| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PG type coercions are generally strict, ie a NULL input must produce
a NULL output (or, in domain cases, possibly an error). The planner's
understanding of that was a bit incomplete though, so improve it:
* Teach contain_nonstrict_functions() that CoerceViaIO can always be
considered strict. Previously it believed that only if the underlying
I/O functions were marked strict, which is often but not always true.
* Teach clause_is_strict_for() that CoerceViaIO, ArrayCoerceExpr,
ConvertRowtypeExpr, CoerceToDomain can all be considered strict.
Previously it knew nothing about any of them.
The main user-visible impact of this is that IS NOT NULL predicates
can be proven to hold from expressions involving casts in more cases
than before, allowing partial indexes with such predicates to be used
without extra pushups. This reduces the surprise factor for users,
who may well be used to ordinary (function-call-based) casts being
known to be strict.
Per a gripe from Samuel Williams. This doesn't rise to the level of
a bug, IMO, so no back-patch.
Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The recursion in contain_nonstrict_functions_walker() was done wrong,
causing the strictness check to be bypassed for a parse node that
is the immediate input of an ArrayCoerceExpr node. This could allow,
for example, incorrect decisions about whether a strict SQL function
can be inlined.
I didn't add a regression test, because (a) the bug is so narrow
and (b) I couldn't think of a test case that wasn't dependent on a
large number of other behaviors, to the point where it would likely
soon rot to the point of not testing what it was intended to.
I broke this in commit c12d570fa, so back-patch to v11.
Discussion: https://postgr.es/m/27571.1550617881@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For a long time, indxpath.c has had the ability to extract derived (lossy)
index conditions from certain operators such as LIKE. For just as long,
it's been obvious that we really ought to make that capability available
to extensions. This commit finally accomplishes that, by adding another
API for planner support functions that lets them create derived index
conditions for their functions. As proof of concept, the hardwired
"special index operator" code formerly present in indxpath.c is pushed
out to planner support functions attached to LIKE and other relevant
operators.
A weak spot in this design is that an extension needs to know OIDs for
the operators, datatypes, and opfamilies involved in the transformation
it wants to make. The core-code prototypes use hard-wired OID references
but extensions don't have that option for their own operators etc. It's
usually possible to look up the required info, but that may be slow and
inconvenient. However, improving that situation is a separate task.
I want to do some additional refactorization around selfuncs.c, but
that also seems like a separate task.
Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add support function requests for estimating the selectivity, cost,
and number of result rows (if a SRF) of the target function.
The lack of a way to estimate selectivity of a boolean-returning
function in WHERE has been a recognized deficiency of the planner
since Berkeley days. This commit finally fixes it.
In addition, non-constant estimates of cost and number of output
rows are now possible. We still fall back to looking at procost
and prorows if the support function doesn't service the request,
of course.
To make concrete use of the possibility of estimating output rowcount
for SRFs, this commit adds support functions for array_unnest(anyarray)
and the integer variants of generate_series; the lack of plausible
rowcount estimates for those, even when it's obvious to a human,
has been a repeated subject of complaints. Obviously, much more
could now be done in this line, but I'm mostly just trying to get
the infrastructure in place.
Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Rename/repurpose pg_proc.protransform as "prosupport". The idea is
still that it names an internal function that provides knowledge to
the planner about the behavior of the function it's attached to;
but redesign the API specification so that it's not limited to doing
just one thing, but can support an extensible set of requests.
The original purpose of simplifying a function call is handled by
the first request type to be invented, SupportRequestSimplify.
Adjust all the existing transform functions to handle this API,
and rename them fron "xxx_transform" to "xxx_support" to reflect
the potential generalization of what they do. (Since we never
previously provided any way for extensions to add transform functions,
this change doesn't create an API break for them.)
Also add DDL and pg_dump support for attaching a support function to a
user-defined function. Unfortunately, DDL access has to be restricted
to superusers, at least for now; but seeing that support functions
will pretty much have to be written in C, that limitation is just
theoretical. (This support is untested in this patch, but a follow-on
patch will add cases that exercise it.)
Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In place of three separate but interrelated lists (indexclauses,
indexquals, and indexqualcols), an IndexPath now has one list
"indexclauses" of IndexClause nodes. This holds basically the same
information as before, but in a more useful format: in particular, there
is now a clear connection between an indexclause (an original restriction
clause from WHERE or JOIN/ON) and the indexquals (directly usable index
conditions) derived from it.
We also change the ground rules a bit by mandating that clause commutation,
if needed, be done up-front so that what is stored in the indexquals list
is always directly usable as an index condition. This gets rid of repeated
re-determination of which side of the clause is the indexkey during costing
and plan generation, as well as repeated lookups of the commutator
operator. To minimize the added up-front cost, the typical case of
commuting a plain OpExpr is handled by a new special-purpose function
commute_restrictinfo(). For RowCompareExprs, generating the new clause
properly commuted to begin with is not really any more complex than before,
it's just different --- and we can save doing that work twice, as the
pretty-klugy original implementation did.
Tracking the connection between original and derived clauses lets us
also track explicitly whether the derived clauses are an exact or lossy
translation of the original. This provides a cheap solution to getting
rid of unnecessary rechecks of boolean index clauses, which previously
seemed like it'd be more expensive than it was worth.
Another pleasant (IMO) side-effect is that EXPLAIN now always shows
index clauses with the indexkey on the left; this seems less confusing.
This commit leaves expand_indexqual_conditions() and some related
functions in a slightly messy state. I didn't bother to change them
any more than minimally necessary to work with the new data structure,
because all that code is going to be refactored out of existence in
a follow-on patch.
Discussion: https://postgr.es/m/22182.1549124950@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
| |
Over at patch https://commitfest.postgresql.org/21/1062/ Dmitry wants to
introduce a more generic subscription mechanism, which allows
subscripting not only arrays but also other object types such as JSONB.
That functionality is introduced in a largish invasive patch, out of
which this internal renaming patch was extracted.
Author: Dmitry Dolgov
Reviewed-by: Tom Lane, Arthur Zakirov
Discussion: https://postgr.es/m/CA+q6zcUK4EqPAu7XRRO5CCjMwhz5zvg+rfWuLzVoxp_5sKS6=w@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Create a new header optimizer/optimizer.h, which exposes just the
planner functions that can be used "at arm's length", without need
to access Paths or the other planner-internal data structures defined
in nodes/relation.h. This is intended to provide the whole planner
API seen by most of the rest of the system; although FDWs still need
to use additional stuff, and more thought is also needed about just
what selfuncs.c should rely on.
The main point of doing this now is to limit the amount of new
#include baggage that will be needed by "planner support functions",
which I expect to introduce later, and which will be in relevant
datatype modules rather than anywhere near the planner.
This commit just moves relevant declarations into optimizer.h from
other header files (a couple of which go away because everything
got moved), and adjusts #include lists to match. There's further
cleanup that could be done if we want to decide that some stuff
being exposed by optimizer.h doesn't belong in the planner at all,
but I'll leave that for another day.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move a few very simple node-creation and node-type-testing functions
from the planner's clauses.c to nodes/makefuncs and nodes/nodeFuncs.
There's nothing planner-specific about them, as evidenced by the
number of other places that were using them.
While at it, rename and_clause() etc to is_andclause() etc, to clarify
that they are node-type-testing functions not node-creation functions.
And use "static inline" implementations for the shortest ones.
Also, modify flatten_join_alias_vars() and some subsidiary functions
to take a Query not a PlannerInfo to define the join structure that
Vars should be translated according to. They were only using the
"parse" field of the PlannerInfo anyway, so this just requires removing
one level of indirection. The advantage is that now parse_agg.c can
use flatten_join_alias_vars() without the horrid kluge of creating an
incomplete PlannerInfo, which will allow that file to be decoupled from
relation.h in a subsequent patch.
Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The fact that "SELECT expression" has no base relations has long been a
thorn in the side of the planner. It makes it hard to flatten a sub-query
that looks like that, or is a trivial VALUES() item, because the planner
generally uses relid sets to identify sub-relations, and such a sub-query
would have an empty relid set if we flattened it. prepjointree.c contains
some baroque logic that works around this in certain special cases --- but
there is a much better answer. We can replace an empty FROM clause with a
dummy RTE that acts like a table of one row and no columns, and then there
are no such corner cases to worry about. Instead we need some logic to
get rid of useless dummy RTEs, but that's simpler and covers more cases
than what was there before.
For really trivial cases, where the query is just "SELECT expression" and
nothing else, there's a hazard that adding the extra RTE makes for a
noticeable slowdown; even though it's not much processing, there's not
that much for the planner to do overall. However testing says that the
penalty is very small, close to the noise level. In more complex queries,
this is able to find optimizations that we could not find before.
The new RTE type is called RTE_RESULT, since the "scan" plan type it
gives rise to is a Result node (the same plan we produced for a "SELECT
expression" query before). To avoid confusion, rename the old ResultPath
path type to GroupResultPath, reflecting that it's only used in degenerate
grouping cases where we know the query produces just one grouped row.
(It wouldn't work to unify the two cases, because there are different
rules about where the associated quals live during query_planner.)
Note: although this touches readfuncs.c, I don't think a catversion
bump is required, because the added case can't occur in stored rules,
only plans.
Patch by me, reviewed by David Rowley and Mark Dilger
Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, only literals were allowed. This change allows general
expressions, including functions calls, which are evaluated at the
time the DDL command is executed.
Besides offering some more functionality, it simplifies the parser
structures and removes some inconsistencies in how the literals were
handled.
Author: Kyotaro Horiguchi, Tom Lane, Amit Langote
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
Discussion: https://www.postgresql.org/message-id/flat/9f88b5e0-6da2-5227-20d0-0d7012beaa1c@lab.ntt.co.jp/
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MinMaxExpr invokes the btree comparison function for its input datatype,
so it's only leakproof if that function is. Many such functions are
indeed leakproof, but others are not, and we should not just assume that
they are. Hence, adjust contain_leaked_vars to verify the leakproofness
of the referenced function explicitly.
I didn't add a regression test because it would need to depend on
some particular comparison function being leaky, and that's a moving
target, per discussion.
This has been wrong all along, so back-patch to supported branches.
Discussion: https://postgr.es/m/31042.1546194242@sss.pgh.pa.us
|
|
|
|
| |
Backpatch-through: certain files through 9.4
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Doing this requires an assumption that the invoked btree comparison
function is immutable. We could check that explicitly, but in other
places such as contain_mutable_functions we just assume that it's true,
so we may as well do likewise here. (If the comparison function's
behavior isn't immutable, the sort order in indexes built with it would
be unstable, so it seems certainly wrong for it not to be so.)
Vik Fearing
Discussion: https://postgr.es/m/c6e8504c-4c43-35fa-6c8f-3c0b80a912cc@2ndquadrant.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a domain has no constraints, then CoerceToDomain doesn't really do
anything and can be simplified to a RelabelType. This not only
eliminates cycles at execution, but allows the planner to optimize better
(for instance, match the coerced expression to an index on the underlying
column). However, we do have to support invalidating the plan later if
a constraint gets added to the domain. That's comparable to the case of
a change to a SQL function that had been inlined into a plan, so all the
necessary logic already exists for plans depending on functions. We
need only duplicate or share that logic for domains.
ALTER DOMAIN ADD/DROP CONSTRAINT need to be taught to send out sinval
messages for the domain's pg_type entry, since those operations don't
update that row. (ALTER DOMAIN SET/DROP NOT NULL do update that row,
so no code change is needed for them.)
Testing this revealed what's really a pre-existing bug in plpgsql:
it caches the SQL-expression-tree expansion of type coercions and
had no provision for invalidating entries in that cache. Up to now
that was only a problem if such an expression had inlined a SQL
function that got changed, which is unlikely though not impossible.
But failing to track changes of domain constraints breaks an existing
regression test case and would likely cause practical problems too.
We could fix that locally in plpgsql, but what seems like a better
idea is to build some generic infrastructure in plancache.c to store
standalone expressions and track invalidation events for them.
(It's tempting to wonder whether plpgsql's "simple expression" stuff
could use this code with lower overhead than its current use of the
heavyweight plancache APIs. But I've left that idea for later.)
Other stuff fixed in passing:
* Allow estimate_expression_value() to drop CoerceToDomain
unconditionally, effectively assuming that the coercion will succeed.
This will improve planner selectivity estimates for cases involving
estimatable expressions that are coerced to domains. We could have
done this independently of everything else here, but there wasn't
previously any need for eval_const_expressions_mutator to know about
CoerceToDomain at all.
* Use a dlist for plancache.c's list of cached plans, rather than a
manually threaded singly-linked list. That eliminates a potential
performance problem in DropCachedPlan.
* Fix a couple of inconsistencies in typecmds.c about whether
operations on domains drop RowExclusiveLock on pg_type. Our common
practice is that DDL operations do drop catalog locks, so standardize
on that choice.
Discussion: https://postgr.es/m/19958.1544122124@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A ConvertRowtypeExpr is used to translate a whole-row reference of a
child to that of a parent. The planner produces nested
ConvertRowtypeExpr while translating whole-row reference of a leaf
partition in a multi-level partition hierarchy. Executor then
translates the whole-row reference from the leaf partition into all
the intermediate parent's whole-row references before arriving at the
final whole-row reference. It could instead translate the whole-row
reference from the leaf partition directly to the top-most parent's
whole-row reference skipping any intermediate translations.
Ashutosh Bapat, with tests by Kyotaro Horiguchi and some
editorialization by me. Reviewed by Andres Freund, Pavel Stehule,
Kyotaro Horiguchi, Dmitry Dolgov, Tom Lane.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
An array-type coercion appearing within a CASE that has a constant
(after const-folding) test expression was mangled by the planner, causing
all the elements of the resulting array to be equal to the coerced value
of the CASE's test expression. This is my oversight in commit c12d570fa:
that changed ArrayCoerceExpr to use a subexpression involving a
CaseTestExpr, and I didn't notice that eval_const_expressions needed an
adjustment to keep from folding such a CaseTestExpr to a constant when
it's inside a suitable CASE.
This is another in what's getting to be a depressingly long line of bugs
associated with misidentification of the referent of a CaseTestExpr.
We're overdue to redesign that mechanism; but any such fix is unlikely
to be back-patchable into v11. As a stopgap, fix eval_const_expressions
to do what it must here. Also add a bunch of comments pointing out the
restrictions and assumptions that are needed to make this work at all.
Also fix a related oversight: contain_context_dependent_node() was not
aware of the relationship of ArrayCoerceExpr to CaseTestExpr. That was
somewhat fail-soft, in that the outcome of a wrong answer would be to
prevent optimizations that could have been made, but let's fix it while
we're at it.
Per bug #15471 from Matt Williams. Back-patch to v11 where the faulty
logic came in.
Discussion: https://postgr.es/m/15471-1117f49271989bad@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
workers.
Allowing window function calculation in workers leads to inconsistent
results because if the input row ordering is not fully deterministic, the
output of window functions might vary across workers. The fix is to treat
them as parallel-restricted.
In the passing, improve the coding pattern in max_parallel_hazard_walker
so that it has a chain of mutually-exclusive if ... else if ... else if
... else if ... IsA tests.
Reported-by: Marko Tiikkaja
Bug: 15324
Author: Amit Kapila
Reviewed-by: Tom Lane
Backpatch-through: 9.6
Discussion: https://postgr.es/m/CAL9smLAnfPJCDUUG4ckX2iznj53V7VSMsYefzZieN93YxTNOcw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit 6719b238e it's been possible for the values of plpgsql
record field variables to be exposed to the planner as Params.
(Before that, plpgsql never supplied values for such variables during
planning, so that the problematic code wasn't reached.) Other places
that touch potentially-type-mutable Params either cope gracefully or
do runtime-test-and-ereport checks that the type is what they expect.
But eval_const_expressions() just had an Assert, meaning that it either
failed the assertion or risked crashes due to using an incompatible
value.
In this case, rather than throwing an ereport immediately, we can just
not perform a const-substitution in case of a mismatch. This seems
important for the same reason that the Param fetch was speculative:
we might not actually reach this part of the expression at runtime.
Test case will follow in a separate commit.
Patch by me, pursuant to bug report from Andrew Gierth.
Back-patch to v11 where the previous commit appeared.
Discussion: https://postgr.es/m/87wotkfju1.fsf@news-spur.riddles.org.uk
|
|
|
|
|
|
|
|
|
|
| |
We need to call expand_function_arguments() to expand named and default
arguments.
In PL/pgSQL, we also need to deal with named and default INOUT arguments
when receiving the output values into variables.
Author: Pavel Stehule <pavel.stehule@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Currently adding a column to a table with a non-NULL default results in
a rewrite of the table. For large tables this can be both expensive and
disruptive. This patch removes the need for the rewrite as long as the
default value is not volatile. The default expression is evaluated at
the time of the ALTER TABLE and the result stored in a new column
(attmissingval) in pg_attribute, and a new column (atthasmissing) is set
to true. Any existing row when fetched will be supplied with the
attmissingval. New rows will have the supplied value or the default and
so will never need the attmissingval.
Any time the table is rewritten all the atthasmissing and attmissingval
settings for the attributes are cleared, as they are no longer needed.
The most visible code change from this is in heap_attisnull, which
acquires a third TupleDesc argument, allowing it to detect a missing
value if there is one. In many cases where it is known that there will
not be any (e.g. catalog relations) NULL can be passed for this
argument.
Andrew Dunstan, heavily modified from an original patch from Serge
Rielau.
Reviewed by Tom Lane, Andres Freund, Tomas Vondra and David Rowley.
Discussion: https://postgr.es/m/31e2e921-7002-4c27-59f5-51f08404c858@2ndQuadrant.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Part of the intent in commit fd1a421fe was to allow SQL functions that are
declared to return VOID to contain anything, including an unrelated final
SELECT, the same as SQL-language procedures can. However, the planner's
inlining logic didn't get that memo. Fix it, and add some regression tests
covering this area, since evidently we had none.
In passing, clean up some typos in comments in create_function_3.sql,
and get rid of its none-too-safe assumption that DROP CASCADE notice
output is immutably ordered.
Per report from Prabhat Sahu.
Discussion: https://postgr.es/m/CANEvxPqxAj6nNHVcaXxpTeEFPmh24Whu+23emgjiuKrhJSct0A@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
| |
The new column distinguishes normal functions, procedures, aggregates,
and window functions. This replaces the existing columns proisagg and
proiswindow, and replaces the convention that procedures are indicated
by prorettype == 0. Also change prorettype to be VOIDOID for procedures.
Reviewed-by: Tom Lane <tgl@sss.pgh.pa.us>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
|
|
|
|
| |
"c.f." should be "cf.".
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add some infrastructure (mostly macros) to make it easier to write
typical cases for constant-expression simplification. Add simplification
processing for ArrayRef, RowExpr, and ScalarArrayOpExpr node types,
which formerly went unsimplified even if all their inputs were constants.
Also teach it to simplify FieldSelect from a composite constant.
Make use of the new infrastructure to reduce the amount of code needed
for the existing ArrayExpr and ArrayCoerceExpr cases.
One existing test case changes output as a result of the fact that
RowExpr can now be folded to a constant. All the new code is exercised
by existing test cases according to gcov, so I feel no need to add
additional tests.
Tom Lane, reviewed by Dmitry Dolgov
Discussion: https://postgr.es/m/3be3b82c-e29c-b674-2163-bf47d98817b1@iki.fi
|
|
|
|
| |
Backpatch-through: certain files through 9.3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch does three interrelated things:
* Create a new expression execution step type EEOP_PARAM_CALLBACK
and add the infrastructure needed for add-on modules to generate that.
As discussed, the best control mechanism for that seems to be to add
another hook function to ParamListInfo, which will be called by
ExecInitExpr if it's supplied and a PARAM_EXTERN Param is found.
For stand-alone expressions, we add a new entry point to allow the
ParamListInfo to be specified directly, since it can't be retrieved
from the parent plan node's EState.
* Redesign the API for the ParamListInfo paramFetch hook so that the
ParamExternData array can be entirely virtual. This also lets us get rid
of ParamListInfo.paramMask, instead leaving it to the paramFetch hook to
decide which param IDs should be accessible or not. plpgsql_param_fetch
was already doing the identical masking check, so having callers do it too
seemed redundant. While I was at it, I added a "speculative" flag to
paramFetch that the planner can specify as TRUE to avoid unwanted failures.
This solves an ancient problem for plpgsql that it couldn't provide values
of non-DTYPE_VAR variables to the planner for fear of triggering premature
"record not assigned yet" or "field not found" errors during planning.
* Rework plpgsql to get rid of the need for "unshared" parameter lists,
by dint of turning the single ParamListInfo per estate into a nearly
read-only data structure that doesn't instantiate any per-variable data.
Instead, the paramFetch hook controls access to per-variable data and can
make the right decisions on the fly, replacing the cases that we used to
need multiple ParamListInfos for. This might perhaps have been a
performance loss on its own, but by using a paramCompile hook we can
bypass plpgsql_param_fetch entirely during normal query execution.
(It's now only called when, eg, we copy the ParamListInfo into a cursor
portal. copyParamList() or SerializeParamList() effectively instantiate
the virtual parameter array as a simple physical array without a
paramFetch hook, which is what we want in those cases.) This allows
reverting most of commit 6c82d8d1f, though I kept the cosmetic
code-consolidation aspects of that (eg the assign_simple_var function).
Performance testing shows this to be at worst a break-even change,
and it can provide wins ranging up to 20% in test cases involving
accesses to fields of "record" variables. The fact that values of
such variables can now be exposed to the planner might produce wins
in some situations, too, but I've not pursued that angle.
In passing, remove the "parent" pointer from the arguments to
ExecInitExprRec and related functions, instead storing that pointer in a
transient field in ExprState. The ParamListInfo pointer for a stand-alone
expression is handled the same way; we'd otherwise have had to add
yet another recursively-passed-down argument in expression compilation.
Discussion: https://postgr.es/m/32589.1513706441@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new object type "procedure" that is similar to a function
but does not have a return type and is invoked by the new CALL statement
instead of SELECT or similar. This implementation is aligned with the
SQL standard and compatible with or similar to other SQL implementations.
This commit adds new commands CALL, CREATE/ALTER/DROP PROCEDURE, as well
as ALTER/DROP ROUTINE that can refer to either a function or a
procedure (or an aggregate function, as an extension to SQL). There is
also support for procedures in various utility commands such as COMMENT
and GRANT, as well as support in pg_dump and psql. Support for defining
procedures is available in all the languages supplied by the core
distribution.
While this commit is mainly syntax sugar around existing functionality,
future features will rely on having procedures as a separate object
type.
Reviewed-by: Andrew Dunstan <andrew.dunstan@2ndquadrant.com>
|
|
|
|
| |
Discussion: http://postgr.es/m/CA+TgmoaA9=1RWKtBWpDaj+sF3Stgc8sHgf5z=KGtbjwPLQVDMA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a PARAM_EXEC parameter is used below a Gather (Merge) but the InitPlan
that computes it is attached to or above the Gather (Merge), force the
value to be computed before starting parallelism and pass it down to all
workers. This allows us to use parallelism in cases where it previously
would have had to be rejected as unsafe. We do - in this case - lose the
optimization that the value is only computed if it's actually used. An
alternative strategy would be to have the first worker that needs the value
compute it, but one downside of that approach is that we'd then need to
select a parallel-safe path to compute the parameter value; it couldn't for
example contain a Gather (Merge) node. At some point in the future, we
might want to consider both approaches.
Independent of that consideration, there is a great deal more work that
could be done to make more kinds of PARAM_EXEC parameters parallel-safe.
This infrastructure could be used to allow a Gather (Merge) on the inner
side of a nested loop (although that's not a very appealing plan) and
cases where the InitPlan is attached below the Gather (Merge) could be
addressed as well using various techniques. But this is a good start.
Amit Kapila, reviewed and revised by me. Reviewing and testing from
Kuntal Ghosh, Haribabu Kommi, and Tushar Ahuja.
Discussion: http://postgr.es/m/CAA4eK1LV0Y1AUV4cUCdC+sYOx0Z0-8NAJ2Pd9=UKsbQ5Sr7+JQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
Up until now, we only tracked the number of parameters, which was
sufficient to allocate an array of Datums of the appropriate size,
but not sufficient to, for example, know how to serialize a Datum
stored in one of those slots. An upcoming patch wants to do that,
so add this tracking to make it possible.
Patch by me, reviewed by Tom Lane and Amit Kapila.
Discussion: http://postgr.es/m/CA+TgmoYqpxDKn8koHdW8BEKk8FMUL0=e8m2Qe=M+r0UBjr3tuQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The lower case spellings are C and C++ standard and are used in most
parts of the PostgreSQL sources. The upper case spellings are only used
in some files/modules. So standardize on the standard spellings.
The APIs for ICU, Perl, and Windows define their own TRUE and FALSE, so
those are left as is when using those APIs.
In code comments, we use the lower-case spelling for the C concepts and
keep the upper-case spelling for the SQL concepts.
Reviewed-by: Michael Paquier <michael.paquier@gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This was always intended to work, but due to an oversight in
max_parallel_hazard_walker, it didn't. In testing, we missed the
fact that it was only working for custom plans, where the parameter
value has been substituted for the parameter itself early enough
that everything worked. In a generic plan, the Param node survives
and must be treated as parallel-safe. SerializeParamList provides
for the transmission of parameter values to workers.
Amit Kapila with help from Kuntal Ghosh. Some changes by me.
Discussion: http://postgr.es/m/CAA4eK1+_BuZrmVCeua5Eqnm4Co9DAXdM5HPAOE2J19ePbR912Q@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is the last major omission in our domains feature: you can now
make a domain over anything that's not a pseudotype.
The major complication from an implementation standpoint is that places
that might be creating tuples of a domain type now need to be prepared
to apply domain_check(). It seems better that unprepared code fail
with an error like "<type> is not composite" than that it silently fail
to apply domain constraints. Therefore, relevant infrastructure like
get_func_result_type() and lookup_rowtype_tupdesc() has been adjusted
to treat domain-over-composite as a distinct case that unprepared code
won't recognize, rather than just transparently treating it the same
as plain composite. This isn't a 100% solution to the possibility of
overlooked domain checks, but it catches most places.
In passing, improve typcache.c's support for domains (it can now cache
the identity of a domain's base type), and rewrite the argument handling
logic in jsonfuncs.c's populate_record[set]_worker to reduce duplicative
per-call lookups.
I believe this is code-complete so far as the core and contrib code go.
The PLs need varying amounts of work, which will be tackled in followup
patches.
Discussion: https://postgr.es/m/4206.1499798337@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Allowing arrays with a domain type as their element type was left un-done
in the original domain patch, but not for any very good reason. This
omission leads to such surprising results as array_agg() not working on
a domain column, because the parser can't identify a suitable output type
for the polymorphic aggregate.
In order to fix this, first clean up the APIs of coerce_to_domain() and
some internal functions in parse_coerce.c so that we consistently pass
around a CoercionContext along with CoercionForm. Previously, we sometimes
passed an "isExplicit" boolean flag instead, which is strictly less
information; and coerce_to_domain() didn't even get that, but instead had
to reverse-engineer isExplicit from CoercionForm. That's contrary to the
documentation in primnodes.h that says that CoercionForm only affects
display and not semantics. I don't think this change fixes any live bugs,
but it makes things more consistent. The main reason for doing it though
is that now build_coercion_expression() receives ccontext, which it needs
in order to be able to recursively invoke coerce_to_target_type().
Next, reimplement ArrayCoerceExpr so that the node does not directly know
any details of what has to be done to the individual array elements while
performing the array coercion. Instead, the per-element processing is
represented by a sub-expression whose input is a source array element and
whose output is a target array element. This simplifies life in
parse_coerce.c, because it can build that sub-expression by a recursive
invocation of coerce_to_target_type(). The executor now handles the
per-element processing as a compiled expression instead of hard-wired code.
The main advantage of this is that we can use a single ArrayCoerceExpr to
handle as many as three successive steps per element: base type conversion,
typmod coercion, and domain constraint checking. The old code used two
stacked ArrayCoerceExprs to handle type + typmod coercion, which was pretty
inefficient, and adding yet another array deconstruction to do domain
constraint checking seemed very unappetizing.
In the case where we just need a single, very simple coercion function,
doing this straightforwardly leads to a noticeable increase in the
per-array-element runtime cost. Hence, add an additional shortcut evalfunc
in execExprInterp.c that skips unnecessary overhead for that specific form
of expression. The runtime speed of simple cases is within 1% or so of
where it was before, while cases that previously required two levels of
array processing are significantly faster.
Finally, create an implicit array type for every domain type, as we do for
base types, enums, etc. Everything except the array-coercion case seems
to just work without further effort.
Tom Lane, reviewed by Andrew Dunstan
Discussion: https://postgr.es/m/9852.1499791473@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
| |
This is a mechanical change in preparation for a later commit that
will change the layout of TupleDesc. Introducing a macro to abstract
the details of where attributes are stored will allow us to change
that in separate step and revise it in future.
Author: Thomas Munro, editorialized by Andres Freund
Reviewed-By: Andres Freund
Discussion: https://postgr.es/m/CAEepm=0ZtQ-SpsgCyzzYpsXS6e=kZWqk3g5Ygn3MDV7A8dabUA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
plpgsql wants to recognize expressions that it can execute directly
via ExecEvalExpr() instead of going through the full SPI machinery.
Originally the test for this consisted of recursively groveling through
the post-planning expression tree to see if it contained only nodes that
plpgsql recognized as safe. That was a major maintenance headache, since
it required updating plpgsql every time we added any kind of expression
node. It was also kind of expensive, so over time we added various
pre-planning checks to try to short-circuit having to do that.
Robert Haas pointed out that as of the SRF-processing changes in v10,
particularly the addition of Query.hasTargetSRFs, there really isn't
any reason to make the recursive scan at all: the initial checks cover
everything we really care about. We do have to make sure that those
checks agree with what inline_function() considers, so that inlining
of a function that formerly wasn't inlined can't cause an expression
considered simple to become non-simple.
Hence, delete the recursive function exec_simple_check_node(), and tweak
those other tests to more exactly agree with inline_function(). Adjust
some comments and function naming to match.
Discussion: https://postgr.es/m/CA+TgmoZGZpwdEV2FQWaVxA_qZXsQE1DAS5Fu8fwxXDNvfndiUQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add missing infrastructure for this node type, notably in ruleutils.c where
its lack could demonstrably cause EXPLAIN to fail. Add outfuncs/readfuncs
support. (outfuncs support is useful today for debugging purposes. The
readfuncs support may never be needed, since at present it would only
matter for parallel query and NextValueExpr should never appear in a
parallelizable query; but it seems like a bad idea to have a primnode type
that isn't fully supported here.) Teach planner infrastructure that
NextValueExpr is a volatile, parallel-unsafe, non-leaky expression node
with cost cpu_operator_cost. Given its limited scope of usage, there
*might* be no live bug today from the lack of that knowledge, but it's
certainly going to bite us on the rear someday. Teach pg_stat_statements
about the new node type, too.
While at it, also teach cost_qual_eval() that MinMaxExpr, SQLValueFunction,
XmlExpr, and CoerceToDomain should be charged as cpu_operator_cost.
Failing to do this for SQLValueFunction was an oversight in my commit
0bb51aa96. The others are longer-standing oversights, but no time like the
present to fix them. (In principle, CoerceToDomain could have cost much
higher than this, but it doesn't presently seem worth trying to examine the
domain's constraints here.)
Modify execExprInterp.c to execute NextValueExpr as an out-of-line
function; it seems quite unlikely to me that it's worth insisting that
it be inlined in all expression eval methods. Besides, providing the
out-of-line function doesn't stop anyone from inlining if they want to.
Adjust some places where NextValueExpr support had been inserted with the
aid of a dartboard rather than keeping it in the same order as elsewhere.
Discussion: https://postgr.es/m/23862.1499981661@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Don't move parenthesized lines to the left, even if that means they
flow past the right margin.
By default, BSD indent lines up statement continuation lines that are
within parentheses so that they start just to the right of the preceding
left parenthesis. However, traditionally, if that resulted in the
continuation line extending to the right of the desired right margin,
then indent would push it left just far enough to not overrun the margin,
if it could do so without making the continuation line start to the left of
the current statement indent. That makes for a weird mix of indentations
unless one has been completely rigid about never violating the 80-column
limit.
This behavior has been pretty universally panned by Postgres developers.
Hence, disable it with indent's new -lpl switch, so that parenthesized
lines are always lined up with the preceding left paren.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
is_parallel_safe() supposed that the only relevant property of a SubPlan
was the parallel safety of the referenced subplan tree. This is wrong:
the testexpr or args subtrees might contain parallel-unsafe stuff, as
demonstrated by the test case added here. However, just recursing into the
subtrees fails in a different way: we'll typically find PARAM_EXEC Params
representing the subplan's output columns in the testexpr. The previous
coding supposed that any Param must be treated as parallel-restricted, so
that a naive attempt at fixing this disabled parallel pushdown of SubPlans
altogether. We must instead determine, for any visited Param, whether it
is one that would be computed by a surrounding SubPlan node; if so, it's
safe to push down along with the SubPlan node.
We might later be able to extend this logic to cope with Params used for
correlated subplans and other cases; but that's a task for v11 or beyond.
Tom Lane and Amit Kapila
Discussion: https://postgr.es/m/7064.1492022469@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This extends the castNode() notation introduced by commit 5bcab1114 to
provide, in one step, extraction of a list cell's pointer and coercion to
a concrete node type. For example, "lfirst_node(Foo, lc)" is the same
as "castNode(Foo, lfirst(lc))". Almost half of the uses of castNode
that have appeared so far include a list extraction call, so this is
pretty widely useful, and it saves a few more keystrokes compared to the
old way.
As with the previous patch, back-patch the addition of these macros to
pg_list.h, so that the notation will be available when back-patching.
Patch by me, after an idea of Andrew Gierth's.
Discussion: https://postgr.es/m/14197.1491841216@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A QueryEnvironment concept is added, which allows new types of
objects to be passed into queries from parsing on through
execution. At this point, the only thing implemented is a
collection of EphemeralNamedRelation objects -- relations which
can be referenced by name in queries, but do not exist in the
catalogs. The only type of ENR implemented is NamedTuplestore, but
provision is made to add more types fairly easily.
An ENR can carry its own TupleDesc or reference a relation in the
catalogs by relid.
Although these features can be used without SPI, convenience
functions are added to SPI so that ENRs can easily be used by code
run through SPI.
The initial use of all this is going to be transition tables in
AFTER triggers, but that will be added to each PL as a separate
commit.
An incidental effect of this patch is to produce a more informative
error message if an attempt is made to modify the contents of a CTE
from a referencing DML statement. No tests previously covered that
possibility, so one is added.
Kevin Grittner and Thomas Munro
Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro
with valuable comments and suggestions from many others
|
|
|
|
|
| |
Fix a few stray references to expression eval functions that don't
exist anymore or don't take the same input representation they used to.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This replaces the old, recursive tree-walk based evaluation, with
non-recursive, opcode dispatch based, expression evaluation.
Projection is now implemented as part of expression evaluation.
This both leads to significant performance improvements, and makes
future just-in-time compilation of expressions easier.
The speed gains primarily come from:
- non-recursive implementation reduces stack usage / overhead
- simple sub-expressions are implemented with a single jump, without
function calls
- sharing some state between different sub-expressions
- reduced amount of indirect/hard to predict memory accesses by laying
out operation metadata sequentially; including the avoidance of
nearly all of the previously used linked lists
- more code has been moved to expression initialization, avoiding
constant re-checks at evaluation time
Future just-in-time compilation (JIT) has become easier, as
demonstrated by released patches intended to be merged in a later
release, for primarily two reasons: Firstly, due to a stricter split
between expression initialization and evaluation, less code has to be
handled by the JIT. Secondly, due to the non-recursive nature of the
generated "instructions", less performance-critical code-paths can
easily be shared between interpreted and compiled evaluation.
The new framework allows for significant future optimizations. E.g.:
- basic infrastructure for to later reduce the per executor-startup
overhead of expression evaluation, by caching state in prepared
statements. That'd be helpful in OLTPish scenarios where
initialization overhead is measurable.
- optimizing the generated "code". A number of proposals for potential
work has already been made.
- optimizing the interpreter. Similarly a number of proposals have
been made here too.
The move of logic into the expression initialization step leads to some
backward-incompatible changes:
- Function permission checks are now done during expression
initialization, whereas previously they were done during
execution. In edge cases this can lead to errors being raised that
previously wouldn't have been, e.g. a NULL array being coerced to a
different array type previously didn't perform checks.
- The set of domain constraints to be checked, is now evaluated once
during expression initialization, previously it was re-built
every time a domain check was evaluated. For normal queries this
doesn't change much, but e.g. for plpgsql functions, which caches
ExprStates, the old set could stick around longer. The behavior
around might still change.
Author: Andres Freund, with significant changes by Tom Lane,
changes by Heikki Linnakangas
Reviewed-By: Tom Lane, Heikki Linnakangas
Discussion: https://postgr.es/m/20161206034955.bh33paeralxbtluv@alap3.anarazel.de
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This doesn't do anything to make Param nodes anything other than
parallel-restricted, so this only helps with uncorrelated subplans,
and it's not necessarily very cheap because each worker will run the
subplan separately (just as a Hash Join will build a separate copy of
the hash table in each participating process), but it's a first step
toward supporting cases that are more likely to help in practice, and
is occasionally useful on its own.
Amit Kapila, reviewed and tested by Rafia Sabih, Dilip Kumar, and
me.
Discussion: http://postgr.es/m/CAA4eK1+e8Z45D2n+rnDMDYsVEb5iW7jqaCH_tvPMYau=1Rru9w@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since 69f4b9c plain expression evaluation (and thus normal projection)
can't return sets of tuples anymore. Thus remove code dealing with
that possibility.
This will require adjustments in external code using
ExecEvalExpr()/ExecProject() - that should neither be hard nor very
common.
Author: Andres Freund and Tom Lane
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Evaluation of set returning functions (SRFs_ in the targetlist (like SELECT
generate_series(1,5)) so far was done in the expression evaluation (i.e.
ExecEvalExpr()) and projection (i.e. ExecProject/ExecTargetList) code.
This meant that most executor nodes performing projection, and most
expression evaluation functions, had to deal with the possibility that an
evaluated expression could return a set of return values.
That's bad because it leads to repeated code in a lot of places. It also,
and that's my (Andres's) motivation, made it a lot harder to implement a
more efficient way of doing expression evaluation.
To fix this, introduce a new executor node (ProjectSet) that can evaluate
targetlists containing one or more SRFs. To avoid the complexity of the old
way of handling nested expressions returning sets (e.g. having to pass up
ExprDoneCond, and dealing with arguments to functions returning sets etc.),
those SRFs can only be at the top level of the node's targetlist. The
planner makes sure (via split_pathtarget_at_srfs()) that SRF evaluation is
only necessary in ProjectSet nodes and that SRFs are only present at the
top level of the node's targetlist. If there are nested SRFs the planner
creates multiple stacked ProjectSet nodes. The ProjectSet nodes always get
input from an underlying node.
We also discussed and prototyped evaluating targetlist SRFs using ROWS
FROM(), but that turned out to be more complicated than we'd hoped.
While moving SRF evaluation to ProjectSet would allow to retain the old
"least common multiple" behavior when multiple SRFs are present in one
targetlist (i.e. continue returning rows until all SRFs are at the end of
their input at the same time), we decided to instead only return rows till
all SRFs are exhausted, returning NULL for already exhausted ones. We
deemed the previous behavior to be too confusing, unexpected and actually
not particularly useful.
As a side effect, the previously prohibited case of multiple set returning
arguments to a function, is now allowed. Not because it's particularly
desirable, but because it ends up working and there seems to be no argument
for adding code to prohibit it.
Currently the behavior for COALESCE and CASE containing SRFs has changed,
returning multiple rows from the expression, even when the SRF containing
"arm" of the expression is not evaluated. That's because the SRFs are
evaluated in a separate ProjectSet node. As that's quite confusing, we're
likely to instead prohibit SRFs in those places. But that's still being
discussed, and the code would reside in places not touched here, so that's
a task for later.
There's a lot of, now superfluous, code dealing with set return expressions
around. But as the changes to get rid of those are verbose largely boring,
it seems better for readability to keep the cleanup as a separate commit.
Author: Tom Lane and Andres Freund
Discussion: https://postgr.es/m/20160822214023.aaxz5l4igypowyri@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In an RLS query, we must ensure that security filter quals are evaluated
before ordinary query quals, in case the latter contain "leaky" functions
that could expose the contents of sensitive rows. The original
implementation of RLS planning ensured this by pushing the scan of a
secured table into a sub-query that it marked as a security-barrier view.
Unfortunately this results in very inefficient plans in many cases, because
the sub-query cannot be flattened and gets planned independently of the
rest of the query.
To fix, drop the use of sub-queries to enforce RLS qual order, and instead
mark each qual (RestrictInfo) with a security_level field establishing its
priority for evaluation. Quals must be evaluated in security_level order,
except that "leakproof" quals can be allowed to go ahead of quals of lower
security_level, if it's helpful to do so. This has to be enforced within
the ordering of any one list of quals to be evaluated at a table scan node,
and we also have to ensure that quals are not chosen for early evaluation
(i.e., use as an index qual or TID scan qual) if they're not allowed to go
ahead of other quals at the scan node.
This is sufficient to fix the problem for RLS quals, since we only support
RLS policies on simple tables and thus RLS quals will always exist at the
table scan level only. Eventually these qual ordering rules should be
enforced for join quals as well, which would permit improving planning for
explicit security-barrier views; but that's a task for another patch.
Note that FDWs would need to be aware of these rules --- and not, for
example, send an insecure qual for remote execution --- but since we do
not yet allow RLS policies on foreign tables, the case doesn't arise.
This will need to be addressed before we can allow such policies.
Patch by me, reviewed by Stephen Frost and Dean Rasheed.
Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
|