aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/util/relnode.c
Commit message (Collapse)AuthorAge
...
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* Compute root->qual_security_level in a less random place.Tom Lane2019-03-31
| | | | | | | | | | | | We can set this up once and for all in subquery_planner's initial survey of the flattened rangetable, rather than incrementally adjusting it in build_simple_rel. The previous approach made it rather hard to reason about exactly when the value would be available, and we were definitely using it in some places before the final value was computed. Noted while fooling around with Amit Langote's patch to delay creation of inheritance child rels. That didn't break this code, but it made it even more fragile, IMO.
* Speed up planning when partitions can be pruned at plan time.Tom Lane2019-03-30
| | | | | | | | | | | | | | | | | | | | | | Previously, the planner created RangeTblEntry and RelOptInfo structs for every partition of a partitioned table, even though many of them might later be deemed uninteresting thanks to partition pruning logic. This incurred significant overhead when there are many partitions. Arrange to postpone creation of these data structures until after we've processed the query enough to identify restriction quals for the partitioned table, and then apply partition pruning before not after creation of each partition's data structures. In this way we need not open the partition relations at all for partitions that the planner has no real interest in. For queries that can be proven at plan time to access only a small number of partitions, this patch improves the practical maximum number of partitions from under 100 to perhaps a few thousand. Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen, Yoshikazu Imai, and David Rowley Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
* Build "other rels" of appendrel baserels in a separate step.Tom Lane2019-03-26
| | | | | | | | | | | | | | | | | | | | | | | Up to now, otherrel RelOptInfos were built at the same time as baserel RelOptInfos, thanks to recursion in build_simple_rel(). However, nothing in query_planner's preprocessing cares at all about otherrels, only baserels, so we don't really need to build them until just before we enter make_one_rel. This has two benefits: * create_lateral_join_info did a lot of extra work to propagate lateral-reference information from parents to the correct children. But if we delay creation of the children till after that, it's trivial (and much harder to break, too). * Since we have all the restriction quals correctly assigned to parent appendrels by this point, it'll be possible to do plan-time pruning and never make child RelOptInfos at all for partitions that can be pruned away. That's not done here, but will be later on. Amit Langote, reviewed at various times by Dilip Kumar, Jesper Pedersen, Yoshikazu Imai, and David Rowley Discussion: https://postgr.es/m/9d7c5112-cb99-6a47-d3be-cf1ee6862a1d@lab.ntt.co.jp
* Split create_foreignscan_path() into three functions.Tom Lane2019-02-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up to now postgres_fdw has been using create_foreignscan_path() to generate not only base-relation paths, but also paths for foreign joins and foreign upperrels. This is wrong, because create_foreignscan_path() calls get_baserel_parampathinfo() which will only do the right thing for baserels. It accidentally fails to fail for unparameterized paths, which are the only ones postgres_fdw (thought it) was handling, but we really need different APIs for the baserel and join cases. In HEAD, the best thing to do seems to be to split up the baserel, joinrel, and upperrel cases into three functions so that they can have different APIs. I haven't actually given create_foreign_join_path a different API in this commit: we should spend a bit of time thinking about just what we want to do there, since perhaps FDWs would want to do something different from the build-up-a-join-pairwise approach that get_joinrel_parampathinfo expects. In the meantime, since postgres_fdw isn't prepared to generate parameterized joins anyway, just give it a defense against trying to plan joins with lateral refs. In addition (and this is what triggered this whole mess) fix bug #15613 from Srinivasan S A, by teaching file_fdw and postgres_fdw that plain baserel foreign paths still have outer refs if the relation has lateral_relids. Add some assertions in relnode.c to catch future occurrences of the same error --- in particular, to catch other FDWs doing that, but also as backstop against core-code mistakes like the one fixed by commit bdd9a99aa. Bug #15613 also needs to be fixed in the back branches, but the appropriate fix will look quite a bit different there, since we don't want to assume that existing FDWs get the word right away. Discussion: https://postgr.es/m/15613-092be1be9576c728@postgresql.org
* In the planner, replace an empty FROM clause with a dummy RTE.Tom Lane2019-01-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The fact that "SELECT expression" has no base relations has long been a thorn in the side of the planner. It makes it hard to flatten a sub-query that looks like that, or is a trivial VALUES() item, because the planner generally uses relid sets to identify sub-relations, and such a sub-query would have an empty relid set if we flattened it. prepjointree.c contains some baroque logic that works around this in certain special cases --- but there is a much better answer. We can replace an empty FROM clause with a dummy RTE that acts like a table of one row and no columns, and then there are no such corner cases to worry about. Instead we need some logic to get rid of useless dummy RTEs, but that's simpler and covers more cases than what was there before. For really trivial cases, where the query is just "SELECT expression" and nothing else, there's a hazard that adding the extra RTE makes for a noticeable slowdown; even though it's not much processing, there's not that much for the planner to do overall. However testing says that the penalty is very small, close to the noise level. In more complex queries, this is able to find optimizations that we could not find before. The new RTE type is called RTE_RESULT, since the "scan" plan type it gives rise to is a Result node (the same plan we produced for a "SELECT expression" query before). To avoid confusion, rename the old ResultPath path type to GroupResultPath, reflecting that it's only used in degenerate grouping cases where we know the query produces just one grouped row. (It wouldn't work to unify the two cases, because there are different rules about where the associated quals live during query_planner.) Note: although this touches readfuncs.c, I don't think a catversion bump is required, because the added case can't occur in stored rules, only plans. Patch by me, reviewed by David Rowley and Mark Dilger Discussion: https://postgr.es/m/15944.1521127664@sss.pgh.pa.us
* Move inheritance expansion code into its own fileAlvaro Herrera2019-01-10
| | | | | | | | | | | | | | | | | This commit moves expand_inherited_tables and underlings from optimizer/prep/prepunionc.c to optimizer/utils/inherit.c. Also, all of the AppendRelInfo-based expression manipulation routines are moved to optimizer/utils/appendinfo.c. No functional code changes. One exception is the introduction of make_append_rel_info, but that's still just moving around code. Also, stop including <limits.h> in prepunion.c, which no longer needs it since 3fc6e2d7f5b6. I (Álvaro) noticed this because Amit was copying that to inherit.c, which likewise doesn't need it. Author: Amit Langote Discussion: https://postgr.es/m/3be67028-a00a-502c-199a-da00eec8fb6e@lab.ntt.co.jp
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Disable support for partitionwise joins in problematic cases.Etsuro Fujita2018-08-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit f49842d, which added support for partitionwise joins, built the child's tlist by applying adjust_appendrel_attrs() to the parent's. So in the case where the parent's included a whole-row Var for the parent, the child's contained a ConvertRowtypeExpr. To cope with that, that commit added code to the planner, such as setrefs.c, but some code paths still assumed that the tlist for a scan (or join) rel would only include Vars and PlaceHolderVars, which was true before that commit, causing errors: * When creating an explicit sort node for an input path for a mergejoin path for a child join, prepare_sort_from_pathkeys() threw the 'could not find pathkey item to sort' error. * When deparsing a relation participating in a pushed down child join as a subquery in contrib/postgres_fdw, get_relation_column_alias_ids() threw the 'unexpected expression in subquery output' error. * When performing set_plan_references() on a local join plan generated by contrib/postgres_fdw for EvalPlanQual support for a pushed down child join, fix_join_expr() threw the 'variable not found in subplan target lists' error. To fix these, two approaches have been proposed: one by Ashutosh Bapat and one by me. While the former keeps building the child's tlist with a ConvertRowtypeExpr, the latter builds it with a whole-row Var for the child not to violate the planner assumption, and tries to fix it up later, But both approaches need more work, so refuse to generate partitionwise join paths when whole-row Vars are involved, instead. We don't need to handle ConvertRowtypeExprs in the child's tlists for now, so this commit also removes the changes to the planner. Previously, partitionwise join computed attr_needed data for each child separately, and built the child join's tlist using that data, which also required an extra step for adding PlaceHolderVars to that tlist, but it would be more efficient to build it from the parent join's tlist through the adjust_appendrel_attrs() transformation. So this commit builds that list that way, and simplifies build_joinrel_tlist() and placeholder.c as well as part of set_append_rel_size() to basically what they were before partitionwise join went in. Back-patch to PG11 where partitionwise join was introduced. Report by Rajkumar Raghuwanshi. Analysis by Ashutosh Bapat, who also provided some of regression tests. Patch by me, reviewed by Robert Haas. Discussion: https://postgr.es/m/CAKcux6ktu-8tefLWtQuuZBYFaZA83vUzuRd7c1YHC-yEWyYFpg@mail.gmail.com
* Allow direct lookups of AppendRelInfo by child relidAlvaro Herrera2018-06-26
| | | | | | | | | | | | | | | | | | | | | find_appinfos_by_relids had quite a large overhead when the number of items in the append_rel_list was high, as it had to trawl through the append_rel_list looking for AppendRelInfos belonging to the given childrelids. Since there can only be a single AppendRelInfo for each child rel, it seems much better to store an array in PlannerInfo which indexes these by child relid, making the function O(1) rather than O(N). This function was only called once inside the planner, so just replace that call with a lookup to the new array. find_childrel_appendrelinfo is now unused and thus removed. This fixes a planner performance regression new to v11 reported by Thomas Reiss. Author: David Rowley Reported-by: Thomas Reiss Reviewed-by: Ashutosh Bapat Reviewed-by: Álvaro Herrera Discussion: https://postgr.es/m/94dd7a4b-5e50-0712-911d-2278e055c622@dalibo.com
* Change more places to be less trusting of RestrictInfo.is_pushed_down.Tom Lane2018-04-20
| | | | | | | | | | | | | | | | | | | | | On further reflection, commit e5d83995e didn't go far enough: pretty much everywhere in the planner that examines a clause's is_pushed_down flag ought to be changed to use the more complicated behavior where we also check the clause's required_relids. Otherwise we could make incorrect decisions about whether, say, a clause is safe to use as a hash clause. Some (many?) of these places are safe as-is, either because they are never reached while considering a parameterized path, or because there are additional checks that would reject a pushed-down clause anyway. However, it seems smarter to just code them all the same way rather than rely on easily-broken reasoning of that sort. In support of that, invent a new macro RINFO_IS_PUSHED_DOWN that should be used in place of direct tests on the is_pushed_down flag. Like the previous patch, back-patch to all supported branches. Discussion: https://postgr.es/m/f8128b11-c5bf-3539-48cd-234178b2314d@proxel.se
* Reorganize partitioning codeAlvaro Herrera2018-04-14
| | | | | | | | | | | | | | | | | | | | | | There's been a massive addition of partitioning code in PostgreSQL 11, with little oversight on its placement, resulting in a catalog/partition.c with poorly defined boundaries and responsibilities. This commit tries to set a couple of distinct modules to separate things a little bit. There are no code changes here, only code movement. There are three new files: src/backend/utils/cache/partcache.c src/include/partitioning/partdefs.h src/include/utils/partcache.h The previous arrangement of #including catalog/partition.h almost everywhere is no more. Authors: Amit Langote and Álvaro Herrera Discussion: https://postgr.es/m/98e8d509-790a-128c-be7f-e48a5b2d8d97@lab.ntt.co.jp https://postgr.es/m/11aa0c50-316b-18bb-722d-c23814f39059@lab.ntt.co.jp https://postgr.es/m/143ed9a4-6038-76d4-9a55-502035815e68@lab.ntt.co.jp https://postgr.es/m/20180413193503.nynq7bnmgh6vs5vm@alvherre.pgsql
* Faster partition pruningAlvaro Herrera2018-04-06
| | | | | | | | | | | | | | | | | | | | | Add a new module backend/partitioning/partprune.c, implementing a more sophisticated algorithm for partition pruning. The new module uses each partition's "boundinfo" for pruning instead of constraint exclusion, based on an idea proposed by Robert Haas of a "pruning program": a list of steps generated from the query quals which are run iteratively to obtain a list of partitions that must be scanned in order to satisfy those quals. At present, this targets planner-time partition pruning, but there exist further patches to apply partition pruning at execution time as well. This commit also moves some definitions from include/catalog/partition.h to a new file include/partitioning/partbounds.h, in an attempt to rationalize partitioning related code. Authors: Amit Langote, David Rowley, Dilip Kumar Reviewers: Robert Haas, Kyotaro Horiguchi, Ashutosh Bapat, Jesper Pedersen. Discussion: https://postgr.es/m/098b9c71-1915-1a2a-8d52-1a7a50ce79e8@lab.ntt.co.jp
* Rename enable_partition_wise_join to enable_partitionwise_joinPeter Eisentraut2018-02-16
| | | | Discussion: https://www.postgresql.org/message-id/flat/ad24e4f4-6481-066e-e3fb-6ef4a3121882%402ndquadrant.com
* Fix possible crash in partition-wise join.Robert Haas2018-02-05
| | | | | | | | | | | The previous code assumed that we'd always succeed in creating child-joins for a joinrel for which partition-wise join was considered, but that's not guaranteed, at least in the case where dummy rels are involved. Ashutosh Bapat, with some wordsmithing by me. Discussion: http://postgr.es/m/CAFjFpRf8=uyMYYfeTBjWDMs1tR5t--FgOe2vKZPULxxdYQ4RNw@mail.gmail.com
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Update typedefs.list and re-run pgindentRobert Haas2017-11-29
| | | | Discussion: http://postgr.es/m/CA+TgmoaA9=1RWKtBWpDaj+sF3Stgc8sHgf5z=KGtbjwPLQVDMA@mail.gmail.com
* Fix incorrect comment.Robert Haas2017-11-10
| | | | | | Etsuro Fujita Discussion: http://postgr.es/m/5A05728E.4050009@lab.ntt.co.jp
* Basic partition-wise join functionality.Robert Haas2017-10-06
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Instead of joining two partitioned tables in their entirety we can, if it is an equi-join on the partition keys, join the matching partitions individually. This involves teaching the planner about "other join" rels, which are related to regular join rels in the same way that other member rels are related to baserels. This can use significantly more CPU time and memory than regular join planning, because there may now be a set of "other" rels not only for every base relation but also for every join relation. In most practical cases, this probably shouldn't be a problem, because (1) it's probably unusual to join many tables each with many partitions using the partition keys for all joins and (2) if you do that scenario then you probably have a big enough machine to handle the increased memory cost of planning and (3) the resulting plan is highly likely to be better, so what you spend in planning you'll make up on the execution side. All the same, for now, turn this feature off by default. Currently, we can only perform joins between two tables whose partitioning schemes are absolutely identical. It would be nice to cope with other scenarios, such as extra partitions on one side or the other with no match on the other side, but that will have to wait for a future patch. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi, Amit Langote, Rafia Sabih, Thomas Munro, Dilip Kumar, Antonin Houska, Amit Khandekar, and by me. A few final adjustments by me. Discussion: http://postgr.es/m/CAFjFpRfQ8GrQvzp3jA2wnLqrHmaXna-urjm_UY9BqXj=EaDTSA@mail.gmail.com Discussion: http://postgr.es/m/CAFjFpRcitjfrULr5jfuKWRPsGUX0LQ0k8-yG0Qw2+1LBGNpMdw@mail.gmail.com
* Associate partitioning information with each RelOptInfo.Robert Haas2017-09-20
| | | | | | | | | | | | | This is not used for anything yet, but it is necessary infrastructure for partition-wise join and for partition pruning without constraint exclusion. Ashutosh Bapat, reviewed by Amit Langote and with quite a few changes, mostly cosmetic, by me. Additional review and testing of this patch series by Antonin Houska, Amit Khandekar, Rafia Sabih, Rajkumar Raghuwanshi, Thomas Munro, and Dilip Kumar. Discussion: http://postgr.es/m/CAFjFpRfneFG3H+F6BaiXemMrKF+FY-POpx3Ocy+RiH3yBmXSNw@mail.gmail.com
* Clean up handling of dropped columns in NAMEDTUPLESTORE RTEs.Tom Lane2017-09-06
| | | | | | | | | | | | | | The NAMEDTUPLESTORE patch piggybacked on the infrastructure for TABLEFUNC/VALUES/CTE RTEs, none of which can ever have dropped columns, so the possibility was ignored most places. Fix that, including adding a specification to parsenodes.h about what it's supposed to look like. In passing, clean up assorted comments that hadn't been maintained properly by said patch. Per bug #14799 from Philippe Beaudoin. Back-patch to v10. Discussion: https://postgr.es/m/20170906120005.25630.84360@wrigleys.postgresql.org
* Assorted preparatory refactoring for partition-wise join.Robert Haas2017-08-15
| | | | | | | | | | | | | | | | | | | | | | Instead of duplicating the logic to search for a matching ParamPathInfo in multiple places, factor it out into a separate function. Pass only the relevant bits of the PartitionKey to partition_bounds_equal instead of the whole thing, because partition-wise join will want to call this without having a PartitionKey available. Adjust allow_star_schema_join and calc_nestloop_required_outer to take relevant Relids rather than the entire Path, because partition-wise join will want to call it with the top-parent relids to determine whether a child join is allowable. Ashutosh Bapat. Review and testing of the larger patch set of which this is a part by Amit Langote, Rajkumar Raghuwanshi, Rafia Sabih, Thomas Munro, Dilip Kumar, and me. Discussion: http://postgr.es/m/CA+TgmobQK80vtXjAsPZWWXd7c8u13G86gmuLupN+uUJjA+i4nA@mail.gmail.com
* Phase 3 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | Don't move parenthesized lines to the left, even if that means they flow past the right margin. By default, BSD indent lines up statement continuation lines that are within parentheses so that they start just to the right of the preceding left parenthesis. However, traditionally, if that resulted in the continuation line extending to the right of the desired right margin, then indent would push it left just far enough to not overrun the margin, if it could do so without making the continuation line start to the left of the current statement indent. That makes for a weird mix of indentations unless one has been completely rigid about never violating the 80-column limit. This behavior has been pretty universally panned by Postgres developers. Hence, disable it with indent's new -lpl switch, so that parenthesized lines are always lined up with the preceding left paren. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Post-PG 10 beta1 pgindent runBruce Momjian2017-05-17
| | | | perltidy run not included.
* Optimize joins when the inner relation can be proven unique.Tom Lane2017-04-07
| | | | | | | | | | | | | | | | | | | | | | | If there can certainly be no more than one matching inner row for a given outer row, then the executor can move on to the next outer row as soon as it's found one match; there's no need to continue scanning the inner relation for this outer row. This saves useless scanning in nestloop and hash joins. In merge joins, it offers the opportunity to skip mark/restore processing, because we know we have not advanced past the first possible match for the next outer row. Of course, the devil is in the details: the proof of uniqueness must depend only on joinquals (not otherquals), and if we want to skip mergejoin mark/restore then it must depend only on merge clauses. To avoid adding more planning overhead than absolutely necessary, the present patch errs in the conservative direction: there are cases where inner_unique or skip_mark_restore processing could be used, but it will not do so because it's not sure that the uniqueness proof depended only on "safe" clauses. This could be improved later. David Rowley, reviewed and rather heavily editorialized on by me Discussion: https://postgr.es/m/CAApHDvqF6Sw-TK98bW48TdtFJ+3a7D2mFyZ7++=D-RyPsL76gw@mail.gmail.com
* Abstract logic to allow for multiple kinds of child rels.Robert Haas2017-04-03
| | | | | | | | | | | | | | | | | | | | | | Currently, the only type of child relation is an "other member rel", which is the child of a baserel, but in the future joins and even upper relations may have child rels. To facilitate that, introduce macros that test to test for particular RelOptKind values, and use them in various places where they help to clarify the sense of a test. (For example, a test may allow RELOPT_OTHER_MEMBER_REL either because it intends to allow child rels, or because it intends to allow simple rels.) Also, remove find_childrel_top_parent, which will not work for a child rel that is not a baserel. Instead, add a new RelOptInfo member top_parent_relids to track the same kind of information in a more generic manner. Ashutosh Bapat, slightly tweaked by me. Review and testing of the patch set from which this was taken by Rajkumar Raghuwanshi and Rafia Sabih. Discussion: http://postgr.es/m/CA+TgmoagTnF2yqR3PT2rv=om=wJiZ4-A+ATwdnriTGku1CLYxA@mail.gmail.com
* Add infrastructure to support EphemeralNamedRelation references.Kevin Grittner2017-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A QueryEnvironment concept is added, which allows new types of objects to be passed into queries from parsing on through execution. At this point, the only thing implemented is a collection of EphemeralNamedRelation objects -- relations which can be referenced by name in queries, but do not exist in the catalogs. The only type of ENR implemented is NamedTuplestore, but provision is made to add more types fairly easily. An ENR can carry its own TupleDesc or reference a relation in the catalogs by relid. Although these features can be used without SPI, convenience functions are added to SPI so that ENRs can easily be used by code run through SPI. The initial use of all this is going to be transition tables in AFTER triggers, but that will be added to each PL as a separate commit. An incidental effect of this patch is to produce a more informative error message if an attempt is made to modify the contents of a CTE from a referencing DML statement. No tests previously covered that possibility, so one is added. Kevin Grittner and Thomas Munro Reviewed by Heikki Linnakangas, David Fetter, and Thomas Munro with valuable comments and suggestions from many others
* Some preliminary refactoring towards partitionwise join.Robert Haas2017-03-14
| | | | | | | | | | | | | | | | Partitionwise join proposes add a concept of child join relations, which will have the same relationship with join relations as "other member" relations do with base relations. These relations will need some but not all of the handling that we currently have for join relations, and some but not all of the handling that we currently have for appendrels, since they are a mix of the two. Refactor a little bit so that the necessary bits of logic are exposed as separate functions. Ashutosh Bapat, reviewed and tested by Rajkumar Raghuwanshi and by me. Discussion: http://postgr.es/m/CAFjFpRfqotRR6cM3sooBHMHEVdkFfAZ6PyYg4GRZsoMuW08HjQ@mail.gmail.com
* Support XMLTABLE query expressionAlvaro Herrera2017-03-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | XMLTABLE is defined by the SQL/XML standard as a feature that allows turning XML-formatted data into relational form, so that it can be used as a <table primary> in the FROM clause of a query. This new construct provides significant simplicity and performance benefit for XML data processing; what in a client-side custom implementation was reported to take 20 minutes can be executed in 400ms using XMLTABLE. (The same functionality was said to take 10 seconds using nested PostgreSQL XPath function calls, and 5 seconds using XMLReader under PL/Python). The implemented syntax deviates slightly from what the standard requires. First, the standard indicates that the PASSING clause is optional and that multiple XML input documents may be given to it; we make it mandatory and accept a single document only. Second, we don't currently support a default namespace to be specified. This implementation relies on a new executor node based on a hardcoded method table. (Because the grammar is fixed, there is no extensibility in the current approach; further constructs can be implemented on top of this such as JSON_TABLE, but they require changes to core code.) Author: Pavel Stehule, Álvaro Herrera Extensively reviewed by: Craig Ringer Discussion: https://postgr.es/m/CAFj8pRAgfzMD-LoSmnMGybD0WsEznLHWap8DO79+-GTRAPR4qA@mail.gmail.com
* Improve RLS planning by marking individual quals with security levels.Tom Lane2017-01-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In an RLS query, we must ensure that security filter quals are evaluated before ordinary query quals, in case the latter contain "leaky" functions that could expose the contents of sensitive rows. The original implementation of RLS planning ensured this by pushing the scan of a secured table into a sub-query that it marked as a security-barrier view. Unfortunately this results in very inefficient plans in many cases, because the sub-query cannot be flattened and gets planned independently of the rest of the query. To fix, drop the use of sub-queries to enforce RLS qual order, and instead mark each qual (RestrictInfo) with a security_level field establishing its priority for evaluation. Quals must be evaluated in security_level order, except that "leakproof" quals can be allowed to go ahead of quals of lower security_level, if it's helpful to do so. This has to be enforced within the ordering of any one list of quals to be evaluated at a table scan node, and we also have to ensure that quals are not chosen for early evaluation (i.e., use as an index qual or TID scan qual) if they're not allowed to go ahead of other quals at the scan node. This is sufficient to fix the problem for RLS quals, since we only support RLS policies on simple tables and thus RLS quals will always exist at the table scan level only. Eventually these qual ordering rules should be enforced for join quals as well, which would permit improving planning for explicit security-barrier views; but that's a task for another patch. Note that FDWs would need to be aware of these rules --- and not, for example, send an insecure qual for remote execution --- but since we do not yet allow RLS policies on foreign tables, the case doesn't arise. This will need to be addressed before we can allow such policies. Patch by me, reviewed by Stephen Frost and Dean Rasheed. Discussion: https://postgr.es/m/8185.1477432701@sss.pgh.pa.us
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Fix get_relation_info name typo'ed in a commentAlvaro Herrera2016-11-28
| | | | | | | Plus add a missing comment about this in get_relation_info itself. Author: Amit Langote Discussion: https://postgr.es/m/e46c0569-0449-afa0-e2fe-f3776e4b3fd5@lab.ntt.co.jp
* Speed up planner's scanning for parallel-query hazards.Tom Lane2016-08-19
| | | | | | | | | | | | | | | We need to scan the whole parse tree for parallel-unsafe functions. If there are none, we'll later need to determine whether particular subtrees contain any parallel-restricted functions. The previous coding retained no knowledge from the first scan, even though this is very wasteful in the common case where the query contains only parallel-safe functions. We can bypass all of the later scans by remembering that fact. This provides a small but measurable speed improvement when the case applies, and shouldn't cost anything when it doesn't. Patch by me, reviewed by Robert Haas Discussion: <3740.1471538387@sss.pgh.pa.us>
* Avoid invalidating all foreign-join cached plans when user mappings change.Tom Lane2016-07-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We must not push down a foreign join when the foreign tables involved should be accessed under different user mappings. Previously we tried to enforce that rule literally during planning, but that meant that the resulting plans were dependent on the current contents of the pg_user_mapping catalog, and we had to blow away all cached plans containing any remote join when anything at all changed in pg_user_mapping. This could have been improved somewhat, but the fact that a syscache inval callback has very limited info about what changed made it hard to do better within that design. Instead, let's change the planner to not consider user mappings per se, but to allow a foreign join if both RTEs have the same checkAsUser value. If they do, then they necessarily will use the same user mapping at runtime, and we don't need to know specifically which one that is. Post-plan-time changes in pg_user_mapping no longer require any plan invalidation. This rule does give up some optimization ability, to wit where two foreign table references come from views with different owners or one's from a view and one's directly in the query, but nonetheless the same user mapping would have applied. We'll sacrifice the first case, but to not regress more than we have to in the second case, allow a foreign join involving both zero and nonzero checkAsUser values if the nonzero one is the same as the prevailing effective userID. In that case, mark the plan as only runnable by that userID. The plancache code already had a notion of plans being userID-specific, in order to support RLS. It was a little confused though, in particular lacking clarity of thought as to whether it was the rewritten query or just the finished plan that's dependent on the userID. Rearrange that code so that it's clearer what depends on which, and so that the same logic applies to both RLS-injected role dependency and foreign-join-injected role dependency. Note that this patch doesn't remove the other issue mentioned in the original complaint, which is that while we'll reliably stop using a foreign join if it's disallowed in a new context, we might fail to start using a foreign join if it's now allowed, but we previously created a generic cached plan that didn't use one. It was agreed that the chance of winning that way was not high enough to justify the much larger number of plan invalidations that would have to occur if we tried to cause it to happen. In passing, clean up randomly-varying spelling of EXPLAIN commands in postgres_fdw.sql, and fix a COSTS ON example that had been allowed to leak into the committed tests. This reverts most of commits fbe5a3fb7 and 5d4171d1c, which were the previous attempt at ensuring we wouldn't push down foreign joins that span permissions contexts. Etsuro Fujita and Tom Lane Discussion: <d49c1e5b-f059-20f4-c132-e9752ee0113e@lab.ntt.co.jp>
* Restore foreign-key-aware estimation of join relation sizes.Tom Lane2016-06-18
| | | | | | | | | | | | | | | | | | | | This patch provides a new implementation of the logic added by commit 137805f89 and later removed by 77ba61080. It differs from the original primarily in expending much less effort per joinrel in large queries, which it accomplishes by doing most of the matching work once per query not once per joinrel. Hopefully, it's also less buggy and better commented. The never-documented enable_fkey_estimates GUC remains gone. There remains work to be done to make the selectivity estimates account for nulls in FK referencing columns; but that was true of the original patch as well. We may be able to address this point later in beta. In the meantime, any error should be in the direction of overestimating rather than underestimating joinrel sizes, which seems like the direction we want to err in. Tomas Vondra and Tom Lane Discussion: <31041.1465069446@sss.pgh.pa.us>
* Remove reltarget_has_non_vars flag.Tom Lane2016-06-10
| | | | | | | | | | Commit b12fd41c6 added a "reltarget_has_non_vars" field to RelOptInfo, but failed to maintain it accurately. Since its only purpose was to skip calls to has_parallel_hazard() in the simple case where a rel's targetlist is all Vars, and that call is really pretty cheap in that case anyway, it seems like this is just a case of premature optimization. Let's drop the flag and do the calls unconditionally until it's proven that we need more smarts here.
* pgindent run for 9.6Robert Haas2016-06-09
|
* Don't generate parallel paths for rels with parallel-restricted outputs.Robert Haas2016-06-09
| | | | | | | | | | | Such paths are unsafe. To make it cheaper to detect when this case applies, track whether a relation's default PathTarget contains any non-Vars. In most cases, the answer will be no, which enables us to determine cheaply that the target list for a proposed path is parallel-safe. However, subquery pull-up can create cases that require us to inspect the target list more carefully. Amit Kapila, reviewed by me.
* Eliminate "parallel degree" terminology.Robert Haas2016-06-09
| | | | | | | | | | | | This terminology provoked widespread complaints. So, instead, rename the GUC max_parallel_degree to max_parallel_workers_per_gather (leaving room for a possible future GUC max_parallel_workers that acts as a system-wide limit), and rename the parallel_degree reloption to parallel_workers. Rename structure members to match. These changes create a dump/restore hazard for users of PostgreSQL 9.6beta1 who have set the reloption (or applied the GUC using ALTER USER or ALTER DATABASE).
* Fix mishandling of equivalence-class tests in parameterized plans.Tom Lane2016-04-29
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Given a three-or-more-way equivalence class, such as X.Y = Y.Y = Z.Z, it was possible for the planner to omit one of the quals needed to enforce that all members of the equivalence class are actually equal. This only happened in the case of a parameterized join node for two of the relations, that is a plan tree like Nested Loop -> Scan X -> Nested Loop -> Scan Y -> Scan Z Filter: Z.Z = X.X The eclass machinery normally expects to apply X.X = Y.Y when those two relations are joined, but in this shape of plan tree they aren't joined until the top node --- and, if the lower nested loop is marked as parameterized by X, the top node will assume that the relevant eclass condition(s) got pushed down into the lower node. On the other hand, the scan of Z assumes that it's only responsible for constraining Z.Z to match any one of the other eclass members. So one or another of the required quals sometimes fell between the cracks, depending on whether consideration of the eclass in get_joinrel_parampathinfo() for the lower nested loop chanced to generate X.X = Y.Y or X.X = Z.Z as the appropriate constraint there. If it generated the latter, it'd erroneously suppose that the Z scan would take care of matters. To fix, force X.X = Y.Y to be generated and applied at that join node when this case occurs. This is *extremely* hard to hit in practice, because various planner behaviors conspire to mask the problem; starting with the fact that the planner doesn't really like to generate a parameterized plan of the above shape. (It might have been impossible to hit it before we tweaked things to allow this plan shape for star-schema cases.) Many thanks to Alexander Kirkouski for submitting a reproducible test case. The bug can be demonstrated in all branches back to 9.2 where parameterized paths were introduced, so back-patch that far.
* Add a 'parallel_degree' reloption.Robert Haas2016-04-08
| | | | | | | | | | The code that estimates what parallel degree should be uesd for the scan of a relation is currently rather stupid, so add a parallel_degree reloption that can be used to override the planner's rather limited judgement. Julien Rouhaud, reviewed by David Rowley, James Sewell, Amit Kapila, and me. Some further hacking by me.
* Run pgindent on a batch of (mostly-planner-related) source files.Tom Lane2016-04-06
| | | | | Getting annoyed at the amount of unrelated chatter I get from pgindent'ing Rowley's unique-joins patch. Re-indent all the files it touches.
* Don't require a user mapping for FDWs to work.Robert Haas2016-03-28
| | | | | | | | | Commit fbe5a3fb73102c2cfec11aaaa4a67943f4474383 accidentally changed this behavior; put things back the way they were, and add some regression tests. Report by Andres Freund; patch by Ashutosh Bapat, with a bit of kibitzing by me.
* Fix typos.Robert Haas2016-03-15
| | | | Oskari Saarenmaa
* Rethink representation of PathTargets.Tom Lane2016-03-14
| | | | | | | | | | | | | | In commit 19a541143a09c067 I did not make PathTarget a subtype of Node, and embedded a RelOptInfo's reltarget directly into it rather than having a separately-allocated Node. In hindsight that was misguided micro-optimization, enabled by the fact that at that point we didn't have any Paths with custom PathTargets. Now that PathTarget processing has been fleshed out some more, it's easier to see that it's better to have PathTarget as an indepedent Node type, even if it does cost us one more palloc to create a RelOptInfo. So change it while we still can. This commit just changes the representation, without doing anything more interesting than that.
* Make the upper part of the planner work by generating and comparing Paths.Tom Lane2016-03-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | I've been saying we needed to do this for more than five years, and here it finally is. This patch removes the ever-growing tangle of spaghetti logic that grouping_planner() used to use to try to identify the best plan for post-scan/join query steps. Now, there is (nearly) independent consideration of each execution step, and entirely separate construction of Paths to represent each of the possible ways to do that step. We choose the best Path or set of Paths using the same add_path() logic that's been used inside query_planner() for years. In addition, this patch removes the old restriction that subquery_planner() could return only a single Plan. It now returns a RelOptInfo containing a set of Paths, just as query_planner() does, and the parent query level can use each of those Paths as the basis of a SubqueryScanPath at its level. This allows finding some optimizations that we missed before, wherein a subquery was capable of returning presorted data and thereby avoiding a sort in the parent level, making the overall cost cheaper even though delivering sorted output was not the cheapest plan for the subquery in isolation. (A couple of regression test outputs change in consequence of that. However, there is very little change in visible planner behavior overall, because the point of this patch is not to get immediate planning benefits but to create the infrastructure for future improvements.) There is a great deal left to do here. This patch unblocks a lot of planner work that was basically impractical in the old code structure, such as allowing FDWs to implement remote aggregation, or rewriting plan_set_operations() to allow consideration of multiple implementation orders for set operations. (The latter will likely require a full rewrite of plan_set_operations(); what I've done here is only to fix it to return Paths not Plans.) I have also left unfinished some localized refactoring in createplan.c and planner.c, because it was not necessary to get this patch to a working state. Thanks to Robert Haas, David Rowley, and Amit Kapila for review.
* Add an explicit representation of the output targetlist to Paths.Tom Lane2016-02-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up to now, there's been an assumption that all Paths for a given relation compute the same output column set (targetlist). However, there are good reasons to remove that assumption. For example, an indexscan on an expression index might be able to return the value of an expensive function "for free". While we have the ability to generate such a plan today in simple cases, we don't have a way to model that it's cheaper than a plan that computes the function from scratch, nor a way to create such a plan in join cases (where the function computation would normally happen at the topmost join node). Also, we need this so that we can have Paths representing post-scan/join steps, where the targetlist may well change from one step to the next. Therefore, invent a "struct PathTarget" representing the columns we expect a plan step to emit. It's convenient to include the output tuple width and tlist evaluation cost in this struct, and there will likely be additional fields in future. While Path nodes that actually do have custom outputs will need their own PathTargets, it will still be true that most Paths for a given relation will compute the same tlist. To reduce the overhead added by this patch, keep a "default PathTarget" in RelOptInfo, and allow Paths that compute that column set to just point to their parent RelOptInfo's reltarget. (In the patch as committed, actually every Path is like that, since we do not yet have any cases of custom PathTargets.) I took this opportunity to provide some more-honest costing of PlaceHolderVar evaluation. Up to now, the assumption that "scan/join reltargetlists have cost zero" was applied not only to Vars, where it's reasonable, but also PlaceHolderVars where it isn't. Now, we add the eval cost of a PlaceHolderVar's expression to the first plan level where it can be computed, by including it in the PathTarget cost field and adding that to the cost estimates for Paths. This isn't perfect yet but it's much better than before, and there is a way forward to improve it more. This costing change affects the join order chosen for a couple of the regression tests, changing expected row ordering.
* Only try to push down foreign joins if the user mapping OIDs match.Robert Haas2016-01-28
| | | | | | | | | | | | | Previously, the foreign join pushdown infrastructure left the question of security entirely up to individual FDWs, but it would be easy for a foreign data wrapper to inadvertently open up subtle security holes that way. So, make it the core code's job to determine which user mapping OID is relevant, and don't attempt join pushdown unless it's the same for all relevant relations. Per a suggestion from Tom Lane. Shigeru Hanada and Ashutosh Bapat, reviewed by Etsuro Fujita and KaiGai Kohei, with some further changes by me.
* Support parallel joins, and make related improvements.Robert Haas2016-01-20
| | | | | | | | | | | | | | | | | | | | | | | | | | The core innovation of this patch is the introduction of the concept of a partial path; that is, a path which if executed in parallel will generate a subset of the output rows in each process. Gathering a partial path produces an ordinary (complete) path. This allows us to generate paths for parallel joins by joining a partial path for one side (which at the baserel level is currently always a Partial Seq Scan) to an ordinary path on the other side. This is subject to various restrictions at present, especially that this strategy seems unlikely to be sensible for merge joins, so only nested loops and hash joins paths are generated. This also allows an Append node to be pushed below a Gather node in the case of a partitioned table. Testing revealed that early versions of this patch made poor decisions in some cases, which turned out to be caused by the fact that the original cost model for Parallel Seq Scan wasn't very good. So this patch tries to make some modest improvements in that area. There is much more to be done in the area of generating good parallel plans in all cases, but this seems like a useful step forward. Patch by me, reviewed by Dilip Kumar and Amit Kapila.