| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
| |
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries. Notable changes:
* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.) Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.
* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization. We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.
* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.
* Assorted corner-case bug fixes.
There's probably still some bugs left, but this is a lot closer to being
real than it was before.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We made use of the ROWS estimate for set-returning functions used in FROM,
but not for those used in SELECT targetlists; which is a bit of an
oversight considering there are common usages that require the latter
approach. Improve that. (I had initially thought it might be worth
folding this into cost_qual_eval, but after investigation concluded that
that wouldn't be very helpful, so just do it separately.) Per complaint
from David Johnston.
Back-patch to 9.2, but not further, for fear of destabilizing plan choices
in existing releases.
|
|
|
|
| |
commit-fest.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 57664ed25e5dea117158a2e663c29e60b3546e1c I tried to fix a bug
reported by Teodor Sigaev by making non-simple-Var output columns distinct
(by wrapping their expressions with dummy PlaceHolderVar nodes). This did
not work too well. Commit b28ffd0fcc583c1811e5295279e7d4366c3cae6c fixed
some ensuing problems with matching to child indexes, but per a recent
report from Claus Stadler, constraint exclusion of UNION ALL subqueries was
still broken, because constant-simplification didn't handle the injected
PlaceHolderVars well either. On reflection, the original patch was quite
misguided: there is no reason to expect that EquivalenceClass child members
will be distinct. So instead of trying to make them so, we should ensure
that we can cope with the situation when they're not.
Accordingly, this patch reverts the code changes in the above-mentioned
commits (though the regression test cases they added stay). Instead, I've
added assorted defenses to make sure that duplicate EC child members don't
cause any problems. Teodor's original problem ("MergeAppend child's
targetlist doesn't match MergeAppend") is addressed more directly by
revising prepare_sort_from_pathkeys to let the parent MergeAppend's sort
list guide creation of each child's sort list.
In passing, get rid of add_sort_column; as far as I can tell, testing for
duplicate sort keys at this stage is dead code. Certainly it doesn't
trigger often enough to be worth expending cycles on in ordinary queries.
And keeping the test would've greatly complicated the new logic in
prepare_sort_from_pathkeys, because comparing pathkey list entries against
a previous output array requires that we not skip any entries in the list.
Back-patch to 9.1, like the previous patches. The only known issue in
this area that wasn't caused by the ill-advised previous patches was the
MergeAppend planning failure, which of course is not relevant before 9.1.
It's possible that we need some of the new defenses against duplicate child
EC entries in older branches, but until there's some clear evidence of that
I'm going to refrain from back-patching further.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The previous coding failed to account properly for the costs of evaluating
the input expressions of aggregates and window functions, as seen in a
recent gripe from Claudio Freire. (I said at the time that it wasn't
counting these costs at all; but on closer inspection, it was effectively
charging these costs once per output tuple. That is completely wrong for
aggregates, and not exactly right for window functions either.)
There was also a hard-wired assumption that aggregates and window functions
had procost 1.0, which is now fixed to respect the actual cataloged costs.
The costing of WindowAgg is still pretty bogus, since it doesn't try to
estimate the effects of spilling data to disk, but that seems like a
separate issue.
|
| |
|
|
|
|
|
|
|
|
|
| |
In nearly all cases, the caller already knows the correct collation, and
in a number of places, the value the caller has handy is more correct than
the default for the type would be. (In particular, this patch makes it
significantly less likely that eval_const_expressions will result in
changing the exposed collation of an expression.) So an internal lookup
is both expensive and wrong.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of playing cute games with pathkeys, just build a direct
representation of the intended sub-select, and feed it through
query_planner to get a Path for the index access. This is a bit slower
than 9.1's previous method, since we'll duplicate most of the overhead of
query_planner; but since the whole optimization only applies to rather
simple single-table queries, that probably won't be much of a problem in
practice. The advantage is that we get to do the right thing when there's
a partial index that needs the implicit IS NOT NULL clause to be usable.
Also, although this makes planagg.c be a bit more closely tied to the
ordering of operations in grouping_planner, we can get rid of some coupling
to lower-level parts of the planner. Per complaint from Marti Raudsepp.
|
|
|
|
|
|
|
|
| |
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Per my recent proposal, get rid of all the direct inspection of indexes
and manual generation of paths in planagg.c. Instead, set up
EquivalenceClasses for the aggregate argument expressions, and let the
regular path generation logic deal with creating paths that can satisfy
those sort orders. This makes planagg.c a bit more visible to the rest
of the planner than it was originally, but the approach is basically a lot
cleaner than before. A major advantage of doing it this way is that we get
MIN/MAX optimization on inheritance trees (using MergeAppend of indexscans)
practically for free, whereas in the old way we'd have had to add a whole
lot more duplicative logic.
One small disadvantage of this approach is that MIN/MAX aggregates can no
longer exploit partial indexes having an "x IS NOT NULL" predicate, unless
that restriction or something that implies it is specified in the query.
The previous implementation was able to use the added "x IS NOT NULL"
condition as an extra predicate proof condition, but in this version we
rely entirely on indexes that are considered usable by the main planning
process. That seems a fair tradeoff for the simplicity and functionality
gained.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The core of this patch is hash_array() and associated typcache
infrastructure, which works just about exactly like the existing support
for array comparison.
In addition I did some work to ensure that the planner won't think that an
array type is hashable unless its element type is hashable, and similarly
for sorting. This includes adding a datatype parameter to op_hashjoinable
and op_mergejoinable, and adding an explicit "hashable" flag to
SortGroupClause. The lack of a cross-check on the element type was a
pre-existing bug in mergejoin support --- but it didn't matter so much
before, because if you couldn't sort the element type there wasn't any good
alternative to failing anyhow. Now that we have the alternative of hashing
the array type, there are cases where we can avoid a failure by being picky
at the planner stage, so it's time to be picky.
The issue of exactly how to combine the per-element hash values to produce
an array hash is still open for discussion, but the rest of this is pretty
solid, so I'll commit it as-is.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
MIN or MAX, we must take care to insert the added qual in a legal place among
the existing indexquals, if any. The btree index AM requires the quals to
appear in index-column order. We didn't have to worry about this before
because "target IS NOT NULL" was just treated as a plain scan filter condition;
but as of 9.0 it can be an index qual and then it has to follow the rule.
Per report from Ian Barwick.
|
|
|
|
|
|
|
|
|
|
|
|
| |
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
|
| |
|
|
|
|
|
|
| |
8.2beta but never carried out. This avoids repetitive tests of whether the
argument is of scalar or composite type. Also, be a bit more paranoid about
composite arguments in some places where we previously weren't checking.
|
|
|
|
|
|
|
|
|
|
|
| |
to be just a minor extension of the previous patch that made "x IS NULL"
indexable, because we can treat the IS NOT NULL condition as if it were
"x < NULL" or "x > NULL" (depending on the index's NULLS FIRST/LAST option),
just like IS NULL is treated like "x = NULL". Aside from any possible
usefulness in its own right, this is an important improvement for
index-optimized MAX/MIN aggregates: it is now reliably possible to get
a column's min or max value cheaply, even when there are a lot of nulls
cluttering the interesting end of the index.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
non-kluge method for controlling the order in which values are fed to an
aggregate function. At the same time eliminate the old implementation
restriction that DISTINCT was only supported for single-argument aggregates.
Possibly release-notable behavioral change: formerly, agg(DISTINCT x)
dropped null values of x unconditionally. Now, it does so only if the
agg transition function is strict; otherwise nulls are treated as DISTINCT
normally would, ie, you get one copy.
Andrew Gierth, reviewed by Hitoshi Harada
|
|
|
|
| |
provided by Andrew.
|
| |
|
|
|
|
| |
Hitoshi Harada, with some kibitzing from Heikki and Tom.
|
|
|
|
|
|
| |
into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside
the backend. There's probably more that should be done along this line,
but this is a start anyway.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as per my recent proposal:
1. Fold SortClause and GroupClause into a single node type SortGroupClause.
We were already relying on them to be struct-equivalent, so using two node
tags wasn't accomplishing much except to get in the way of comparing items
with equal().
2. Add an "eqop" field to SortGroupClause to carry the associated equality
operator. This is cheap for the parser to get at the same time it's looking
up the sort operator, and storing it eliminates the need for repeated
not-so-cheap lookups during planning. In future this will also let us
represent GROUP/DISTINCT operations on datatypes that have hash opclasses
but no btree opclasses (ie, they have equality but no natural sort order).
The previous representation simply didn't work for that, since its only
indicator of comparison semantics was a sort operator.
3. Add a hasDistinctOn boolean to struct Query to explicitly record whether
the distinctClause came from DISTINCT or DISTINCT ON. This allows removing
some complicated and not 100% bulletproof code that attempted to figure
that out from the distinctClause alone.
This patch doesn't in itself create any new capability, but it's necessary
infrastructure for future attempts to use hash-based grouping for DISTINCT
and UNION/INTERSECT/EXCEPT.
|
|
|
|
|
|
|
|
|
|
|
| |
the current query level that aren't in fact output parameters of the current
initPlans. (This means, for example, output parameters of regular subplans.)
To make this work correctly for output parameters coming from sibling
initplans requires rejiggering the API of SS_finalize_plan just a bit:
we need the siblings to be visible to it, rather than hidden as
SS_make_initplan_from_plan had been doing. This is really part of my response
to bug #4290, but I concluded this part probably shouldn't be back-patched,
since all that it's doing is to make a debugging cross-check tighter.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
bug #4290. The fundamental bug is that masking extParam by outer_params,
as finalize_plan had been doing, caused us to lose the information that
an initPlan depended on the output of a sibling initPlan. On reflection
the best thing to do seemed to be not to try to adjust outer_params for
this case but get rid of it entirely. The only thing it was really doing
for us was to filter out param IDs associated with SubPlan nodes, and that
can be done (with greater accuracy) while processing individual SubPlan
nodes in finalize_primnode. This approach was vindicated by the discovery
that the masking method was hiding a second bug: SS_finalize_plan failed to
remove extParam bits for initPlan output params that were referenced in the
main plan tree (it only got rid of those referenced by other initPlans).
It's not clear that this caused any real problems, given the limited use
of extParam by the executor, but it's certainly not what was intended.
I originally thought that there was also a problem with needing to include
indirect dependencies on external params in initPlans' param sets, but it
turns out that the executor handles this correctly so long as the depended-on
initPlan is earlier in the initPlans list than the one using its output.
That seems a bit of a fragile assumption, but it is true at the moment,
so I just documented it in some code comments rather than making what would
be rather invasive changes to remove the assumption.
Back-patch to 8.1. Previous versions don't have the case of initPlans
referring to other initPlans' outputs, so while the existing logic is still
questionable for them, there are not any known bugs to be fixed. So I'll
refrain from changing them for now.
|
|
|
|
|
|
|
| |
corresponding struct definitions. This allows other headers to avoid including
certain highly-loaded headers such as rel.h and relscan.h, instead using just
relcache.h, heapam.h or genam.h, which are more lightweight and thus cause less
unnecessary dependencies.
|
|
|
|
|
|
|
|
|
|
| |
where Datum is 8 bytes wide. Since this will break old-style C functions
(those still using version 0 calling convention) that have arguments or
results of these types, provide a configure option to disable it and retain
the old pass-by-reference behavior. Likewise, provide a configure option
to disable the recently-committed float4 pass-by-value change.
Zoltan Boszormenyi, plus configurability stuff by me.
|
|
|
|
| |
Add some regression tests for plausible failures in this area.
|
| |
|
|
|
|
|
|
| |
indexable-clauses list for a btree index. Formerly it just Asserted that
all such clauses were opclauses, but that's no longer true in 8.3.
Per bug #3796 from Matthias Schoeneich.
|
| |
|
|
|
|
|
|
|
|
|
| |
used to perform MIN(foo) or MAX(foo), since we want to discard null rows in
the indexscan anyway. (This would probably fall out for free if we were
injecting the IS NOT NULL clause somewhere earlier, but given the current
anatomy of the MIN/MAX optimization code we have to do it explicitly.
Fortunately, very little added code is needed.) Per a discussion with
Henk de Wit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
types of unspecified parameters when submitted via extended query protocol.
This worked in 8.2 but I had broken it during plancache changes. DECLARE
CURSOR is now treated almost exactly like a plain SELECT through parse
analysis, rewrite, and planning; only just before sending to the executor
do we divert it away to ProcessUtility. This requires a special-case check
in a number of places, but practically all of them were already special-casing
SELECT INTO, so it's not too ugly. (Maybe it would be a good idea to merge
the two by treating IntoClause as a form of utility statement? Not going to
worry about that now, though.) That approach doesn't work for EXPLAIN,
however, so for that I punted and used a klugy solution of running parse
analysis an extra time if under extended query protocol.
|
|
|
|
|
|
|
|
| |
are mostly excluded by constraints: do the CE test a bit earlier to save
some adjust_appendrel_attrs() work on excluded children, and arrange to
use array indexing rather than rt_fetch() to fetch RTEs in the main body
of the planner. The latter is something I'd wanted to do for awhile anyway,
but seeing list_nth_cell() as 35% of the runtime gets one's attention.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
available information about the typmod of an expression; namely, Const,
ArrayRef, ArrayExpr, and EXPR and ARRAY SubLinks. In the ArrayExpr and
SubLink cases it wasn't really the data structure's fault, but exprTypmod()
being lazy. This seems like a good idea in view of the expected increase in
typmod usage from Teodor's work to allow user-defined types to have typmods.
In particular this responds to the concerns we had about eliminating the
special-purpose hack that exprTypmod() used to have for BPCHAR Consts.
We can now tell whether or not such a Const has been cast to a specific
length, and report or display properly if so.
initdb forced due to changes in stored rules.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
useless substructure for its RangeTblEntry nodes. (I chose to keep using the
same struct node type and just zero out the link fields for unneeded info,
rather than making a separate ExecRangeTblEntry type --- it seemed too
fragile to have two different rangetable representations.)
Along the way, put subplans into a list in the toplevel PlannedStmt node,
and have SubPlan nodes refer to them by list index instead of direct pointers.
Vadim wanted to do that years ago, but I never understood what he was on about
until now. It makes things a *whole* lot more robust, because we can stop
worrying about duplicate processing of subplans during expression tree
traversals. That's been a constant source of bugs, and it's finally gone.
There are some consequent simplifications yet to be made, like not using
a separate EState for subplans in the executor, but I'll tackle that later.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
storing mostly-redundant Query trees in prepared statements, portals, etc.
To replace Query, a new node type called PlannedStmt is inserted by the
planner at the top of a completed plan tree; this carries just the fields of
Query that are still needed at runtime. The statement lists kept in portals
etc. now consist of intermixed PlannedStmt and bare utility-statement nodes
--- no Query. This incidentally allows us to remove some fields from Query
and Plan nodes that shouldn't have been there in the first place.
Still to do: simplify the execution-time range table; at the moment the
range table passed to the executor still contains Query trees for subqueries.
initdb forced due to change of stored rules.
|
|
|
|
|
|
|
|
|
| |
this code was last gone over, there wasn't really any alternative to
globals because we didn't have the PlannerInfo struct being passed all
through the planner code. Now that we do, we can restructure things
to avoid non-reentrancy. I'm fooling with this because otherwise I'd
have had to add another global variable for the planned compact
range table list.
|
|
|
|
|
|
|
| |
had stopped working for tables buried inside views or sub-selects. This is
because I had gotten rid of the simplify_jointree() preprocessing step, and
optimize_minmax_aggregates() wasn't smart enough to deal with a non-canonical
FromExpr. Per gripe from Bill Howe.
|
|
|
|
|
|
|
|
|
|
|
|
| |
per-column options for btree indexes. The planner's support for this is still
pretty rudimentary; it does not yet know how to plan mergejoins with
nondefault ordering options. The documentation is pretty rudimentary, too.
I'll work on improving that stuff later.
Note incompatible change from prior behavior: ORDER BY ... USING will now be
rejected if the operator is not a less-than or greater-than member of some
btree opclass. This prevents less-than-sane behavior if an operator that
doesn't actually define a proper sort ordering is selected.
|
|
|
|
| |
back-stamped for this.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cases. Operator classes now exist within "operator families". While most
families are equivalent to a single class, related classes can be grouped
into one family to represent the fact that they are semantically compatible.
Cross-type operators are now naturally adjunct parts of a family, without
having to wedge them into a particular opclass as we had done originally.
This commit restructures the catalogs and cleans up enough of the fallout so
that everything still works at least as well as before, but most of the work
needed to actually improve the planner's behavior will come later. Also,
there are not yet CREATE/DROP/ALTER OPERATOR FAMILY commands; the only way
to create a new family right now is to allow CREATE OPERATOR CLASS to make
one by default. I owe some more documentation work, too. But that can all
be done in smaller pieces once this infrastructure is in place.
|
| |
|
|
|
|
|
|
|
|
| |
plpgsql support to come later. Along the way, convert execMain's
SELECT INTO support into a DestReceiver, in order to eliminate some ugly
special cases.
Jonah Harris and Tom Lane
|
|
|
|
|
|
|
|
| |
the opportunity to treat COUNT(*) as a zero-argument aggregate instead
of the old hack that equated it to COUNT(1); this is materially cleaner
(no more weird ANYOID cases) and ought to be at least a tiny bit faster.
Original patch by Sergey Koposov; review, documentation, simple regression
tests, pg_dump and psql support by moi.
|
|
|
|
|
|
| |
eliminate unnecessary code, force initdb because stored rules change
(limit nodes are now supposed to be int8 not int4 expressions).
Update comments and error messages, which still all said 'integer'.
|