aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path/joinpath.c
Commit message (Collapse)AuthorAge
* Avoid invalidating all foreign-join cached plans when user mappings change.Tom Lane2016-07-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
* Fix planner crash from pfree'ing a partial path that a GatherPath uses.Tom Lane2016-04-30
| | | | | | | | | | | | | | | | | | | | We mustn't run generate_gather_paths() during add_paths_to_joinrel(), because that function can be invoked multiple times for the same target joinrel. Not only is it wasteful to build GatherPaths repeatedly, but a later add_partial_path() could delete the partial path that a previously created GatherPath depends on. Instead establish the convention that we do generate_gather_paths() for a rel only just before set_cheapest(). The code was accidentally not broken for baserels, because as of today there never is more than one partial path for a baserel. But that assumption obviously has a pretty short half-life, so move the generate_gather_paths() calls for those cases as well. Also add some generic comments explaining how and why this all works. Per fuzz testing by Andreas Seltenreich. Report: <871t5pgwdt.fsf@credativ.de>
* Forbid parallel Hash Right Join or Hash Full Join.Robert Haas2016-04-20
| | | | | | That won't work. You'll get bogus null-extended rows. Mithun Cy
* Run pgindent on a batch of (mostly-planner-related) source files.Tom Lane2016-04-06
| | | | | Getting annoyed at the amount of unrelated chatter I get from pgindent'ing Rowley's unique-joins patch. Re-indent all the files it touches.
* Update more comments for 96198d94cb7adc664bda341842dc8db671d8be72.Robert Haas2016-03-14
| | | | | Etsuro Fujita, reviewed (though not completely endorsed) by Ashutosh Bapat, and slightly expanded by me.
* Assert that create_unique_path returns non-NULL.Robert Haas2016-01-27
| | | | | Per off-list discussion with Tom Lane and Michael Paquier, Coverity gets unhappy if this is not done.
* Support parallel joins, and make related improvements.Robert Haas2016-01-20
| | | | | | | | | | | | | | | | | | | | | | | | | | The core innovation of this patch is the introduction of the concept of a partial path; that is, a path which if executed in parallel will generate a subset of the output rows in each process. Gathering a partial path produces an ordinary (complete) path. This allows us to generate paths for parallel joins by joining a partial path for one side (which at the baserel level is currently always a Partial Seq Scan) to an ordinary path on the other side. This is subject to various restrictions at present, especially that this strategy seems unlikely to be sensible for merge joins, so only nested loops and hash joins paths are generated. This also allows an Append node to be pushed below a Gather node in the case of a partitioned table. Testing revealed that early versions of this patch made poor decisions in some cases, which turned out to be caused by the fact that the original cost model for Parallel Seq Scan wasn't very good. So this patch tries to make some modest improvements in that area. There is much more to be done in the area of generating good parallel plans in all cases, but this seems like a useful step forward. Patch by me, reviewed by Dilip Kumar and Amit Kapila.
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Still more fixes for planner's handling of LATERAL references.Tom Lane2015-12-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | More fuzz testing by Andreas Seltenreich exposed that the planner did not cope well with chains of lateral references. If relation X references Y laterally, and Y references Z laterally, then we will have to scan X on the inside of a nestloop with Z, so for all intents and purposes X is laterally dependent on Z too. The planner did not understand this and would generate intermediate joins that could not be used. While that was usually harmless except for wasting some planning cycles, under the right circumstances it would lead to "failed to build any N-way joins" or "could not devise a query plan" planner failures. To fix that, convert the existing per-relation lateral_relids and lateral_referencers relid sets into their transitive closures; that is, they now show all relations on which a rel is directly or indirectly laterally dependent. This not only fixes the chained-reference problem but allows some of the relevant tests to be made substantially simpler and faster, since they can be reduced to simple bitmap manipulations instead of searches of the LateralJoinInfo list. Also, when a PlaceHolderVar that is due to be evaluated at a join contains lateral references, we should treat those references as indirect lateral dependencies of each of the join's base relations. This prevents us from trying to join any individual base relations to the lateral reference source before the join is formed, which again cannot work. Andreas' testing also exposed another oversight in the "dangerous PlaceHolderVar" test added in commit 85e5e222b1dd02f1. Simply rejecting unsafe join paths in joinpath.c is insufficient, because in some cases we will end up rejecting *all* possible paths for a particular join, again leading to "could not devise a query plan" failures. The restriction has to be known also to join_is_legal and its cohort functions, so that they will not select a join for which that will happen. I chose to move the supporting logic into joinrels.c where the latter functions are. Back-patch to 9.3 where LATERAL support was introduced.
* Simplify LATERAL-related calculations within add_paths_to_joinrel().Tom Lane2015-12-07
| | | | | | | | | | | | | | | | | While convincing myself that commit 7e19db0c09719d79 would solve both of the problems recently reported by Andreas Seltenreich, I realized that add_paths_to_joinrel's handling of LATERAL restrictions could be made noticeably simpler and faster if we were to retain the minimum possible parameterization for each joinrel (that is, the set of relids supplying unsatisfied lateral references in it). We already retain that for baserels, in RelOptInfo.lateral_relids, so we can use that field for joinrels too. I re-pgindent'd the files touched here, which affects some unrelated comments. This is, I believe, just a minor optimization not a bug fix, so no back-patch.
* Further mucking with PlaceHolderVar-related restrictions on join order.Tom Lane2015-08-10
| | | | | | | | | | | | | | | | | | | Commit 85e5e222b1dd02f135a8c3bf387d0d6d88e669bd turns out not to have taken care of all cases of the partially-evaluatable-PlaceHolderVar problem found by Andreas Seltenreich's fuzz testing. I had set it up to check for risky PHVs only in the event that we were making a star-schema-based exception to the param_source_rels join ordering heuristic. However, it turns out that the problem can occur even in joins that satisfy the param_source_rels heuristic, in which case allow_star_schema_join() isn't consulted. Refactor so that we check for risky PHVs whenever the proposed join has any remaining parameterization. Back-patch to 9.2, like the previous patch (except for the regression test case, which only works back to 9.3 because it uses LATERAL). Note that this discovery implies that problems of this sort could've occurred in 9.2 and up even before the star-schema patch; though I've not tried to prove that experimentally.
* Fix a PlaceHolderVar-related oversight in star-schema planning patch.Tom Lane2015-08-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In commit b514a7460d9127ddda6598307272c701cbb133b7, I changed the planner so that it would allow nestloop paths to remain partially parameterized, ie the inner relation might need parameters from both the current outer relation and some upper-level outer relation. That's fine so long as we're talking about distinct parameters; but the patch also allowed creation of nestloop paths for cases where the inner relation's parameter was a PlaceHolderVar whose eval_at set included the current outer relation and some upper-level one. That does *not* work. In principle we could allow such a PlaceHolderVar to be evaluated at the lower join node using values passed down from the upper relation along with values from the join's own outer relation. However, nodeNestloop.c only supports simple Vars not arbitrary expressions as nestloop parameters. createplan.c is also a few bricks shy of being able to handle such cases; it misplaces the PlaceHolderVar parameters in the plan tree, which is why the visible symptoms of this bug are "plan should not reference subplan's variable" and "failed to assign all NestLoopParams to plan nodes" planner errors. Adding the necessary complexity to make this work doesn't seem like it would be repaid in significantly better plans, because in cases where such a PHV exists, there is probably a corresponding join order constraint that would allow a good plan to be found without using the star-schema exception. Furthermore, adding complexity to nodeNestloop.c would create a run-time penalty even for plans where this whole consideration is irrelevant. So let's just reject such paths instead. Per fuzz testing by Andreas Seltenreich; the added regression test is based on his example query. Back-patch to 9.2, like the previous patch.
* Code review for foreign/custom join pushdown patch.Tom Lane2015-05-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design decisions that seem pretty questionable to me, and there was quite a lot of stuff not to like about the documentation and comments. Clean up as follows: * Consider foreign joins only between foreign tables on the same server, rather than between any two foreign tables with the same underlying FDW handler function. In most if not all cases, the FDW would simply have had to apply the same-server restriction itself (far more expensively, both for lack of caching and because it would be repeated for each combination of input sub-joins), or else risk nasty bugs. Anyone who's really intent on doing something outside this restriction can always use the set_join_pathlist_hook. * Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist to better reflect what they're for, and allow these custom scan tlists to be used even for base relations. * Change make_foreignscan() API to include passing the fdw_scan_tlist value, since the FDW is required to set that. Backwards compatibility doesn't seem like an adequate reason to expect FDWs to set it in some ad-hoc extra step, and anyway existing FDWs can just pass NIL. * Change the API of path-generating subroutines of add_paths_to_joinrel, and in particular that of GetForeignJoinPaths and set_join_pathlist_hook, so that various less-used parameters are passed in a struct rather than as separate parameter-list entries. The objective here is to reduce the probability that future additions to those parameter lists will result in source-level API breaks for users of these hooks. It's possible that this is even a small win for the core code, since most CPU architectures can't pass more than half a dozen parameters efficiently anyway. I kept root, joinrel, outerrel, innerrel, and jointype as separate parameters to reduce code churn in joinpath.c --- in particular, putting jointype into the struct would have been problematic because of the subroutines' habit of changing their local copies of that variable. * Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all right for it to know about IndexOnlyScan, but if the list is to grow we should refactor the knowledge out to the callers. * Restore nodeForeignscan.c's previous use of the relcache to avoid extra GetFdwRoutine lookups for base-relation scans. * Lots of cleanup of documentation and missed comments. Re-order some code additions into more logical places.
* Allow FDWs and custom scan providers to replace joins with scans.Robert Haas2015-05-01
| | | | | | | | | | | | | | | | | Foreign data wrappers can use this capability for so-called "join pushdown"; that is, instead of executing two separate foreign scans and then joining the results locally, they can generate a path which performs the join on the remote server and then is scanned locally. This commit does not extend postgres_fdw to take advantage of this capability; it just provides the infrastructure. Custom scan providers can use this in a similar way. Previously, it was only possible for a custom scan provider to scan a single relation. Now, it can scan an entire join tree, provided of course that it knows how to produce the same results that the join would have produced if executed normally. KaiGai Kohei, reviewed by Shigeru Hanada, Ashutosh Bapat, and me.
* Fix planning of star-schema-style queries.Tom Lane2015-02-28
| | | | | | | | | | | Part of the intent of the parameterized-path mechanism was to handle star-schema queries efficiently, but some overly-restrictive search limiting logic added in commit e2fa76d80ba571d4de8992de6386536867250474 prevented such cases from working as desired. Fix that and add a regression test about it. Per gripe from Marc Cousin. This is arguably a bug rather than a new feature, so back-patch to 9.2 where parameterized paths were introduced.
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* pgindent run for 9.4Bruce Momjian2014-05-06
| | | | | This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching.
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Fix planner problems with LATERAL references in PlaceHolderVars.Tom Lane2013-08-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | The planner largely failed to consider the possibility that a PlaceHolderVar's expression might contain a lateral reference to a Var coming from somewhere outside the PHV's syntactic scope. We had a previous report of a problem in this area, which I tried to fix in a quick-hack way in commit 4da6439bd8553059766011e2a42c6e39df08717f, but Antonin Houska pointed out that there were still some problems, and investigation turned up other issues. This patch largely reverts that commit in favor of a more thoroughly thought-through solution. The new theory is that a PHV's ph_eval_at level cannot be higher than its original syntactic level. If it contains lateral references, those don't change the ph_eval_at level, but rather they create a lateral-reference requirement for the ph_eval_at join relation. The code in joinpath.c needs to handle that. Another issue is that createplan.c wasn't handling nested PlaceHolderVars properly. In passing, push knowledge of lateral-reference checks for join clauses into join_clause_is_movable_to. This is mainly so that FDWs don't need to deal with it. This patch doesn't fix the original join-qual-placement problem reported by Jeremy Evans (and indeed, one of the new regression test cases shows the wrong answer because of that). But the PlaceHolderVar problems need to be fixed before that issue can be addressed, so committing this separately seems reasonable.
* pgindent run for release 9.3Bruce Momjian2013-05-29
| | | | | This is the first run of the Perl-based pgindent script. Also update pgindent instructions.
* Update copyrights for 2013Bruce Momjian2013-01-01
| | | | | Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files.
* Adjust definition of cheapest_total_path to work better with LATERAL.Tom Lane2012-08-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In the initial cut at LATERAL, I kept the rule that cheapest_total_path was always unparameterized, which meant it had to be NULL if the relation has no unparameterized paths. It turns out to work much more nicely if we always have *some* path nominated as cheapest-total for each relation. In particular, let's still say it's the cheapest unparameterized path if there is one; if not, take the cheapest-total-cost path among those of the minimum available parameterization. (The first rule is actually a special case of the second.) This allows reversion of some temporary lobotomizations I'd put in place. In particular, the planner can now consider hash and merge joins for joins below a parameter-supplying nestloop, even if there aren't any unparameterized paths available. This should bring planning of LATERAL-containing queries to the same level as queries not using that feature. Along the way, simplify management of parameterized paths in add_path() and friends. In the original coding for parameterized paths in 9.2, I tried to minimize the logic changes in add_path(), so it just treated parameterization as yet another dimension of comparison for paths. We later made it ignore pathkeys (sort ordering) of parameterized paths, on the grounds that ordering isn't a useful property for the path on the inside of a nestloop, so we might as well get rid of useless parameterized paths as quickly as possible. But we didn't take that reasoning as far as we should have. Startup cost isn't a useful property inside a nestloop either, so add_path() ought to discount startup cost of parameterized paths as well. Having done that, the secondary sorting I'd implemented (in add_parameterized_path) is no longer needed --- any parameterized path that survives add_path() at all is worth considering at higher levels. So this should be a bit faster as well as simpler.
* Fix up planner infrastructure to support LATERAL properly.Tom Lane2012-08-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch takes care of a number of problems having to do with failure to choose valid join orders and incorrect handling of lateral references pulled up from subqueries. Notable changes: * Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to represent join ordering constraints created by lateral references. (I first considered extending the SpecialJoinInfo structure, but the semantics are different enough that a separate data structure seems better.) Extend join_is_legal() and related functions to prevent trying to form unworkable joins, and to ensure that we will consider joins that satisfy lateral references even if the joins would be clauseless. * Fill in the infrastructure needed for the last few types of relation scan paths to support parameterization. We'd have wanted this eventually anyway, but it is necessary now because a relation that gets pulled up out of a UNION ALL subquery may acquire a reltargetlist containing lateral references, meaning that its paths *have* to be parameterized whether or not we have any code that can push join quals down into the scan. * Compute data about lateral references early in query_planner(), and save in RelOptInfo nodes, to avoid repetitive calculations later. * Assorted corner-case bug fixes. There's probably still some bugs left, but this is a lot closer to being real than it was before.
* More fixes for planner's handling of LATERAL.Tom Lane2012-08-12
| | | | | | | | | | | | | | | | | | | | | | | | Re-allow subquery pullup for LATERAL subqueries, except when the subquery is below an outer join and contains lateral references to relations outside that outer join. If we pull up in such a case, we risk introducing lateral cross-references into outer joins' ON quals, which is something the code is entirely unprepared to cope with right now; and I'm not sure it'll ever be worth coping with. Support lateral refs in VALUES (this seems to be the only additional path type that needs such support as a consequence of re-allowing subquery pullup). Put in a slightly hacky fix for joinpath.c's refusal to consider parameterized join paths even when there cannot be any unparameterized ones. This was causing "could not devise a query plan for the given query" failures in queries involving more than two FROM items. Put in an even more hacky fix for distribute_qual_to_rels() being unhappy with join quals that contain references to rels outside their syntactic scope; which is to say, disable that test altogether. Need to think about how to preserve some sort of debugging cross-check here, while not expending more cycles than befits a debugging cross-check.
* Implement SQL-standard LATERAL subqueries.Tom Lane2012-08-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements the standard syntax of LATERAL attached to a sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM, since set-returning function calls are expected to be one of the principal use-cases. The main change here is a rewrite of the mechanism for keeping track of which relations are visible for column references while the FROM clause is being scanned. The parser "namespace" lists are no longer lists of bare RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE pointer as well as some visibility-controlling flags. Aside from supporting LATERAL correctly, this lets us get rid of the ancient hacks that required rechecking subqueries and JOIN/ON and function-in-FROM expressions for invalid references after they were initially parsed. Invalid column references are now always correctly detected on sight. In passing, remove assorted parser error checks that are now dead code by virtue of our having gotten rid of add_missing_from, as well as some comments that are obsolete for the same reason. (It was mainly add_missing_from that caused so much fudging here in the first place.) The planner support for this feature is very minimal, and will be improved in future patches. It works well enough for testing purposes, though. catversion bump forced due to new field in RangeTblEntry.
* Run pgindent on 9.2 source tree in preparation for first 9.3Bruce Momjian2012-06-10
| | | | commit-fest.
* Revise parameterized-path mechanism to fix assorted issues.Tom Lane2012-04-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch adjusts the treatment of parameterized paths so that all paths with the same parameterization (same set of required outer rels) for the same relation will have the same rowcount estimate. We cache the rowcount estimates to ensure that property, and hopefully save a few cycles too. Doing this makes it practical for add_path_precheck to operate without a rowcount estimate: it need only assume that paths with different parameterizations never dominate each other, which is close enough to true anyway for coarse filtering, because normally a more-parameterized path should yield fewer rows thanks to having more join clauses to apply. In add_path, we do the full nine yards of comparing rowcount estimates along with everything else, so that we can discard parameterized paths that don't actually have an advantage. This fixes some issues I'd found with add_path rejecting parameterized paths on the grounds that they were more expensive than not-parameterized ones, even though they yielded many fewer rows and hence would be cheaper once subsequent joining was considered. To make the same-rowcounts assumption valid, we have to require that any parameterized path enforce *all* join clauses that could be obtained from the particular set of outer rels, even if not all of them are useful for indexing. This is required at both base scans and joins. It's a good thing anyway since the net impact is that join quals are checked at the lowest practical level in the join tree. Hence, discard the original rather ad-hoc mechanism for choosing parameterization joinquals, and build a better one that has a more principled rule for when clauses can be moved. The original rule was actually buggy anyway for lack of knowledge about which relations are part of an outer join's outer side; getting this right requires adding an outer_relids field to RestrictInfo.
* Use parameterized paths to generate inner indexscans more flexibly.Tom Lane2012-01-27
| | | | | | | | | | | | | | | | | | | This patch fixes the planner so that it can generate nestloop-with- inner-indexscan plans even with one or more levels of joining between the indexscan and the nestloop join that is supplying the parameter. The executor was fixed to handle such cases some time ago, but the planner was not ready. This should improve our plans in many situations where join ordering restrictions formerly forced complete table scans. There is probably a fair amount of tuning work yet to be done, because of various heuristics that have been added to limit the number of parameterized paths considered. However, we are not going to find out what needs to be adjusted until the code gets some real-world use, so it's time to get it in there where it can be tested easily. Note API change for index AM amcostestimate functions. I'm not aware of any non-core index AMs, but if there are any, they will need minor adjustments.
* Update copyright notices for year 2012.Bruce Momjian2012-01-01
|
* pgindent run before PG 9.1 beta 1.Bruce Momjian2011-04-10
|
* Stamp copyrights for year 2011.Bruce Momjian2011-01-01
|
* Invert and rename flag variable to improve code readability.Tom Lane2010-12-31
| | | | No change in functionality. Per discussion with Robert.
* Support RIGHT and FULL OUTER JOIN in hash joins.Tom Lane2010-12-30
| | | | | | | | | | | | | | | | | | | | | | This is advantageous first because it allows us to hash the smaller table regardless of the outer-join type, and second because hash join can be more flexible than merge join in dealing with arbitrary join quals in a FULL join. For merge join all the join quals have to be mergejoinable, but hash join will work so long as there's at least one hashjoinable qual --- the others can be any condition. (This is true essentially because we don't keep per-inner-tuple match flags in merge join, while hash join can do so.) To do this, we need a has-it-been-matched flag for each tuple in the hashtable, not just one for the current outer tuple. The key idea that makes this practical is that we can store the match flag in the tuple's infomask, since there are lots of bits there that are of no interest for a MinimalTuple. So we aren't increasing the size of the hashtable at all for the feature. To write this without turning the hash code into even more of a pile of spaghetti than it already was, I rewrote ExecHashJoin in a state-machine style, similar to ExecMergeJoin. Other than that decision, it was pretty straightforward.
* Avoid creation of useless EquivalenceClasses during planning.Tom Lane2010-10-29
| | | | | | | | | | | | | | | | | | | | | | Zoltan Boszormenyi exhibited a test case in which planning time was dominated by construction of EquivalenceClasses and PathKeys that had no actual relevance to the query (and in fact got discarded immediately). This happened because we generated PathKeys describing the sort ordering of every index on every table in the query, and only after that checked to see if the sort ordering was relevant. The EC/PK construction code is O(N^2) in the number of ECs, which is all right for the intended number of such objects, but it gets out of hand if there are ECs for lots of irrelevant indexes. To fix, twiddle the handling of mergeclauses a little bit to ensure that every interesting EC is created before we begin path generation. (This doesn't cost anything --- in fact I think it's a bit cheaper than before --- since we always eventually created those ECs anyway.) Then, if an index column can't be found in any pre-existing EC, we know that that sort ordering is irrelevant for the query. Instead of creating a useless EC, we can just not build a pathkey for the index column in the first place. The index will still be considered if it's useful for non-order-related reasons, but we will think of its output as unsorted.
* Remove cvs keywords from all files.Magnus Hagander2010-09-20
|
* Add an 'enable_material' GUC.Robert Haas2010-04-19
| | | | | | | | | | | The logic for determining whether to materialize has been significantly overhauled for 9.0. In case there should be any doubt about whether materialization is a win in any particular case, this should provide a convenient way of seeing what happens without it; but even with enable_material turned off, we still materialize in cases where it is required for correctness. Thanks to Tom Lane for the review.
* Rework join-removal logic as per recent discussion. In particular thisTom Lane2010-03-28
| | | | | fixes things so that it works for cases where nested removals are possible. The overhead of the optimization should be significantly less, as well.
* Fix an oversight in join-removal optimization: we have to check not only forTom Lane2010-03-22
| | | | | plain Vars that are generated in the inner rel and used above the join, but also for PlaceHolderVars. Per report from Oleg K.
* pgindent run for 9.0Bruce Momjian2010-02-26
|
* Add support for doing FULL JOIN ON FALSE. While this is really a ratherTom Lane2010-01-05
| | | | | | | | | | peculiar variant of UNION ALL, and so wouldn't likely get written directly as-is, it's possible for it to arise as a result of simplification of less-obviously-silly queries. In particular, now that we can do flattening of subqueries that have constant outputs and are underneath an outer join, it's possible for the case to result from simplification of queries of the type exhibited in bug #5263. Back-patch to 8.4 to avoid a functionality regression for this type of query.
* Update copyright for the year 2010.Bruce Momjian2010-01-02
|
* Fix brain fade in join-removal patch: a pushed-down clause in the outer join'sTom Lane2009-12-25
| | | | | restrict list is not just something to ignore, it's actually grounds to abandon the optimization entirely. Per bug #5255 from Matteo Beccati.
* Rename new subroutine, per discussion with Robert Haas.Tom Lane2009-09-19
|
* Marginal code cleanup in joinpath.c: factor out clause variable-membershipTom Lane2009-09-18
| | | | | tests into a small common subroutine, and eliminate an unnecessary difference in the order in which conditions are tested. Per a comment from Robert Haas.
* Implement "join removal" for cases where the inner side of a left joinTom Lane2009-09-17
| | | | | | | | | | | | | | is unique and is not referenced above the join. In this case the inner side doesn't affect the query result and can be thrown away entirely. Although perhaps nobody would ever write such a thing by hand, it's a reasonably common case in machine-generated SQL. The current implementation only recognizes the case where the inner side is a simple relation with a unique index matching the query conditions. This is enough for the use-cases that have been shown so far, but we might want to try to handle other cases later. Robert Haas, somewhat rewritten by Tom
* Rewrite the planner's handling of materialized plan types so that there isTom Lane2009-09-12
| | | | | | | | | | | | | | | | an explicit model of rescan costs being different from first-time costs. The costing of Material nodes in particular now has some visible relationship to the actual runtime behavior, where before it was essentially fantasy. This also fixes up a couple of places where different materialized plan types were treated differently for no very good reason (probably just oversights). A couple of the regression tests are affected, because the planner now chooses to put the other relation on the inside of a nestloop-with-materialize. So far as I can see both changes are sane, and the planner is now more consistently following the expectation that it should prefer to materialize the smaller of two relations. Per a recent discussion with Robert Haas.
* 8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef listBruce Momjian2009-06-11
| | | | provided by Andrew.
* Fix an old corner-case error in match_unsorted_outer(): don't considerTom Lane2009-02-05
| | | | | | | | | | | | the cheapest-total inner path as a new candidate while truncating the sort key list, if it already matched the full sort key list. This is too much of a corner case to be worth back-patching, since it's unusual for the cheapest total path to be sorted, and anyway no real harm is done (except in JOIN_SEMI/ANTI cases where cost_mergejoin is a bit broken at the moment). But it wasn't behaving as intended, so fix it. Noted while examining a test case from Kevin Grittner. This error doesn't explain his issue, but it does explain why "set enable_seqscan = off" seemed to reproduce it for me.
* Update copyright for 2009.Bruce Momjian2009-01-01
|
* Switch the planner over to treating qualifications of a JOIN_SEMI join asTom Lane2008-11-22
| | | | | | | | | | | | | | | | | | | though it is an inner rather than outer join type. This essentially means that we don't bother to separate "pushed down" qual conditions from actual join quals at a semijoin plan node; which is okay because the restrictions of SQL syntax make it impossible to have a pushed-down qual that references the inner side of a semijoin. This allows noticeably better optimization of IN/EXISTS cases than we had before, since the equivalence-class machinery can now use those quals. Also fix a couple of other mistakes that had essentially disabled the ability to unique-ify the inner relation and then join it to just a subset of the left-hand relations. An example case using the regression database is select * from tenk1 a, tenk1 b where (a.unique1,b.unique2) in (select unique1,unique2 from tenk1 c); which is planned reasonably well by 8.3 and earlier but had been forcing a cartesian join of a/b in CVS HEAD.