ForeignScans in the future. This also adds the support for postgres_fdw, which is enabled by the table-level/server-level option "async_capable". The default is false. Robert Haas, Kyotaro Horiguchi, Thomas Munro, and myself. This commit is mostly based on the patch proposed by Robert Haas, but also uses stuff from the patch proposed by Kyotaro Horiguchi and from the patch proposed by Thomas Munro. Reviewed by Kyotaro Horiguchi, Konstantin Knizhnik, Andrey Lepikhov, Movead Li, Thomas Munro, Justin Pryzby, and others. Discussion: https://postgr.es/m/CA%2BTgmoaXQEt4tZ03FtQhnzeDEMzBck%2BLrni0UWHVVgOTnA6C1w%40mail.gmail.com Discussion: https://postgr.es/m/CA%2BhUKGLBRyu0rHrDCMC4%3DRn3252gogyp1SjOgG8SEKKZv%3DFwfQ%40mail.gmail.com Discussion: https://postgr.es/m/20200228.170650.667613673625155850.horikyota.ntt%40gmail.com
* Cache if PathTarget and RestrictInfos contain volatile functionsDavid Rowley2021-03-29
| | | | | | | | | | | | | | | | | | | | | | | | Here we aim to reduce duplicate work done by contain_volatile_functions() by caching whether PathTargets and RestrictInfos contain any volatile functions the first time contain_volatile_functions() is called for them. Any future calls for these nodes just use the cached value rather than going to the trouble of recursively checking the sub-node all over again. Thanks to Tom Lane for the idea. Any locations in the code which make changes to a PathTarget or RestrictInfo which could change the outcome of the volatility check must change the cached value back to VOLATILITY_UNKNOWN again. contain_volatile_functions() is the only code in charge of setting the cache value to either VOLATILITY_VOLATILE or VOLATILITY_NOVOLATILE. Some existing code does benefit from this additional caching, however, this change is mainly aimed at an upcoming patch that must check for volatility during the join search. Repeated volatility checks in that case can become very expensive when the join search contains more than a few relations. Author: David Rowley Discussion: https://postgr.es/m/3795226.1614059027@sss.pgh.pa.us
* Extended statistics on expressionsTomas Vondra2021-03-27
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allow defining extended statistics on expressions, not just just on simple column references. With this commit, expressions are supported by all existing extended statistics kinds, improving the same types of estimates. A simple example may look like this: CREATE TABLE t (a int); CREATE STATISTICS s ON mod(a,10), mod(a,20) FROM t; ANALYZE t; The collected statistics are useful e.g. to estimate queries with those expressions in WHERE or GROUP BY clauses: SELECT * FROM t WHERE mod(a,10) = 0 AND mod(a,20) = 0; SELECT 1 FROM t GROUP BY mod(a,10), mod(a,20); This introduces new internal statistics kind 'e' (expressions) which is built automatically when the statistics object definition includes any expressions. This represents single-expression statistics, as if there was an expression index (but without the index maintenance overhead). The statistics is stored in pg_statistics_ext_data as an array of composite types, which is possible thanks to 79f6a942bd. CREATE STATISTICS allows building statistics on a single expression, in which case in which case it's not possible to specify statistics kinds. A new system view pg_stats_ext_exprs can be used to display expression statistics, similarly to pg_stats and pg_stats_ext views. ALTER TABLE ... ALTER COLUMN ... TYPE now treats indexes the same way it treats indexes, i.e. it drops and recreates the statistics. This means all statistics are reset, and we no longer try to preserve at least the functional dependencies. This should not be a major issue in practice, as the functional dependencies actually rely on per-column statistics, which were always reset anyway. Author: Tomas Vondra Reviewed-by: Justin Pryzby, Dean Rasheed, Zhihong Yu Discussion: https://postgr.es/m/ad7891d2-e90c-b446-9fe2-7419143847d7%40enterprisedb.com
* ALTER TABLE ... DETACH PARTITION ... CONCURRENTLYAlvaro Herrera2021-03-25
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Allow a partition be detached from its partitioned table without blocking concurrent queries, by running in two transactions and only requiring ShareUpdateExclusive in the partitioned table. Because it runs in two transactions, it cannot be used in a transaction block. This is the main reason to use dedicated syntax: so that users can choose to use the original mode if they need it. But also, it doesn't work when a default partition exists (because an exclusive lock would still need to be obtained on it, in order to change its partition constraint.) In case the second transaction is cancelled or a crash occurs, there's ALTER TABLE .. DETACH PARTITION .. FINALIZE, which executes the final steps. The main trick to make this work is the addition of column pg_inherits.inhdetachpending, initially false; can only be set true in the first part of this command. Once that is committed, concurrent transactions that use a PartitionDirectory will include or ignore partitions so marked: in optimizer they are ignored if the row is marked committed for the snapshot; in executor they are always included. As a result, and because of the way PartitionDirectory caches partition descriptors, queries that were planned before the detach will see the rows in the detached partition and queries that are planned after the detach, won't. A CHECK constraint is created that duplicates the partition constraint. This is probably not strictly necessary, and some users will prefer to remove it afterwards, but if the partition is re-attached to a partitioned table, the constraint needn't be rechecked. Author: Álvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Amit Langote <amitlangote09@gmail.com> Reviewed-by: Justin Pryzby <pryzby@telsasoft.com> Discussion: https://postgr.es/m/20200803234854.GA24158@alvherre.pgsql
* Revert "Enable parallel SELECT for "INSERT INTO ... SELECT ..."."Amit Kapila2021-03-24
| | | | | | | | | | | | | | | | | | | To allow inserts in parallel-mode this feature has to ensure that all the constraints, triggers, etc. are parallel-safe for the partition hierarchy which is costly and we need to find a better way to do that. Additionally, we could have used existing cached information in some cases like indexes, domains, etc. to determine the parallel-safety. List of commits reverted, in reverse chronological order: ed62d3737c Doc: Update description for parallel insert reloption. c8f78b6161 Add a new GUC and a reloption to enable inserts in parallel-mode. c5be48f092 Improve FK trigger parallel-safety check added by 05c8482f7f. e2cda3c20a Fix use of relcache TriggerDesc field introduced by commit 05c8482f7f. e4e87a32cc Fix valgrind issue in commit 05c8482f7f. 05c8482f7f Enable parallel SELECT for "INSERT INTO ... SELECT ...". Discussion: https://postgr.es/m/E1lMiB9-0001c3-SY@gemulon.postgresql.org
* Allow configurable LZ4 TOAST compression.Robert Haas2021-03-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | There is now a per-column COMPRESSION option which can be set to pglz (the default, and the only option in up until now) or lz4. Or, if you like, you can set the new default_toast_compression GUC to lz4, and then that will be the default for new table columns for which no value is specified. We don't have lz4 support in the PostgreSQL code, so to use lz4 compression, PostgreSQL must be built --with-lz4. In general, TOAST compression means compression of individual column values, not the whole tuple, and those values can either be compressed inline within the tuple or compressed and then stored externally in the TOAST table, so those properties also apply to this feature. Prior to this commit, a TOAST pointer has two unused bits as part of the va_extsize field, and a compessed datum has two unused bits as part of the va_rawsize field. These bits are unused because the length of a varlena is limited to 1GB; we now use them to indicate the compression type that was used. This means we only have bit space for 2 more built-in compresison types, but we could work around that problem, if necessary, by introducing a new vartag_external value for any further types we end up wanting to add. Hopefully, it won't be too important to offer a wide selection of algorithms here, since each one we add not only takes more coding but also adds a build dependency for every packager. Nevertheless, it seems worth doing at least this much, because LZ4 gets better compression than PGLZ with less CPU usage. It's possible for LZ4-compressed datums to leak into composite type values stored on disk, just as it is for PGLZ. It's also possible for LZ4-compressed attributes to be copied into a different table via SQL commands such as CREATE TABLE AS or INSERT .. SELECT. It would be expensive to force such values to be decompressed, so PostgreSQL has never done so. For the same reasons, we also don't force recompression of already-compressed values even if the target table prefers a different compression method than was used for the source data. These architectural decisions are perhaps arguable but revisiting them is well beyond the scope of what seemed possible to do as part of this project. However, it's relatively cheap to recompress as part of VACUUM FULL or CLUSTER, so this commit adjusts those commands to do so, if the configured compression method of the table happens not to match what was used for some column value stored therein. Dilip Kumar. The original patches on which this work was based were written by Ildus Kurbangaliev, and those were patches were based on even earlier work by Nikita Glukhov, but the design has since changed very substantially, since allow a potentially large number of compression methods that could be added and dropped on a running system proved too problematic given some of the architectural issues mentioned above; the choice of which specific compression method to add first is now different; and a lot of the code has been heavily refactored. More recently, Justin Przyby helped quite a bit with testing and reviewing and this version also includes some code contributions from him. Other design input and review from Tomas Vondra, Álvaro Herrera, Andres Freund, Oleg Bartunov, Alexander Korotkov, and me. Discussion: http://postgr.es/m/20170907194236.4cefce96%40wp.localdomain Discussion: http://postgr.es/m/CAFiTN-uUpX3ck%3DK0mLEk-G_kUQY%3DSNOTeqdaNRR9FMdQrHKebw%40mail.gmail.com
* Implement GROUP BY DISTINCTTomas Vondra2021-03-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | With grouping sets, it's possible that some of the grouping sets are duplicate. This is especially common with CUBE and ROLLUP clauses. For example GROUP BY CUBE (a,b), CUBE (b,c) is equivalent to GROUP BY GROUPING SETS ( (a, b, c), (a, b, c), (a, b, c), (a, b), (a, b), (a, b), (a), (a), (a), (c, a), (c, a), (c, a), (c), (b, c), (b), () ) Some of the grouping sets are calculated multiple times, which is mostly unnecessary. This commit implements a new GROUP BY DISTINCT feature, as defined in the SQL standard, which eliminates the duplicate sets. Author: Vik Fearing Reviewed-by: Erik Rijkers, Georgios Kokolatos, Tomas Vondra Discussion: https://postgr.es/m/bf3805a8-d7d1-ae61-fece-761b7ff41ecc@postgresfriends.org
* Enable parallel SELECT for "INSERT INTO ... SELECT ...".Amit Kapila2021-03-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Parallel SELECT can't be utilized for INSERT in the following cases: - INSERT statement uses the ON CONFLICT DO UPDATE clause - Target table has a parallel-unsafe: trigger, index expression or predicate, column default expression or check constraint - Target table has a parallel-unsafe domain constraint on any column - Target table is a partitioned table with a parallel-unsafe partition key expression or support function The planner is updated to perform additional parallel-safety checks for the cases listed above, for determining whether it is safe to run INSERT in parallel-mode with an underlying parallel SELECT. The planner will consider using parallel SELECT for "INSERT INTO ... SELECT ...", provided nothing unsafe is found from the additional parallel-safety checks, or from the existing parallel-safety checks for SELECT. While checking parallel-safety, we need to check it for all the partitions on the table which can be costly especially when we decide not to use a parallel plan. So, in a separate patch, we will introduce a GUC and or a reloption to enable/disable parallelism for Insert statements. Prior to entering parallel-mode for the execution of INSERT with parallel SELECT, a TransactionId is acquired and assigned to the current transaction state. This is necessary to prevent the INSERT from attempting to assign the TransactionId whilst in parallel-mode, which is not allowed. This approach has a disadvantage in that if the underlying SELECT does not return any rows, then the TransactionId is not used, however that shouldn't happen in practice in many cases. Author: Greg Nancarrow, Amit Langote, Amit Kapila Reviewed-by: Amit Langote, Hou Zhijie, Takayuki Tsunakawa, Antonin Houska, Bharath Rupireddy, Dilip Kumar, Vignesh C, Zhihong Yu, Amit Kapila Tested-by: Tang, Haiying Discussion: https://postgr.es/m/CAJcOf-cXnB5cnMKqWEp2E2z7Mvcd04iLVmV=qpFJrR3AcrTS3g@mail.gmail.com Discussion: https://postgr.es/m/CAJcOf-fAdj=nDKMsRhQzndm-O13NY4dL6xGcEvdX5Xvbbi0V7g@mail.gmail.com
* Add TID Range Scans to support efficient scanning ranges of TIDsDavid Rowley2021-02-27
| | | | | | | | | | | | | | | | | | | | | This adds a new executor node named TID Range Scan. The query planner will generate paths for TID Range scans when quals are discovered on base relations which search for ranges on the table's ctid column. These ranges may be open at either end. For example, WHERE ctid >= '(10,0)'; will return all tuples on page 10 and over. To support this, two new optional callback functions have been added to table AM. scan_set_tidrange is used to set the scan range to just the given range of TIDs. scan_getnextslot_tidrange fetches the next tuple in the given range. For AMs were scanning ranges of TIDs would not make sense, these functions can be set to NULL in the TableAmRoutine. The query planner won't generate TID Range Scan Paths in that case. Author: Edmund Horner, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Tom Lane, Andres Freund, Zhihong Yu Discussion: https://postgr.es/m/CAMyN-kB-nFTkF=VA_JPwFNo08S0d-Yk0F741S2B7LDmYAi8eyA@mail.gmail.com
* SEARCH and CYCLE clausesPeter Eisentraut2021-02-01
| | | | | | | | | | | | This adds the SQL standard feature that adds the SEARCH and CYCLE clauses to recursive queries to be able to do produce breadth- or depth-first search orders and detect cycles. These clauses can be rewritten into queries using existing syntax, and that is what this patch does in the rewriter. Reviewed-by: Vik Fearing <vik@postgresfriends.org> Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/db80ceee-6f97-9b4a-8ee8-3ba0c58e5be2@2ndquadrant.com
* Allow GRANTED BY clause in normal GRANT and REVOKE statementsPeter Eisentraut2021-01-30
| | | | | | | | | | | | | | The SQL standard allows a GRANTED BY clause on GRANT and REVOKE (privilege) statements that can specify CURRENT_USER or CURRENT_ROLE. In PostgreSQL, both of these are the default behavior. Since we already have all the parsing support for this for the GRANT (role) statement, we might as well add basic support for this for the privilege variant as well. This allows us to check off SQL feature T332. In the future, perhaps more interesting things could be done with this, too. Reviewed-by: Simon Riggs <simon@2ndquadrant.com> Discussion: https://www.postgresql.org/message-id/flat/f2feac44-b4c5-f38f-3699-2851d6a76dc9@2ndquadrant.com
* Re-implement pl/pgsql's expression and assignment parsing.Tom Lane2021-01-04
| | | | | | | | | | | | | | | | | | | | | | | | | | Invent new RawParseModes that allow the core grammar to handle pl/pgsql expressions and assignments directly, and thereby get rid of a lot of hackery in pl/pgsql's parser. This moves a good deal of knowledge about pl/pgsql into the core code: notably, we have to invent a CoercionContext that matches pl/pgsql's (rather dubious) historical behavior for assignment coercions. That's getting away from the original idea of pl/pgsql as an arm's-length extension of the core, but really we crossed that bridge a long time ago. The main advantage of doing this is that we can now use the core parser to generate FieldStore and/or SubscriptingRef nodes to handle assignments to pl/pgsql variables that are records or arrays. That fixes a number of cases that had never been implemented in pl/pgsql assignment, such as nested records and array slicing, and it allows pl/pgsql assignment to support the datatype-specific subscripting behaviors introduced in commit c7aba7c14. There are cosmetic benefits too: when a syntax error occurs in a pl/pgsql expression, the error report no longer includes the confusing "SELECT" keyword that used to get prefixed to the expression text. Also, there seem to be some small speed gains. Discussion: https://postgr.es/m/4165684.1607707277@sss.pgh.pa.us
* Update copyright for 2021Bruce Momjian2021-01-02
| | | | Backpatch-through: 9.5
* Support subscripting of arbitrary types, not only arrays.Tom Lane2020-12-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch generalizes the subscripting infrastructure so that any data type can be subscripted, if it provides a handler function to define what that means. Traditional variable-length (varlena) arrays all use array_subscript_handler(), while the existing fixed-length types that support subscripting use raw_array_subscript_handler(). It's expected that other types that want to use subscripting notation will define their own handlers. (This patch provides no such new features, though; it only lays the foundation for them.) To do this, move the parser's semantic processing of subscripts (including coercion to whatever data type is required) into a method callback supplied by the handler. On the execution side, replace the ExecEvalSubscriptingRef* layer of functions with direct calls to callback-supplied execution routines. (Thus, essentially no new run-time overhead should be caused by this patch. Indeed, there is room to remove some overhead by supplying specialized execution routines. This patch does a little bit in that line, but more could be done.) Additional work is required here and there to remove formerly hard-wired assumptions about the result type, collation, etc of a SubscriptingRef expression node; and to remove assumptions that the subscript values must be integers. One useful side-effect of this is that we now have a less squishy mechanism for identifying whether a data type is a "true" array: instead of wiring in weird rules about typlen, we can look to see if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER. For this to be bulletproof, we have to forbid user-defined types from using that handler directly; but there seems no good reason for them to do so. This patch also removes assumptions that the number of subscripts is limited to MAXDIM (6), or indeed has any hard-wired limit. That limit still applies to types handled by array_subscript_handler or raw_array_subscript_handler, but to discourage other dependencies on this constant, I've moved it from c.h to utils/array.h. Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov, Peter Eisentraut, Pavel Stehule Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
* Refactor CLUSTER and REINDEX grammar to use DefElem for option listsMichael Paquier2020-12-03
| | | | | | | | | | | | | | This changes CLUSTER and REINDEX so as a parenthesized grammar becomes possible for options, while unifying the grammar parsing rules for option lists with the existing ones. This is a follow-up of the work done in 873ea9e for VACUUM, ANALYZE and EXPLAIN. This benefits REINDEX for a potential backend-side filtering for collatable-sensitive indexes and TABLESPACE, while CLUSTER would benefit from the latter. Author: Alexey Kondratov, Justin Pryzby Discussion: https://postgr.es/m/8a8f5f73-00d3-55f8-7583-1375ca8f6a91@postgrespro.ru
* Ensure that expandTableLikeClause() re-examines the same table.Tom Lane2020-12-01
| | | | | | | | | | | | | | | | | | | | | | As it stood, expandTableLikeClause() re-did the same relation_openrv call that transformTableLikeClause() had done. However there are scenarios where this would not find the same table as expected. We hold lock on the LIKE source table, so it can't be renamed or dropped, but another table could appear before it in the search path. This explains the odd behavior reported in bug #16758 when cloning a table as a temp table of the same name. This case worked as expected before commit 502898192 introduced the need to open the source table twice, so we should fix it. To make really sure we get the same table, let's re-open it by OID not name. That requires adding an OID field to struct TableLikeClause, which is a little nervous-making from an ABI standpoint, but as long as it's at the end I don't think there's any serious risk. Per bug #16758 from Marc Boeren. Like the previous patch, back-patch to all supported branches. Discussion: https://postgr.es/m/16758-840e84a6cfab276d@postgresql.org
* Move per-agg and per-trans duplicate finding to the planner.Heikki Linnakangas2020-11-24
| | | | | | | | | | This has the advantage that the cost estimates for aggregates can count the number of calls to transition and final functions correctly. Bump catalog version, because views can contain Aggrefs. Reviewed-by: Andres Freund Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
* Provide the OR REPLACE option for CREATE TRIGGER.Tom Lane2020-11-14
| | | | | | | | | | | | | | | | | | This is mostly straightforward. However, we disallow replacing constraint triggers or changing the is-constraint property; perhaps that can be added later, but the complexity versus benefit tradeoff doesn't look very good. Also, no special thought is taken here for whether replacing an existing trigger should result in changes to queued-but-not-fired trigger actions. We just document that if you're surprised by the results, too bad, don't do that. (Note that any such pending trigger activity would have to be within the current session.) Takamichi Osumi, reviewed at various times by Surafel Temesgen, Peter Smith, and myself Discussion: https://postgr.es/m/0DDF369B45A1B44B8A687ED43F06557C010BC362@G01JPEXMBYT03
* Improve our ability to regurgitate SQL-syntax function calls.Tom Lane2020-11-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The SQL spec calls out nonstandard syntax for certain function calls, for example substring() with numeric position info is supposed to be spelled "SUBSTRING(string FROM start FOR count)". We accept many of these things, but up to now would not print them in the same format, instead simplifying down to "substring"(string, start, count). That's long annoyed me because it creates an interoperability problem: we're gratuitously injecting Postgres-specific syntax into what might otherwise be a perfectly spec-compliant view definition. However, the real reason for addressing it right now is to support a planned change in the semantics of EXTRACT() a/k/a date_part(). When we switch that to returning numeric, we'll have the parser translate EXTRACT() to some new function name (might as well be "extract" if you ask me) and then teach ruleutils.c to reverse-list that per SQL spec. In this way existing calls to date_part() will continue to have the old semantics. To implement this, invent a new CoercionForm value COERCE_SQL_SYNTAX, and make the parser insert that rather than COERCE_EXPLICIT_CALL when the input has SQL-spec decoration. (But if the input has the form of a plain function call, continue to mark it COERCE_EXPLICIT_CALL, even if it's calling one of these functions.) Then ruleutils.c recognizes COERCE_SQL_SYNTAX as a cue to emit SQL call syntax. It can know which decoration to emit using hard-wired knowledge about the functions that could be called this way. (While this solution isn't extensible without manual additions, neither is the grammar, so this doesn't seem unmaintainable.) Notice that this solution will reverse-list a function call with SQL decoration only if it was entered that way; so dump-and-reload will not by itself produce any changes in the appearance of views. This requires adding a CoercionForm field to struct FuncCall. (I couldn't resist the temptation to rearrange that struct's field order a tad while I was at it.) FuncCall doesn't appear in stored rules, so that change isn't a reason for a catversion bump, but I did one anyway because the new enum value for CoercionForm fields could confuse old backend code. Possible future work: * Perhaps CoercionForm should now be renamed to DisplayForm, or something like that, to reflect its more general meaning. This'd require touching a couple hundred places, so it's not clear it's worth the code churn. * The SQLValueFunction node type, which was invented partly for the same goal of improving SQL-compatibility of view output, could perhaps be replaced with regular function calls marked with COERCE_SQL_SYNTAX. It's unclear if this would be a net code savings, however. Discussion: https://postgr.es/m/42b73d2d-da12-ba9f-570a-420e0cce19d9@phystech.edu
* Track collation versions for indexes.Thomas Munro2020-11-03
| | | | | | | | | | | | | | | Record the current version of dependent collations in pg_depend when creating or rebuilding an index. When accessing the index later, warn that the index may be corrupted if the current version doesn't match. Thanks to Douglas Doole, Peter Eisentraut, Christoph Berg, Laurenz Albe, Michael Paquier, Robert Haas, Tom Lane and others for very helpful discussion. Author: Thomas Munro <thomas.munro@gmail.com> Author: Julien Rouhaud <rjuju123@gmail.com> Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> (earlier versions) Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
* Remove pg_collation.collversion.Thomas Munro2020-11-03
| | | | | | | | | | | | This model couldn't be extended to cover the default collation, and didn't have any information about the affected database objects when the version changed. Remove, in preparation for a follow-up commit that will add a new mechanism. Author: Thomas Munro <thomas.munro@gmail.com> Reviewed-by: Julien Rouhaud <rjuju123@gmail.com> Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com> Discussion: https://postgr.es/m/CAEepm%3D0uEQCpfq_%2BLYFBdArCe4Ot98t1aR4eYiYTe%3DyavQygiQ%40mail.gmail.com
* Include result relation info in direct modify ForeignScan nodes.Heikki Linnakangas2020-10-14
| | | | | | | | | | | | | | | | | FDWs that can perform an UPDATE/DELETE remotely using the "direct modify" set of APIs need to access the ResultRelInfo of the target table. That's currently available in EState.es_result_relation_info, but the next commit will remove that field. This commit adds a new resultRelation field in ForeignScan, to store the target relation's RT index, and the corresponding ResultRelInfo in ForeignScanState. The FDW's PlanDirectModify callback is expected to set 'resultRelation' along with 'operation'. The core code doesn't need them for anything, they are for the convenience of FDW's Begin- and IterateDirectModify callbacks. Authors: Amit Langote, Etsuro Fujita Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
* Create ResultRelInfos later in InitPlan, index them by RT index.Heikki Linnakangas2020-10-13
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of allocating all the ResultRelInfos upfront in one big array, allocate them in ExecInitModifyTable(). es_result_relations is now an array of ResultRelInfo pointers, rather than an array of structs, and it is indexed by the RT index. This simplifies things: we get rid of the separate concept of a "result rel index", and don't need to set it in setrefs.c anymore. This also allows follow-up optimizations (not included in this commit yet) to skip initializing ResultRelInfos for target relations that were not needed at runtime, and removal of the es_result_relation_info pointer. The EState arrays of regular result rels and root result rels are merged into one array. Similarly, the resultRelations and rootResultRelations lists in PlannedStmt are merged into one. It's not actually clear to me why they were kept separate in the first place, but now that the es_result_relations array is indexed by RT index, it certainly seems pointless. The PlannedStmt->resultRelations list is now only needed for ExecRelationIsTargetRelation(). One visible effect of this change is that ExecRelationIsTargetRelation() will now return 'true' also for the partition root, if a partitioned table is updated. That seems like a good thing, although the function isn't used in core code, and I don't see any reason for an FDW to call it on a partition root. Author: Amit Langote Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
* Remove variable "concurrent" from ReindexStmtMichael Paquier2020-09-04
| | | | | | | | | | This node already handles multiple options using a bitmask, so having a separate boolean flag is not necessary. This simplifies the code a bit with less arguments to give to the reindex routines, by replacing the boolean with an equivalent bitmask value. Reviewed-by: Julien Rouhaud Discussion: https://postgr.es/m/20200902110326.GA14963@paquier.xyz
* Rename field "relkind" to "objtype" for CTAS and ALTER TABLE nodesMichael Paquier2020-07-11
| | | | | | | | | | | | | | | | | | | "relkind" normally refers to the char field from pg_class. However, in the parse nodes AlterTableStmt and CreateTableAsStmt, "relkind" was used for a field of type enum ObjectType, that could refer to other object types than those possible for a relkind. Such fields being usually named "objtype", switch the name in both structures to make things more consistent. Note that this led to some confusion in functions that also operate on a RangeTableEntry object, which also has a field named "relkind". This naming goes back to commit 09d4e96, where only OBJECT_TABLE and OBJECT_INDEX were used. This got extended later to use as well OBJECT_TYPE with e440e12, not really a relation kind. Author: Mark Dilger Reviewed-by: Daniel Gustafsson, Álvaro Herrera, Michael Paquier Discussion: https://postgr.es/m/609181AE-E399-47C7-9221-856E0F96BF93@enterprisedb.com
* Reconcile nodes/*funcs.c.Noah Misch2020-05-25
| | | | | The stmt_len changes do not affect behavior. LimitPath has no other support functions, so that part changes only debugging output.
* Add ALTER .. NO DEPENDS ONAlvaro Herrera2020-04-20
| | | | | | | | | | | | | | Commit f2fcad27d59c (9.6 era) added the ability to mark objects as dependent an extension, but forgot to add a way for such dependencies to be removed. This commit fixes that oversight. Strictly speaking this should be backpatched to 9.6, but due to lack of demand we're not doing so at this time. Discussion: https://postgr.es/m/20200217225333.GA30974@alvherre.pgsql Reviewed-by: ahsan hadi <ahsan.hadi@gmail.com> Reviewed-by: Ibrar Ahmed <ibrar.ahmad@gmail.com> Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
* Revert 0f5ca02f53Alexander Korotkov2020-04-08
| | | | | | | | 0f5ca02f53 introduces 3 new keywords. It appears to be too much for relatively small feature. Given now we past feature freeze, it's already late for discussion of the new syntax. So, revert. Discussion: https://postgr.es/m/28209.1586294824%40sss.pgh.pa.us
* Implement waiting for given lsn at transaction startAlexander Korotkov2020-04-07
| | | | | | | | | | | | | | | | | | | | This commit adds following optional clause to BEGIN and START TRANSACTION commands. WAIT FOR LSN lsn [ TIMEOUT timeout ] New clause pospones transaction start till given lsn is applied on standby. This clause allows user be sure, that changes previously made on primary would be visible on standby. New shared memory struct is used to track awaited lsn per backend. Recovery process wakes up backend once required lsn is applied. Author: Ivan Kartyshov, Anna Akenteva Reviewed-by: Craig Ringer, Thomas Munro, Robert Haas, Kyotaro Horiguchi Reviewed-by: Masahiko Sawada, Ants Aasma, Dmitry Ivanov, Simon Riggs Reviewed-by: Amit Kapila, Alexander Korotkov Discussion: https://postgr.es/m/0240c26c-9f84-30ea-fca9-93ab2df5f305%40postgrespro.ru
* Support FETCH FIRST WITH TIESAlvaro Herrera2020-04-07
| | | | | | | | | | | | | | | | | | WITH TIES is an option to the FETCH FIRST N ROWS clause (the SQL standard's spelling of LIMIT), where you additionally get rows that compare equal to the last of those N rows by the columns in the mandatory ORDER BY clause. There was a proposal by Andrew Gierth to implement this functionality in a more powerful way that would yield more features, but the other patch had not been finished at this time, so we decided to use this one for now in the spirit of incremental development. Author: Surafel Temesgen <surafel3000@gmail.com> Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org> Reviewed-by: Tomas Vondra <tomas.vondra@2ndquadrant.com> Discussion: https://postgr.es/m/CALAY4q9ky7rD_A4vf=FVQvCGngm3LOes-ky0J6euMrg=_Se+ag@mail.gmail.com Discussion: https://postgr.es/m/87o8wvz253.fsf@news-spur.riddles.org.uk
* Implement Incremental SortTomas Vondra2020-04-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Incremental Sort is an optimized variant of multikey sort for cases when the input is already sorted by a prefix of the requested sort keys. For example when the relation is already sorted by (key1, key2) and we need to sort it by (key1, key2, key3) we can simply split the input rows into groups having equal values in (key1, key2), and only sort/compare the remaining column key3. This has a number of benefits: - Reduced memory consumption, because only a single group (determined by values in the sorted prefix) needs to be kept in memory. This may also eliminate the need to spill to disk. - Lower startup cost, because Incremental Sort produce results after each prefix group, which is beneficial for plans where startup cost matters (like for example queries with LIMIT clause). We consider both Sort and Incremental Sort, and decide based on costing. The implemented algorithm operates in two different modes: - Fetching a minimum number of tuples without check of equality on the prefix keys, and sorting on all columns when safe. - Fetching all tuples for a single prefix group and then sorting by comparing only the remaining (non-prefix) keys. We always start in the first mode, and employ a heuristic to switch into the second mode if we believe it's beneficial - the goal is to minimize the number of unnecessary comparions while keeping memory consumption below work_mem. This is a very old patch series. The idea was originally proposed by Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the patch was taken over by James Coleman, who wrote and rewrote most of the current code. There were many reviewers/contributors since 2013 - I've done my best to pick the most active ones, and listed them in this commit message. Author: James Coleman, Alexander Korotkov Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
* Skip WAL for new relfilenodes, under wal_level=minimal.Noah Misch2020-04-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Until now, only selected bulk operations (e.g. COPY) did this. If a given relfilenode received both a WAL-skipping COPY and a WAL-logged operation (e.g. INSERT), recovery could lose tuples from the COPY. See src/backend/access/transam/README section "Skipping WAL for New RelFileNode" for the new coding rules. Maintainers of table access methods should examine that section. To maintain data durability, just before commit, we choose between an fsync of the relfilenode and copying its contents to WAL. A new GUC, wal_skip_threshold, guides that choice. If this change slows a workload that creates small, permanent relfilenodes under wal_level=minimal, try adjusting wal_skip_threshold. Users setting a timeout on COMMIT may need to adjust that timeout, and log_min_duration_statement analysis will reflect time consumption moving to COMMIT from commands like COPY. Internally, this requires a reliable determination of whether RollbackAndReleaseCurrentSubTransaction() would unlink a relation's current relfilenode. Introduce rd_firstRelfilenodeSubid. Amend the specification of rd_createSubid such that the field is zero when a new rel has an old rd_node. Make relcache.c retain entries for certain dropped relations until end of transaction. Bump XLOG_PAGE_MAGIC, since this introduces XLOG_GIST_ASSIGN_LSN. Future servers accept older WAL, so this bump is discretionary. Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert Haas. Heikki Linnakangas and Michael Paquier implemented earlier designs that materially clarified the problem. Reviewed, in earlier designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane, Fujii Masao, and Simon Riggs. Reported by Martijn van Oosterhout. Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
* Implement operator class parametersAlexander Korotkov2020-03-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | PostgreSQL provides set of template index access methods, where opclasses have much freedom in the semantics of indexing. These index AMs are GiST, GIN, SP-GiST and BRIN. There opclasses define representation of keys, operations on them and supported search strategies. So, it's natural that opclasses may be faced some tradeoffs, which require user-side decision. This commit implements opclass parameters allowing users to set some values, which tell opclass how to index the particular dataset. This commit doesn't introduce new storage in system catalog. Instead it uses pg_attribute.attoptions, which is used for table column storage options but unused for index attributes. In order to evade changing signature of each opclass support function, we implement unified way to pass options to opclass support functions. Options are set to fn_expr as the constant bytea expression. It's possible due to the fact that opclass support functions are executed outside of expressions, so fn_expr is unused for them. This commit comes with some examples of opclass options usage. We parametrize signature length in GiST. That applies to multiple opclasses: tsvector_ops, gist__intbig_ops, gist_ltree_ops, gist__ltree_ops, gist_trgm_ops and gist_hstore_ops. Also we parametrize maximum number of integer ranges for gist__int_ops. However, the main future usage of this feature is expected to be json, where users would be able to specify which way to index particular json parts. Catversion is bumped. Discussion: https://postgr.es/m/d22c3a18-31c7-1879-fc11-4c1ce2f5e5af%40postgrespro.ru Author: Nikita Glukhov, revised by me Reviwed-by: Nikolay Shaplov, Robert Haas, Tom Lane, Tomas Vondra, Alvaro Herrera
* Revert "Skip WAL for new relfilenodes, under wal_level=minimal."Noah Misch2020-03-22
| | | | | | | | This reverts commit cb2fd7eac285b1b0a24eeb2b8ed4456b66c5a09f. Per numerous buildfarm members, it was incompatible with parallel query, and a test case assumed LP64. Back-patch to 9.5 (all supported versions). Discussion: https://postgr.es/m/20200321224920.GB1763544@rfd.leadboat.com
* Skip WAL for new relfilenodes, under wal_level=minimal.Noah Misch2020-03-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Until now, only selected bulk operations (e.g. COPY) did this. If a given relfilenode received both a WAL-skipping COPY and a WAL-logged operation (e.g. INSERT), recovery could lose tuples from the COPY. See src/backend/access/transam/README section "Skipping WAL for New RelFileNode" for the new coding rules. Maintainers of table access methods should examine that section. To maintain data durability, just before commit, we choose between an fsync of the relfilenode and copying its contents to WAL. A new GUC, wal_skip_threshold, guides that choice. If this change slows a workload that creates small, permanent relfilenodes under wal_level=minimal, try adjusting wal_skip_threshold. Users setting a timeout on COMMIT may need to adjust that timeout, and log_min_duration_statement analysis will reflect time consumption moving to COMMIT from commands like COPY. Internally, this requires a reliable determination of whether RollbackAndReleaseCurrentSubTransaction() would unlink a relation's current relfilenode. Introduce rd_firstRelfilenodeSubid. Amend the specification of rd_createSubid such that the field is zero when a new rel has an old rd_node. Make relcache.c retain entries for certain dropped relations until end of transaction. Back-patch to 9.5 (all supported versions). This introduces a new WAL record type, XLOG_GIST_ASSIGN_LSN, without bumping XLOG_PAGE_MAGIC. As always, update standby systems before master systems. This changes sizeof(RelationData) and sizeof(IndexStmt), breaking binary compatibility for affected extensions. (The most recent commit to affect the same class of extensions was 089e4d405d0f3b94c74a2c6a54357a84a681754b.) Kyotaro Horiguchi, reviewed (in earlier, similar versions) by Robert Haas. Heikki Linnakangas and Michael Paquier implemented earlier designs that materially clarified the problem. Reviewed, in earlier designs, by Andrew Dunstan, Andres Freund, Alvaro Herrera, Tom Lane, Fujii Masao, and Simon Riggs. Reported by Martijn van Oosterhout. Discussion: https://postgr.es/m/20150702220524.GA9392@svana.org
* Allow ALTER TYPE to change some properties of a base type.Tom Lane2020-03-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Specifically, this patch allows ALTER TYPE to: * Change the default TOAST strategy for a toastable base type; * Promote a non-toastable type to toastable; * Add/remove binary I/O functions for a type; * Add/remove typmod I/O functions for a type; * Add/remove a custom ANALYZE statistics functions for a type. The first of these can be done by the type's owner; all the others require superuser privilege since misuse could cause problems. The main motivation for this patch is to allow extensions to upgrade the feature sets of their data types, so the set of alterable properties is biased towards that use-case. However it's also true that changing some other properties would be a lot harder, as they get baked into physical storage and/or stored expressions that depend on the type. Along the way, refactor GenerateTypeDependencies() to make it easier to call, refactor DefineType's volatility checks so they can be shared by AlterType, and teach typcache.c that it might have to reload data from the type's pg_type row, a scenario it never handled before. Also rearrange alter_type.sgml a bit for clarity (put the composite-type operations together). Tomas Vondra and Tom Lane Discussion: https://postgr.es/m/20200228004440.b23ein4qvmxnlpht@development
* Fix commit c11cb17d.Jeff Davis2020-02-28
| | | | | | I neglected to update copyfuncs/outfuncs/readfuncs. Discussion: https://postgr.es/m/12491.1582833409%40sss.pgh.pa.us
* Reconsider the representation of join alias Vars.Tom Lane2020-01-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The core idea of this patch is to make the parser generate join alias Vars (that is, ones with varno pointing to a JOIN RTE) only when the alias Var is actually different from any raw join input, that is a type coercion and/or COALESCE is necessary to generate the join output value. Otherwise just generate varno/varattno pointing to the relevant join input column. In effect, this means that the planner's flatten_join_alias_vars() transformation is already done in the parser, for all cases except (a) columns that are merged by JOIN USING and are transformed in the process, and (b) whole-row join Vars. In principle that would allow us to skip doing flatten_join_alias_vars() in many more queries than we do now, but we don't have quite enough infrastructure to know that we can do so --- in particular there's no cheap way to know whether there are any whole-row join Vars. I'm not sure if it's worth the trouble to add a Query-level flag for that, and in any case it seems like fit material for a separate patch. But even without skipping the work entirely, this should make flatten_join_alias_vars() faster, particularly where there are nested joins that it previously had to flatten recursively. An essential part of this change is to replace Var nodes' varnoold/varoattno fields with varnosyn/varattnosyn, which have considerably more tightly-defined meanings than the old fields: when they differ from varno/varattno, they identify the Var's position in an aliased JOIN RTE, and the join alias is what ruleutils.c should print for the Var. This is necessary because the varno change destroyed ruleutils.c's ability to find the JOIN RTE from the Var's varno. Another way in which this change broke ruleutils.c is that it's no longer feasible to determine, from a JOIN RTE's joinaliasvars list, which join columns correspond to which columns of the join's immediate input relations. (If those are sub-joins, the joinaliasvars entries may point to columns of their base relations, not the sub-joins.) But that was a horrid mess requiring a lot of fragile assumptions already, so let's just bite the bullet and add some more JOIN RTE fields to make it more straightforward to figure that out. I added two integer-List fields containing the relevant column numbers from the left and right input rels, plus a count of how many merged columns there are. This patch depends on the ParseNamespaceColumn infrastructure that I added in commit 5815696bc. The biggest bit of code change is restructuring transformFromClauseItem's handling of JOINs so that the ParseNamespaceColumn data is propagated upward correctly. Other than that and the ruleutils fixes, everything pretty much just works, though some processing is now inessential. I grabbed two pieces of low-hanging fruit in that line: 1. In find_expr_references, we don't need to recurse into join alias Vars anymore. There aren't any except for references to merged USING columns, which are more properly handled when we scan the join's RTE. This change actually fixes an edge-case issue: we will now record a dependency on any type-coercion function present in a USING column's joinaliasvar, even if that join column has no references in the query text. The odds of the missing dependency causing a problem seem quite small: you'd have to posit somebody dropping an implicit cast between two data types, without removing the types themselves, and then having a stored rule containing a whole-row Var for a join whose USING merge depends on that cast. So I don't feel a great need to change this in the back branches. But in theory this way is more correct. 2. markRTEForSelectPriv and markTargetListOrigin don't need to recurse into join alias Vars either, because the cases they care about don't apply to alias Vars for USING columns that are semantically distinct from the underlying columns. This removes the only case in which markVarForSelectPriv could be called with NULL for the RTE, so adjust the comments to describe that hack as being strictly internal to markRTEForSelectPriv. catversion bump required due to changes in stored rules. Discussion: https://postgr.es/m/7115.1577986646@sss.pgh.pa.us
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4