| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The planner sometimes inserts Result nodes to perform column projections
(ie, arbitrary scalar calculations) above plan nodes that lack projection
logic of their own. However, we did that even if the lower plan node was
in fact producing the required column set already; which is a pretty common
case given the popularity of "SELECT * FROM ...". Measurements show that
the useless plan node adds non-negligible overhead, especially when there
are many columns in the result. So add a check to avoid inserting a Result
node unless there's something useful for it to do.
There are a couple of remaining places where unnecessary Result nodes
could get inserted, but they are (a) much less performance-critical,
and (b) coded in such a way that it's hard to avoid inserting a Result,
because the desired tlist is changed on-the-fly in subsequent logic.
We'll leave those alone for now.
Kyotaro Horiguchi; reviewed and further hacked on by Amit Kapila and
Tom Lane.
|
|
|
|
|
|
|
| |
This saves several catalog lookups per reference. It's not all that
exciting right now, because we'd managed to minimize the number of places
that need to fetch the data; but the upcoming writable-foreign-tables patch
needs this info in a lot more places.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A materialized view has a rule just like a view and a heap and
other physical properties like a table. The rule is only used to
populate the table, references in queries refer to the
materialized data.
This is a minimal implementation, but should still be useful in
many cases. Currently data is only populated "on demand" by the
CREATE MATERIALIZED VIEW and REFRESH MATERIALIZED VIEW statements.
It is expected that future releases will add incremental updates
with various timings, and that a more refined concept of defining
what is "fresh" data will be developed. At some point it may even
be possible to have queries use a materialized in place of
references to underlying tables, but that requires the other
above-mentioned features to be working first.
Much of the documentation work by Robert Haas.
Review by Noah Misch, Thom Brown, Robert Haas, Marko Tiikkaja
Security review by KaiGai Kohei, with a decision on how best to
implement sepgsql still pending.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Originally we didn't bother to mark FuncExprs with any indication whether
VARIADIC had been given in the source text, because there didn't seem to be
any need for it at runtime. However, because we cannot fold a VARIADIC ANY
function's arguments into an array (since they're not necessarily all the
same type), we do actually need that information at runtime if VARIADIC ANY
functions are to respond unsurprisingly to use of the VARIADIC keyword.
Add the missing field, and also fix ruleutils.c so that VARIADIC ANY
function calls are dumped properly.
Extracted from a larger patch that also fixes concat() and format() (the
only two extant VARIADIC ANY functions) to behave properly when VARIADIC is
specified. This portion seems appropriate to review and commit separately.
Pavel Stehule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Historically we've used a couple of very ad-hoc fudge factors to try to
get the right results when indexes of different sizes would satisfy a
query with the same number of index leaf tuples being visited. In
commit 21a39de5809cd3050a37d2554323cc1d0cbeed9d I tweaked one of these
fudge factors, with results that proved disastrous for larger indexes.
Commit bf01e34b556ff37982ba2d882db424aa484c0d07 fudged it some more,
but still with not a lot of principle behind it.
What seems like a better way to address these issues is to explicitly model
index-descent costs, since that's what's really at stake when considering
diferent indexes with similar leaf-page-level costs. We tried that once
long ago, and found that charging random_page_cost per page descended
through was way too much, because upper btree levels tend to stay in cache
in real-world workloads. However, there's still CPU costs to think about,
and the previous fudge factors can be seen as a crude attempt to account
for those costs. So this patch replaces those fudge factors with explicit
charges for the number of tuple comparisons needed to descend the index
tree, plus a small charge per page touched in the descent. The cost
multipliers are chosen so that the resulting charges are in the vicinity of
the historical (pre-9.2) fudge factors for indexes of up to about a million
tuples, while not ballooning unreasonably beyond that, as the old fudge
factor did (even more so in 9.2).
To make this work accurately for btree indexes, add some code that allows
extraction of the known root-page height from a btree. There's no
equivalent number readily available for other index types, but we can use
the log of the number of index pages as an approximate substitute.
This seems like too much of a behavioral change to risk back-patching,
but it should improve matters going forward. In 9.2 I'll just revert
the fudge-factor change.
|
|
|
|
|
| |
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 8cb53654dbdb4c386369eb988062d0bbb6de725e, which introduced DROP
INDEX CONCURRENTLY, managed to break CREATE INDEX CONCURRENTLY via a poor
choice of catalog state representation. The pg_index state for an index
that's reached the final pre-drop stage was the same as the state for an
index just created by CREATE INDEX CONCURRENTLY. This meant that the
(necessary) change to make RelationGetIndexList ignore about-to-die indexes
also made it ignore freshly-created indexes; which is catastrophic because
the latter do need to be considered in HOT-safety decisions. Failure to
do so leads to incorrect index entries and subsequently wrong results from
queries depending on the concurrently-created index.
To fix, add an additional boolean column "indislive" to pg_index, so that
the freshly-created and about-to-die states can be distinguished. (This
change obviously is only possible in HEAD. This patch will need to be
back-patched, but in 9.2 we'll use a kluge consisting of overloading the
formerly-impossible state of indisvalid = true and indisready = false.)
In addition, change CREATE/DROP INDEX CONCURRENTLY so that the pg_index
flag changes they make without exclusive lock on the index are made via
heap_inplace_update() rather than a normal transactional update. The
latter is not very safe because moving the pg_index tuple could result in
concurrent SnapshotNow scans finding it twice or not at all, thus possibly
resulting in index corruption. This is a pre-existing bug in CREATE INDEX
CONCURRENTLY, which was copied into the DROP code.
In addition, fix various places in the code that ought to check to make
sure that the indexes they are manipulating are valid and/or ready as
appropriate. These represent bugs that have existed since 8.2, since
a failed CREATE INDEX CONCURRENTLY could leave a corrupt or invalid
index behind, and we ought not try to do anything that might fail with
such an index.
Also fix RelationReloadIndexInfo to ensure it copies all the pg_index
columns that are allowed to change after initial creation. Previously we
could have been left with stale values of some fields in an index relcache
entry. It's not clear whether this actually had any user-visible
consequences, but it's at least a bug waiting to happen.
In addition, do some code and docs review for DROP INDEX CONCURRENTLY;
some cosmetic code cleanup but mostly addition and revision of comments.
This will need to be back-patched, but in a noticeably different form,
so I'm committing it to HEAD before working on the back-patch.
Problem reported by Amit Kapila, diagnosis by Pavan Deolassee,
fix by Tom Lane and Andres Freund.
|
|
|
|
| |
We don't need this hack any more.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This change ensures that the planner will see implicit and explicit casts
as equivalent for all purposes, except in the minority of cases where
there's actually a semantic difference (as reflected by having a 3-argument
cast function). In particular, this fixes cases where the EquivalenceClass
machinery failed to consider two references to a varchar column as
equivalent if one was implicitly cast to text but the other was explicitly
cast to text, as seen in bug #7598 from Vaclav Juza. We have had similar
bugs before in other parts of the planner, so I think it's time to fix this
problem at the core instead of continuing to band-aid around it.
Remove set_coercionform_dontcare(), which represents the band-aid
previously in use for allowing matching of index and constraint expressions
with inconsistent cast labeling. (We can probably get rid of
COERCE_DONTCARE altogether, but I don't think removing that enum value in
back branches would be wise; it's possible there's third party code
referring to it.)
Back-patch to 9.2. We could go back further, and might want to once this
has been tested more; but for the moment I won't risk destabilizing plan
choices in long-since-stable branches.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The planner previously assumed that parameter Vars having the same absolute
query level, varno, and varattno could safely be assigned the same runtime
PARAM_EXEC slot, even though they might be different Vars appearing in
different subqueries. This was (probably) safe before the introduction of
CTEs, but the lazy-evalution mechanism used for CTEs means that a CTE can
be executed during execution of some other subquery, causing the lifespan
of Params at the same syntactic nesting level as the CTE to overlap with
use of the same slots inside the CTE. In 9.1 we created additional hazards
by using the same parameter-assignment technology for nestloop inner scan
parameters, but it was broken before that, as illustrated by the added
regression test.
To fix, restructure the planner's management of PlannerParamItems so that
items having different semantic lifespans are kept rigorously separated.
This will probably result in complex queries using more runtime PARAM_EXEC
slots than before, but the slots are cheap enough that this hardly matters.
Also, stop generating PlannerParamItems containing Params for subquery
outputs: all we really need to do is reserve the PARAM_EXEC slot number,
and that now only takes incrementing a counter. The planning code is
simpler and probably faster than before, as well as being more correct.
Per report from Vik Reykja.
These changes will mostly also need to be made in the back branches, but
I'm going to hold off on that until after 9.2.0 wraps.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can detect whether the planner top level is going to care at all about
cheap startup cost (it will only do so if query_planner's tuple_fraction
argument is greater than zero). If it isn't, we might as well discard
paths immediately whose only advantage over others is cheap startup cost.
This turns out to get rid of quite a lot of paths in complex queries ---
I saw planner runtime reduction of more than a third on one large query.
Since add_path isn't currently passed the PlannerInfo "root", the easiest
way to tell it whether to do this was to add a bool flag to RelOptInfo.
That's a bit redundant, since all relations in a given query level will
have the same setting. But in the future it's possible that we'd refine
the control decision to work on a per-relation basis, so this seems like
a good arrangement anyway.
Per my suggestion of a few months ago.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If a PlaceHolderVar contains a pulled-up LATERAL reference, its minimum
possible evaluation level might be higher in the join tree than its
original syntactic location. That in turn affects the ph_needed level for
any contained PlaceHolderVars (that is, those PHVs had better propagate up
the join tree at least to the evaluation level of the outer PHV). We got
this mostly right, but mark_placeholder_maybe_needed() failed to account
for the effect, and in consequence could leave the inner PHVs with
ph_may_need less than what their ultimate ph_needed value will be. That's
bad because it could lead to failure to select a join order that will allow
evaluation of the inner PHV at a valid location. Fix that, and add an
Assert that checks that we don't ever set ph_needed to more than
ph_may_need.
|
|
|
|
|
| |
I had thought this case worked already, but perhaps I didn't re-test it
after adding extract_lateral_references() ...
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reduces unnecessary exposure of other headers through htup.h, which
is very widely included by many files.
I have chosen to move the function prototypes to the new file as well,
because that means htup.h no longer needs to include tupdesc.h. In
itself this doesn't have much effect in indirect inclusion of tupdesc.h
throughout the tree, because it's also required by execnodes.h; but it's
something to explore in the future, and it seemed best to do the htup.h
change now while I'm busy with it.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the initial cut at LATERAL, I kept the rule that cheapest_total_path
was always unparameterized, which meant it had to be NULL if the relation
has no unparameterized paths. It turns out to work much more nicely if
we always have *some* path nominated as cheapest-total for each relation.
In particular, let's still say it's the cheapest unparameterized path if
there is one; if not, take the cheapest-total-cost path among those of
the minimum available parameterization. (The first rule is actually
a special case of the second.)
This allows reversion of some temporary lobotomizations I'd put in place.
In particular, the planner can now consider hash and merge joins for
joins below a parameter-supplying nestloop, even if there aren't any
unparameterized paths available. This should bring planning of
LATERAL-containing queries to the same level as queries not using that
feature.
Along the way, simplify management of parameterized paths in add_path()
and friends. In the original coding for parameterized paths in 9.2,
I tried to minimize the logic changes in add_path(), so it just treated
parameterization as yet another dimension of comparison for paths.
We later made it ignore pathkeys (sort ordering) of parameterized paths,
on the grounds that ordering isn't a useful property for the path on the
inside of a nestloop, so we might as well get rid of useless parameterized
paths as quickly as possible. But we didn't take that reasoning as far as
we should have. Startup cost isn't a useful property inside a nestloop
either, so add_path() ought to discount startup cost of parameterized paths
as well. Having done that, the secondary sorting I'd implemented (in
add_parameterized_path) is no longer needed --- any parameterized path that
survives add_path() at all is worth considering at higher levels. So this
should be a bit faster as well as simpler.
|
|
|
|
|
|
|
|
|
|
|
|
| |
The heapam XLog functions are used by other modules, not all of which
are interested in the rest of the heapam API. With this, we let them
get just the XLog stuff in which they are interested and not pollute
them with unrelated includes.
Also, since heapam.h no longer requires xlog.h, many files that do
include heapam.h no longer get xlog.h automatically, including a few
headers. This is useful because heapam.h is getting pulled in by
execnodes.h, which is in turn included by a lot of files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch takes care of a number of problems having to do with failure
to choose valid join orders and incorrect handling of lateral references
pulled up from subqueries. Notable changes:
* Add a LateralJoinInfo data structure similar to SpecialJoinInfo, to
represent join ordering constraints created by lateral references.
(I first considered extending the SpecialJoinInfo structure, but the
semantics are different enough that a separate data structure seems
better.) Extend join_is_legal() and related functions to prevent trying
to form unworkable joins, and to ensure that we will consider joins that
satisfy lateral references even if the joins would be clauseless.
* Fill in the infrastructure needed for the last few types of relation scan
paths to support parameterization. We'd have wanted this eventually
anyway, but it is necessary now because a relation that gets pulled up out
of a UNION ALL subquery may acquire a reltargetlist containing lateral
references, meaning that its paths *have* to be parameterized whether or
not we have any code that can push join quals down into the scan.
* Compute data about lateral references early in query_planner(), and save
in RelOptInfo nodes, to avoid repetitive calculations later.
* Assorted corner-case bug fixes.
There's probably still some bugs left, but this is a lot closer to being
real than it was before.
|
|
|
|
|
|
|
|
|
|
|
| |
Formerly, subquery pullup had no need to examine other entries in the range
table, since they could not contain any references to the subquery being
pulled up. That's no longer true with LATERAL, so now we need to be able
to visit rangetable subexpressions to replace Vars referencing the
pulled-up subquery. Also, this means that extract_lateral_references must
be unsurprised at encountering lateral PlaceHolderVars, since such might be
created when pulling up a subquery that's underneath an outer join with
respect to the lateral reference.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join. If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.
Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).
Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones. This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.
Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether. Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Formerly we relied on checking after-the-fact to see if an expression
contained aggregates, window functions, or sub-selects when it shouldn't.
This is grotty, easily forgotten (indeed, we had forgotten to teach
DefineIndex about rejecting window functions), and none too efficient
since it requires extra traversals of the parse tree. To improve matters,
define an enum type that classifies all SQL sub-expressions, store it in
ParseState to show what kind of expression we are currently parsing, and
make transformAggregateCall, transformWindowFuncCall, and transformSubLink
check the expression type and throw error if the type indicates the
construct is disallowed. This allows removal of a large number of ad-hoc
checks scattered around the code base. The enum type is sufficiently
fine-grained that we can still produce error messages of at least the
same specificity as before.
Bringing these error checks together revealed that we'd been none too
consistent about phrasing of the error messages, so standardize the wording
a bit.
Also, rewrite checking of aggregate arguments so that it requires only one
traversal of the arguments, rather than up to three as before.
In passing, clean up some more comments left over from add_missing_from
support, and annotate some tests that I think are dead code now that that's
gone. (I didn't risk actually removing said dead code, though.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements the standard syntax of LATERAL attached to a
sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM,
since set-returning function calls are expected to be one of the principal
use-cases.
The main change here is a rewrite of the mechanism for keeping track of
which relations are visible for column references while the FROM clause is
being scanned. The parser "namespace" lists are no longer lists of bare
RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE
pointer as well as some visibility-controlling flags. Aside from
supporting LATERAL correctly, this lets us get rid of the ancient hacks
that required rechecking subqueries and JOIN/ON and function-in-FROM
expressions for invalid references after they were initially parsed.
Invalid column references are now always correctly detected on sight.
In passing, remove assorted parser error checks that are now dead code by
virtue of our having gotten rid of add_missing_from, as well as some
comments that are obsolete for the same reason. (It was mainly
add_missing_from that caused so much fudging here in the first place.)
The planner support for this feature is very minimal, and will be improved
in future patches. It works well enough for testing purposes, though.
catversion bump forced due to new field in RangeTblEntry.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We made use of the ROWS estimate for set-returning functions used in FROM,
but not for those used in SELECT targetlists; which is a bit of an
oversight considering there are common usages that require the latter
approach. Improve that. (I had initially thought it might be worth
folding this into cost_qual_eval, but after investigation concluded that
that wouldn't be very helpful, so just do it separately.) Per complaint
from David Johnston.
Back-patch to 9.2, but not further, for fear of destabilizing plan choices
in existing releases.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We can do this without creating an API break for estimation functions
by passing the collation using the existing fmgr functionality for
passing an input collation as a hidden parameter.
The need for this was foreseen at the outset, but we didn't get around to
making it happen in 9.1 because of the decision to sort all pg_statistic
histograms according to the database's default collation. That meant that
selectivity estimators generally need to use the default collation too,
even if they're estimating for an operator that will do something
different. The reason it's suddenly become more interesting is that
regexp interpretation also uses a collation (for its LC_TYPE not LC_COLLATE
property), and we no longer want to use the wrong collation when examining
regexps during planning. It's not that the selectivity estimate is likely
to change much from this; rather that we are thinking of caching compiled
regexps during planner estimation, and we won't get the intended benefit
if we cache them with a different collation than the executor will use.
Back-patch to 9.1, both because the regexp change is likely to get
back-patched and because we might as well get this right in all
collation-supporting branches, in case any third-party code wants to
rely on getting the collation. The patch turns out to be minuscule
now that I've done it ...
|
|
|
|
| |
commit-fest.
|
|
|
|
|
|
|
|
| |
Instead of an exact cost comparison, use a fuzzy comparison with 1e-10
delta after all other path metrics have proved equal. This is to avoid
having platform-specific roundoff behaviors determine the choice when
two paths are really the same to our cost estimators. Adjust the
recently-added test case that made it obvious we had a problem here.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch adjusts the treatment of parameterized paths so that all paths
with the same parameterization (same set of required outer rels) for the
same relation will have the same rowcount estimate. We cache the rowcount
estimates to ensure that property, and hopefully save a few cycles too.
Doing this makes it practical for add_path_precheck to operate without
a rowcount estimate: it need only assume that paths with different
parameterizations never dominate each other, which is close enough to
true anyway for coarse filtering, because normally a more-parameterized
path should yield fewer rows thanks to having more join clauses to apply.
In add_path, we do the full nine yards of comparing rowcount estimates
along with everything else, so that we can discard parameterized paths that
don't actually have an advantage. This fixes some issues I'd found with
add_path rejecting parameterized paths on the grounds that they were more
expensive than not-parameterized ones, even though they yielded many fewer
rows and hence would be cheaper once subsequent joining was considered.
To make the same-rowcounts assumption valid, we have to require that any
parameterized path enforce *all* join clauses that could be obtained from
the particular set of outer rels, even if not all of them are useful for
indexing. This is required at both base scans and joins. It's a good
thing anyway since the net impact is that join quals are checked at the
lowest practical level in the join tree. Hence, discard the original
rather ad-hoc mechanism for choosing parameterization joinquals, and build
a better one that has a more principled rule for when clauses can be moved.
The original rule was actually buggy anyway for lack of knowledge about
which relations are part of an outer join's outer side; getting this right
requires adding an outer_relids field to RestrictInfo.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We should be willing to cross-join two small relations if that allows us
to use an inner indexscan on a large relation (that is, the potential
indexqual for the large table requires both smaller relations). This
worked in simple cases but fell apart as soon as there was a join clause
to a fourth relation, because the existence of any two-relation join clause
caused the planner to not consider clauseless joins between other base
relations. The added regression test shows an example case adapted from
a recent complaint from Benoit Delbosc.
Adjust have_relevant_joinclause, have_relevant_eclass_joinclause, and
has_relevant_eclass_joinclause to consider that a join clause mentioning
three or more relations is sufficient grounds for joining any subset of
those relations, even if we have to do so via a cartesian join. Since such
clauses are relatively uncommon, this shouldn't affect planning speed on
typical queries; in fact it should help a bit, because the latter two
functions in particular get significantly simpler.
Although this is arguably a bug fix, I'm not going to risk back-patching
it, since it might have currently-unforeseen consequences.
|
|
|
|
|
|
|
|
|
|
| |
We were doing the recursive simplification of function/operator arguments
in half a dozen different places, with rather baroque logic to ensure it
didn't get done multiple times on some arguments. This patch improves that
by postponing argument simplification until after we've dealt with named
parameters and added any needed default expressions.
Marti Raudsepp, somewhat hacked on by me
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Fix loss of previous expression-simplification work when a transform
function fires: we must not simply revert to untransformed input tree.
Instead build a dummy FuncExpr node to pass to the transform function.
This has the additional advantage of providing a simpler, more uniform
API for transform functions.
Move documentation to a somewhat less buried spot, relocate some
poorly-placed code, be more wary of null constants and invalid typmod
values, add an opr_sanity check on protransform function signatures,
and some other minor cosmetic adjustments.
Note: although this patch touches pg_proc.h, no need for catversion
bump, because the changes are cosmetic and don't actually change the
intended catalog contents.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Making this operation look like a utility statement seems generally a good
idea, and particularly so in light of the desire to provide command
triggers for utility statements. The original choice of representing it as
SELECT with an IntoClause appendage had metastasized into rather a lot of
places, unfortunately, so that this patch is a great deal more complicated
than one might at first expect.
In particular, keeping EXPLAIN working for SELECT INTO and CREATE TABLE AS
subcommands required restructuring some EXPLAIN-related APIs. Add-on code
that calls ExplainOnePlan or ExplainOneUtility, or uses
ExplainOneQuery_hook, will need adjustment.
Also, the cases PREPARE ... SELECT INTO and CREATE RULE ... SELECT INTO,
which formerly were accepted though undocumented, are no longer accepted.
The PREPARE case can be replaced with use of CREATE TABLE AS EXECUTE.
The CREATE RULE case doesn't seem to have much real-world use (since the
rule would work only once before failing with "table already exists"),
so we'll not bother with that one.
Both SELECT INTO and CREATE TABLE AS still return a command tag of
"SELECT nnnn". There was some discussion of returning "CREATE TABLE nnnn",
but for the moment backwards compatibility wins the day.
Andres Freund and Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 57664ed25e5dea117158a2e663c29e60b3546e1c I tried to fix a bug
reported by Teodor Sigaev by making non-simple-Var output columns distinct
(by wrapping their expressions with dummy PlaceHolderVar nodes). This did
not work too well. Commit b28ffd0fcc583c1811e5295279e7d4366c3cae6c fixed
some ensuing problems with matching to child indexes, but per a recent
report from Claus Stadler, constraint exclusion of UNION ALL subqueries was
still broken, because constant-simplification didn't handle the injected
PlaceHolderVars well either. On reflection, the original patch was quite
misguided: there is no reason to expect that EquivalenceClass child members
will be distinct. So instead of trying to make them so, we should ensure
that we can cope with the situation when they're not.
Accordingly, this patch reverts the code changes in the above-mentioned
commits (though the regression test cases they added stay). Instead, I've
added assorted defenses to make sure that duplicate EC child members don't
cause any problems. Teodor's original problem ("MergeAppend child's
targetlist doesn't match MergeAppend") is addressed more directly by
revising prepare_sort_from_pathkeys to let the parent MergeAppend's sort
list guide creation of each child's sort list.
In passing, get rid of add_sort_column; as far as I can tell, testing for
duplicate sort keys at this stage is dead code. Certainly it doesn't
trigger often enough to be worth expending cycles on in ordinary queries.
And keeping the test would've greatly complicated the new logic in
prepare_sort_from_pathkeys, because comparing pathkey list entries against
a previous output array requires that we not skip any entries in the list.
Back-patch to 9.1, like the previous patches. The only known issue in
this area that wasn't caused by the ill-advised previous patches was the
MergeAppend planning failure, which of course is not relevant before 9.1.
It's possible that we need some of the new defenses against duplicate child
EC entries in older branches, but until there's some clear evidence of that
I'm going to refrain from back-patching further.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Further reflection shows that a single callback isn't very workable if we
desire to let FDWs generate multiple Paths, because that forces the FDW to
do all work necessary to generate a valid Plan node for each Path. Instead
split the former PlanForeignScan API into three steps: GetForeignRelSize,
GetForeignPaths, GetForeignPlan. We had already bit the bullet of breaking
the 9.1 FDW API for 9.2, so this shouldn't cause very much additional pain,
and it's substantially more flexible for complex FDWs.
Add an fdw_private field to RelOptInfo so that the new functions can save
state there rather than possibly having to recalculate information two or
three times.
In addition, we'd not thought through what would be needed to allow an FDW
to set up subexpressions of its choice for runtime execution. We could
treat ForeignScan.fdw_private as an executable expression but that seems
likely to break existing FDWs unnecessarily (in particular, it would
restrict the set of node types allowable in fdw_private to those supported
by expression_tree_walker). Instead, invent a separate field fdw_exprs
which will receive the postprocessing appropriate for expression trees.
(One field is enough since it can be a list of expressions; also, we assume
the corresponding expression state tree(s) will be held within fdw_state,
so we don't need to add anything to ForeignScanState.)
Per review of Hanada Shigeru's pgsql_fdw patch. We may need to tweak this
further as we continue to work on that patch, but to me it feels a lot
closer to being right now.
|
|
|
|
|
|
|
|
|
|
|
| |
The original API specification only allowed an FDW to create a single
access path, which doesn't seem like a terribly good idea in hindsight.
Instead, move the responsibility for building the Path node and calling
add_path() into the FDW's PlanForeignScan function. Now, it can do that
more than once if appropriate. There is no longer any need for the
transient FdwPlan struct, so get rid of that.
Etsuro Fujita, Shigeru Hanada, Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The hstore and json datatypes both have record-conversion functions that
pay attention to column names in the composite values they're handed.
We used to not worry about inserting correct field names into tuple
descriptors generated at runtime, but given these examples it seems
useful to do so. Observe the nicer-looking results in the regression
tests whose results changed.
catversion bump because there is a subtle change in requirements for stored
rule parsetrees: RowExprs from ROW() constructs now have to include field
names.
Andrew Dunstan and Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We don't normally allow quals to be pushed down into a view created
with the security_barrier option, but functions without side effects
are an exception: they're OK. This allows much better performance in
common cases, such as when using an equality operator (that might
even be indexable).
There is an outstanding issue here with the CREATE FUNCTION / ALTER
FUNCTION syntax: there's no way to use ALTER FUNCTION to unset the
leakproof flag. But I'm committing this as-is so that it doesn't
have to be rebased again; we can fix up the grammar in a future
commit.
KaiGai Kohei, with some wordsmithing by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch fixes the planner so that it can generate nestloop-with-
inner-indexscan plans even with one or more levels of joining between
the indexscan and the nestloop join that is supplying the parameter.
The executor was fixed to handle such cases some time ago, but the
planner was not ready. This should improve our plans in many situations
where join ordering restrictions formerly forced complete table scans.
There is probably a fair amount of tuning work yet to be done, because
of various heuristics that have been added to limit the number of
parameterized paths considered. However, we are not going to find out
what needs to be adjusted until the code gets some real-world use, so
it's time to get it in there where it can be tested easily.
Note API change for index AM amcostestimate functions. I'm not aware of
any non-core index AMs, but if there are any, they will need minor
adjustments.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit e2c2c2e8b1df7dfdb01e7e6f6191a569ce3c3195 I made use of nested
list structures to show which clauses went with which index columns, but
on reflection that's a data structure that only an old-line Lisp hacker
could love. Worse, it adds unnecessary complication to the many places
that don't much care which clauses go with which index columns. Revert
to the previous arrangement of flat lists of clauses, and instead add a
parallel integer list of column numbers. The places that care about the
pairing can chase both lists with forboth(), while the places that don't
care just examine one list the same as before.
The only real downside to this is that there are now two more lists that
need to be passed to amcostestimate functions in case they care about
column matching (which btcostestimate does, so not passing the info is not
an option). Rather than deal with 11-argument amcostestimate functions,
pass just the IndexPath and expect the functions to extract fields from it.
That gets us down to 7 arguments which is better than 11, and it seems
more future-proof against likely additions to the information we keep
about an index path.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
It's potentially useful for an index to repeat the same indexable column
or expression in multiple index columns, if the columns have different
opclasses. (If they share opclasses too, the duplicate column is pretty
useless, but nonetheless we've allowed such cases since 9.0.) However,
the planner failed to cope with this, because createplan.c was relying on
simple equal() matching to figure out which index column each index qual
is intended for. We do have that information available upstream in
indxpath.c, though, so the fix is to not flatten the multi-level indexquals
list when putting it into an IndexPath. Then we can rely on the sublist
structure to identify target index columns in createplan.c. There's a
similar issue for index ORDER BYs (the KNNGIST feature), so introduce a
multi-level-list representation for that too. This adds a bit more
representational overhead, but we might more or less buy that back by not
having to search for matching index columns anymore in createplan.c;
likewise btcostestimate saves some cycles.
Per bug #6351 from Christian Rudolph. Likely symptoms include the "btree
index keys must be ordered by attribute" failure shown there, as well as
"operator MMMM is not a member of opfamily NNNN".
Although this is a pre-existing problem that can be demonstrated in 9.0 and
9.1, I'm not going to back-patch it, because the API changes in the planner
seem likely to break things such as index plugins. The corner cases where
this matters seem too narrow to justify possibly breaking things in a minor
release.
|
|
|
|
|
|
|
|
|
| |
The need for this was debated when we put in the index-only-scan feature,
but at the time we had no near-term expectation of having AMs that could
support such scans for only some indexes; so we kept it simple. However,
the SP-GiST AM forces the issue, so let's fix it.
This patch only installs the new API; no behavior actually changes.
|
|
|
|
| |
Thomas Munro
|
|
|
|
|
|
| |
Moving the code two full tab stops to the right requires rethinking of
cosmetic code layout choices, which pgindent isn't really able to do for
us. Whitespace and comment adjustments only, no code changes.
|
| |
|
|
|
|
|
|
|
|
|
| |
This function has now grown enough cases that a switch seems appropriate.
This results in a measurable speed improvement on some platforms, and
should certainly not hurt. The code's in need of a pgindent run now,
though.
Andres Freund
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add PlaceHolderVar wrappers as needed to make UNION ALL sub-select output
expressions appear non-constant and distinct from each other. This makes
the world safe for add_child_rel_equivalences to do what it does. Before,
it was possible for that function to add identical expressions to different
EquivalenceClasses, which logically should imply merging such ECs, which
would be wrong; or to improperly add a constant to an EquivalenceClass,
drastically changing its behavior. Per report from Teodor Sigaev.
The only currently known consequence of this bug is "MergeAppend child's
targetlist doesn't match MergeAppend" planner failures in 9.1 and later.
I am suspicious that there may be other failure modes that could affect
older release branches; but in the absence of any hard evidence, I'll
refrain from back-patching further than 9.1.
|
|
|
|
|
|
|
|
| |
inline_set_returning_function failed to distinguish functions returning
generic RECORD (which require a column list in the RTE, as well as run-time
type checking) from those with multiple OUT parameters (which do not).
This prevented inlining from happening. Per complaint from Jay Levitt.
Back-patch to 8.4 where this capability was introduced.
|
|
|
|
|
|
|
| |
This allows us to give correct syntax error pointers when complaining
about ungrouped variables in a join query with aggregates or GROUP BY.
It's pretty much irrelevant for the planner's use of the function, though
perhaps it might aid debugging sometimes.
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the right-hand side of a semijoin is unique, then we can treat it like a
normal join (or another way to say that is: we don't need to explicitly
unique-ify the data before doing it as a normal join). We were recognizing
such cases when the RHS was a sub-query with appropriate DISTINCT or GROUP
BY decoration, but there's another way: if the RHS is a plain relation with
unique indexes, we can check if any of the indexes prove the output is
unique. Most of the infrastructure for that was there already in the join
removal code, though I had to rearrange it a bit. Per reflection about a
recent example in pgsql-performance.
|
|
|
|
|
|
|
|
|
|
|
| |
The uniqueness condition might fail to hold intra-transaction, and assuming
it does can give incorrect query results. Per report from Marti Raudsepp,
though this is not his proposed patch.
Back-patch to 9.0, where both these features were introduced. In the
released branches, add the new IndexOptInfo field to the end of the struct,
to try to minimize ABI breakage for third-party code that may be examining
that struct.
|
|
|
|
|
| |
This allows "indexedcol op ANY(ARRAY[...])" conditions to be used in plain
indexscans, and particularly in index-only scans.
|