aboutsummaryrefslogtreecommitdiff
path: root/src/backend/parser/parse_agg.c
Commit message (Collapse)AuthorAge
* Fix type-safety problem with parallel aggregate serial/deserialization.Tom Lane2016-06-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | The original specification for this called for the deserialization function to have signature "deserialize(serialtype) returns transtype", which is a security violation if transtype is INTERNAL (which it always would be in practice) and serialtype is not (which ditto). The patch blithely overrode the opr_sanity check for that, which was sloppy-enough work in itself, but the indisputable reason this cannot be allowed to stand is that CREATE FUNCTION will reject such a signature and thus it'd be impossible for extensions to create parallelizable aggregates. The minimum fix to make the signature type-safe is to add a second, dummy argument of type INTERNAL. But to lock it down a bit more and make misuse of INTERNAL-accepting functions less likely, let's get rid of the ability to specify a "serialtype" for an aggregate and just say that the only useful serialtype is BYTEA --- which, in practice, is the only interesting value anyway, due to the usefulness of the send/recv infrastructure for this purpose. That means we only have to allow "serialize(internal) returns bytea" and "deserialize(bytea, internal) returns internal" as the signatures for these support functions. In passing fix bogus signature of int4_avg_combine, which I found thanks to adding an opr_sanity check on combinefunc signatures. catversion bump due to removing pg_aggregate.aggserialtype and adjusting signatures of assorted built-in functions. David Rowley and Tom Lane Discussion: <27247.1466185504@sss.pgh.pa.us>
* Fix handling of argument and result datatypes for partial aggregation.Tom Lane2016-06-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | When doing partial aggregation, the args list of the upper (combining) Aggref node is replaced by a Var representing the output of the partial aggregation steps, which has either the aggregate's transition data type or a serialized representation of that. However, nodeAgg.c blindly continued to use the args list as an indication of the user-level argument types. This broke resolution of polymorphic transition datatypes at executor startup (though it accidentally failed to fail for the ANYARRAY case, which is likely the only one anyone had tested). Moreover, the constructed FuncExpr passed to the finalfunc contained completely wrong information, which would have led to bogus answers or crashes for any case where the finalfunc examined that information (which is only likely to be with polymorphic aggregates using a non-polymorphic transition type). As an independent bug, apply_partialaggref_adjustment neglected to resolve a polymorphic transition datatype before assigning it as the output type of the lower-level Aggref node. This again accidentally failed to fail for ANYARRAY but would be unlikely to work in other cases. To fix the first problem, record the user-level argument types in a separate OID-list field of Aggref, and look to that rather than the args list when asking what the argument types were. (It turns out to be convenient to include any "direct" arguments in this list too, although those are not currently subject to being overwritten.) Rather than adding yet another resolve_aggregate_transtype() call to fix the second problem, add an aggtranstype field to Aggref, and store the resolved transition type OID there when the planner first computes it. (By doing this in the planner and not the parser, we can allow the aggregate's transition type to change from time to time, although no DDL support yet exists for that.) This saves nothing of consequence for simple non-polymorphic aggregates, but for polymorphic transition types we save a catalog lookup during executor startup as well as several planner lookups that are new in 9.6 due to parallel query planning. In passing, fix an error that was introduced into count_agg_clauses_walker some time ago: it was applying exprTypmod() to something that wasn't an expression node at all, but a TargetEntry. exprTypmod silently returned -1 so that there was not an obvious failure, but this broke the intended sensitivity of aggregate space consumption estimates to the typmod of varchar and similar data types. This part needs to be back-patched. Catversion bump due to change of stored Aggref nodes. Discussion: <8229.1466109074@sss.pgh.pa.us>
* Allow aggregate transition states to be serialized and deserialized.Robert Haas2016-03-29
| | | | | | | | | This is necessary infrastructure for supporting parallel aggregation for aggregates whose transition type is "internal". Such values can't be passed between cooperating processes, because they are just pointers. David Rowley, reviewed by Tomas Vondra and by me.
* Refactor pull_var_clause's API to make it less tedious to extend.Tom Lane2016-03-10
| | | | | | | | | | | | | | | | | | | | In commit 1d97c19a0f748e94 and later c1d9579dd8bf3c92, we extended pull_var_clause's API by adding enum-type arguments. That's sort of a pain to maintain, though, because it means every time we add a new behavior we must touch every last one of the call sites, even if there's a reasonable default behavior that most of them could use. Let's switch over to using a bitmask of flags, instead; that seems more maintainable and might save a nanosecond or two as well. This commit changes no behavior in itself, though I'm going to follow it up with one that does add a new behavior. In passing, remove flatten_tlist(), which has not been used since 9.1 and would otherwise need the same API changes. Removing these enums means that optimizer/tlist.h no longer needs to depend on optimizer/var.h. Changing that caused a number of C files to need addition of #include "optimizer/var.h" (probably we can thank old runs of pgrminclude for that); but on balance it seems like a good change anyway.
* Move pg_constraint.h function declarations to new file pg_constraint_fn.h.Tom Lane2016-02-11
| | | | | | | | | | | A pending patch requires exporting a function returning Bitmapset from catalog/pg_constraint.c. As things stand, that would mean including nodes/bitmapset.h in pg_constraint.h, which might be hazardous for the client-side includability of that header. It's not entirely clear whether any client-side code needs to include pg_constraint.h, but it seems prudent to assume that there is some such code somewhere. Therefore, split off the function definitions into a new file pg_constraint_fn.h, similarly to what we've done for some other catalog header files.
* Support multi-stage aggregation.Robert Haas2016-01-20
| | | | | | | | | | | | | | | | | | | Aggregate nodes now have two new modes: a "partial" mode where they output the unfinalized transition state, and a "finalize" mode where they accept unfinalized transition states rather than individual values as input. These new modes are not used anywhere yet, but they will be necessary for parallel aggregation. The infrastructure also figures to be useful for cases where we want to aggregate local data and remote data via the FDW interface, and want to bring back partial aggregates from the remote side that can then be combined with locally generated partial aggregates to produce the final value. It may also be useful even when neither FDWs nor parallelism are in play, as explained in the comments in nodeAgg.c. David Rowley and Simon Riggs, reviewed by KaiGai Kohei, Heikki Linnakangas, Haribabu Kommi, and me.
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Message improvementsPeter Eisentraut2015-11-16
|
* Share transition state between different aggregates when possible.Heikki Linnakangas2015-08-04
| | | | | | | | | | | | If there are two different aggregates in the query with same inputs, and the aggregates have the same initial condition and transition function, only calculate the state value once, and only call the final functions separately. For example, AVG(x) and SUM(x) aggregates have the same transition function, which accumulates the sum and number of input tuples. For a query like "SELECT AVG(x), SUM(x) FROM x", we can therefore accumulate the state function only once, which gives a nice speedup. David Rowley, reviewed and edited by me.
* Create new ParseExprKind for use by policy expressions.Joe Conway2015-07-29
| | | | | | | | | | | Policy USING and WITH CHECK expressions were using EXPR_KIND_WHERE for parse analysis, which results in inappropriate ERROR messages when the expression contains unsupported constructs such as aggregates. Create a new ParseExprKind called EXPR_KIND_POLICY and tailor the related messages to fit. Reported by Noah Misch. Reviewed by Dean Rasheed, Alvaro Herrera, and Robert Haas. Back-patch to 9.5 where RLS was introduced.
* pgindent run for 9.5Bruce Momjian2015-05-23
|
* Support GROUPING SETS, CUBE and ROLLUP.Andres Freund2015-05-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This SQL standard functionality allows to aggregate data by different GROUP BY clauses at once. Each grouping set returns rows with columns grouped by in other sets set to NULL. This could previously be achieved by doing each grouping as a separate query, conjoined by UNION ALLs. Besides being considerably more concise, grouping sets will in many cases be faster, requiring only one scan over the underlying data. The current implementation of grouping sets only supports using sorting for input. Individual sets that share a sort order are computed in one pass. If there are sets that don't share a sort order, additional sort & aggregation steps are performed. These additional passes are sourced by the previous sort step; thus avoiding repeated scans of the source data. The code is structured in a way that adding support for purely using hash aggregation or a mix of hashing and sorting is possible. Sorting was chosen to be supported first, as it is the most generic method of implementation. Instead of, as in an earlier versions of the patch, representing the chain of sort and aggregation steps as full blown planner and executor nodes, all but the first sort are performed inside the aggregation node itself. This avoids the need to do some unusual gymnastics to handle having to return aggregated and non-aggregated tuples from underlying nodes, as well as having to shut down underlying nodes early to limit memory usage. The optimizer still builds Sort/Agg node to describe each phase, but they're not part of the plan tree, but instead additional data for the aggregation node. They're a convenient and preexisting way to describe aggregation and sorting. The first (and possibly only) sort step is still performed as a separate execution step. That retains similarity with existing group by plans, makes rescans fairly simple, avoids very deep plans (leading to slow explains) and easily allows to avoid the sorting step if the underlying data is sorted by other means. A somewhat ugly side of this patch is having to deal with a grammar ambiguity between the new CUBE keyword and the cube extension/functions named cube (and rollup). To avoid breaking existing deployments of the cube extension it has not been renamed, neither has cube been made a reserved keyword. Instead precedence hacking is used to make GROUP BY cube(..) refer to the CUBE grouping sets feature, and not the function cube(). To actually group by a function cube(), unlikely as that might be, the function name has to be quoted. Needs a catversion bump because stored rules may change. Author: Andrew Gierth and Atri Sharma, with contributions from Andres Freund Reviewed-By: Andres Freund, Noah Misch, Tom Lane, Svenne Krap, Tomas Vondra, Erik Rijkers, Marti Raudsepp, Pavel Stehule Discussion: CAOeZVidmVRe2jU6aMk_5qkxnB7dfmPROzM7Ur8JPW5j8Y5X-Lw@mail.gmail.com
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* pgindent run for 9.4Bruce Momjian2014-05-06
| | | | | This includes removing tabs after periods in C comments, which was applied to back branches, so this change should not effect backpatching.
* Allow polymorphic aggregates to have non-polymorphic state data types.Tom Lane2014-04-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before 9.4, such an aggregate couldn't be declared, because its final function would have to have polymorphic result type but no polymorphic argument, which CREATE FUNCTION would quite properly reject. The ordered-set-aggregate patch found a workaround: allow the final function to be declared as accepting additional dummy arguments that have types matching the aggregate's regular input arguments. However, we failed to notice that this problem applies just as much to regular aggregates, despite the fact that we had a built-in regular aggregate array_agg() that was known to be undeclarable in SQL because its final function had an illegal signature. So what we should have done, and what this patch does, is to decouple the extra-dummy-arguments behavior from ordered-set aggregates and make it generally available for all aggregate declarations. We have to put this into 9.4 rather than waiting till later because it slightly alters the rules for declaring ordered-set aggregates. The patch turned out a bit bigger than I'd hoped because it proved necessary to record the extra-arguments option in a new pg_aggregate column. I'd thought we could just look at the final function's pronargs at runtime, but that didn't work well for variadic final functions. It's probably just as well though, because it simplifies life for pg_dump to record the option explicitly. While at it, fix array_agg() to have a valid final-function signature, and add an opr_sanity test to notice future deviations from polymorphic consistency. I also marked the percentile_cont() aggregates as not needing extra arguments, since they don't.
* Create infrastructure for moving-aggregate optimization.Tom Lane2014-04-12
| | | | | | | | | | | | | | | | | | | Until now, when executing an aggregate function as a window function within a window with moving frame start (that is, any frame start mode except UNBOUNDED PRECEDING), we had to recalculate the aggregate from scratch each time the frame head moved. This patch allows an aggregate definition to include an alternate "moving aggregate" implementation that includes an inverse transition function for removing rows from the aggregate's running state. As long as this can be done successfully, runtime is proportional to the total number of input rows, rather than to the number of input rows times the average frame length. This commit includes the core infrastructure, documentation, and regression tests using user-defined aggregates. Follow-on commits will update some of the built-in aggregates to use this feature. David Rowley and Florian Pflug, reviewed by Dean Rasheed; additional hacking by me
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Support ordered-set (WITHIN GROUP) aggregates.Tom Lane2013-12-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces generic support for ordered-set and hypothetical-set aggregate functions, as well as implementations of the instances defined in SQL:2008 (percentile_cont(), percentile_disc(), rank(), dense_rank(), percent_rank(), cume_dist()). We also added mode() though it is not in the spec, as well as versions of percentile_cont() and percentile_disc() that can compute multiple percentile values in one pass over the data. Unlike the original submission, this patch puts full control of the sorting process in the hands of the aggregate's support functions. To allow the support functions to find out how they're supposed to sort, a new API function AggGetAggref() is added to nodeAgg.c. This allows retrieval of the aggregate call's Aggref node, which may have other uses beyond the immediate need. There is also support for ordered-set aggregates to install cleanup callback functions, so that they can be sure that infrastructure such as tuplesort objects gets cleaned up. In passing, make some fixes in the recently-added support for variadic aggregates, and make some editorial adjustments in the recent FILTER additions for aggregates. Also, simplify use of IsBinaryCoercible() by allowing it to succeed whenever the target type is ANY or ANYELEMENT. It was inconsistent that it dealt with other polymorphic target types but not these. Atri Sharma and Andrew Gierth; reviewed by Pavel Stehule and Vik Fearing, and rather heavily editorialized upon by Tom Lane
* Allow aggregate functions to be VARIADIC.Tom Lane2013-09-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | There's no inherent reason why an aggregate function can't be variadic (even VARIADIC ANY) if its transition function can handle the case. Indeed, this patch to add the feature touches none of the planner or executor, and little of the parser; the main missing stuff was DDL and pg_dump support. It is true that variadic aggregates can create the same sort of ambiguity about parameters versus ORDER BY keys that was complained of when we (briefly) had both one- and two-argument forms of string_agg(). However, the policy formed in response to that discussion only said that we'd not create any built-in aggregates with varying numbers of arguments, not that we shouldn't allow users to do it. So the logical extension of that is we can allow users to make variadic aggregates as long as we're wary about shipping any such in core. In passing, this patch allows aggregate function arguments to be named, to the extent of remembering the names in pg_proc and dumping them in pg_dump. You can't yet call an aggregate using named-parameter notation. That seems like a likely future extension, but it'll take some work, and it's not what this patch is really about. Likewise, there's still some work needed to make window functions handle VARIADIC fully, but I left that for another day. initdb forced because of new aggvariadic field in Aggref parse nodes.
* Implement the FILTER clause for aggregate function calls.Noah Misch2013-07-16
| | | | | | | | | This is SQL-standard with a few extensions, namely support for subqueries and outer references in clause expressions. catversion bump due to change in Aggref and WindowFunc. David Fetter, reviewed by Dean Rasheed.
* pgindent run for release 9.3Bruce Momjian2013-05-29
| | | | | This is the first run of the Perl-based pgindent script. Also update pgindent instructions.
* Make some spelling more consistentPeter Eisentraut2013-01-05
|
* Update copyrights for 2013Bruce Momjian2013-01-01
| | | | | Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files.
* Get rid of COERCE_DONTCARE.Tom Lane2012-10-12
| | | | We don't need this hack any more.
* Centralize the logic for detecting misplaced aggregates, window funcs, etc.Tom Lane2012-08-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | Formerly we relied on checking after-the-fact to see if an expression contained aggregates, window functions, or sub-selects when it shouldn't. This is grotty, easily forgotten (indeed, we had forgotten to teach DefineIndex about rejecting window functions), and none too efficient since it requires extra traversals of the parse tree. To improve matters, define an enum type that classifies all SQL sub-expressions, store it in ParseState to show what kind of expression we are currently parsing, and make transformAggregateCall, transformWindowFuncCall, and transformSubLink check the expression type and throw error if the type indicates the construct is disallowed. This allows removal of a large number of ad-hoc checks scattered around the code base. The enum type is sufficiently fine-grained that we can still produce error messages of at least the same specificity as before. Bringing these error checks together revealed that we'd been none too consistent about phrasing of the error messages, so standardize the wording a bit. Also, rewrite checking of aggregate arguments so that it requires only one traversal of the arguments, rather than up to three as before. In passing, clean up some more comments left over from add_missing_from support, and annotate some tests that I think are dead code now that that's gone. (I didn't risk actually removing said dead code, though.)
* Implement SQL-standard LATERAL subqueries.Tom Lane2012-08-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | This patch implements the standard syntax of LATERAL attached to a sub-SELECT in FROM, and also allows LATERAL attached to a function in FROM, since set-returning function calls are expected to be one of the principal use-cases. The main change here is a rewrite of the mechanism for keeping track of which relations are visible for column references while the FROM clause is being scanned. The parser "namespace" lists are no longer lists of bare RTEs, but are lists of ParseNamespaceItem structs, which carry an RTE pointer as well as some visibility-controlling flags. Aside from supporting LATERAL correctly, this lets us get rid of the ancient hacks that required rechecking subqueries and JOIN/ON and function-in-FROM expressions for invalid references after they were initially parsed. Invalid column references are now always correctly detected on sight. In passing, remove assorted parser error checks that are now dead code by virtue of our having gotten rid of add_missing_from, as well as some comments that are obsolete for the same reason. (It was mainly add_missing_from that caused so much fudging here in the first place.) The planner support for this feature is very minimal, and will be improved in future patches. It works well enough for testing purposes, though. catversion bump forced due to new field in RangeTblEntry.
* Update copyright notices for year 2012.Bruce Momjian2012-01-01
|
* Remove unnecessary #include references, per pgrminclude script.Bruce Momjian2011-09-01
|
* pgindent run before PG 9.1 beta 1.Bruce Momjian2011-04-10
|
* Revise collation derivation method and expression-tree representation.Tom Lane2011-03-19
| | | | | | | | | | | | | | | | | | | All expression nodes now have an explicit output-collation field, unless they are known to only return a noncollatable data type (such as boolean or record). Also, nodes that can invoke collation-aware functions store a separate field that is the collation value to pass to the function. This avoids confusion that arises when a function has collatable inputs and noncollatable output type, or vice versa. Also, replace the parser's on-the-fly collation assignment method with a post-pass over the completed expression tree. This allows us to use a more complex (and hopefully more nearly spec-compliant) assignment rule without paying for it in extra storage in every expression node. Fix assorted bugs in the planner's handling of collations by making collation one of the defining properties of an EquivalenceClass and by converting CollateExprs into discardable RelabelType nodes during expression preprocessing.
* Per-column collation supportPeter Eisentraut2011-02-08
| | | | | | | | This adds collation support for columns and domains, a COLLATE clause to override it per expression, and B-tree index support. Peter Eisentraut reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
* Stamp copyrights for year 2011.Bruce Momjian2011-01-01
|
* Remove cvs keywords from all files.Magnus Hagander2010-09-20
|
* Recognize functional dependency on primary keys. This allows a table'sTom Lane2010-08-07
| | | | | | | | | | | | | other columns to be referenced without listing them in GROUP BY, so long as the primary key column(s) are listed in GROUP BY. Eventually we should also allow functional dependency on a UNIQUE constraint when the columns are marked NOT NULL, but that has to wait until NOT NULL constraints are represented in pg_constraint, because we need to have pg_constraint OIDs for all the conditions needed to ensure functional dependency. Peter Eisentraut, reviewed by Alex Hunsaker and Tom Lane
* Pass incompletely-transformed aggregate argument lists as separate parametersTom Lane2010-03-17
| | | | | | to transformAggregateCall, instead of abusing fields in Aggref to carry them temporarily. No change in functionality but hopefully the code is a bit clearer now. Per gripe from Gokulakannan Somasundaram.
* pgindent run for 9.0Bruce Momjian2010-02-26
|
* Extend the set of frame options supported for window functions.Tom Lane2010-02-12
| | | | | | | | | This patch allows the frame to start from CURRENT ROW (in either RANGE or ROWS mode), and it also adds support for ROWS n PRECEDING and ROWS n FOLLOWING start and end points. (RANGE value PRECEDING/FOLLOWING isn't there yet --- the grammar works, but that's all.) Hitoshi Harada, reviewed by Pavel Stehule
* Update copyright for the year 2010.Bruce Momjian2010-01-02
|
* Support ORDER BY within aggregate function calls, at long last providing aTom Lane2009-12-15
| | | | | | | | | | | | | non-kluge method for controlling the order in which values are fed to an aggregate function. At the same time eliminate the old implementation restriction that DISTINCT was only supported for single-argument aggregates. Possibly release-notable behavioral change: formerly, agg(DISTINCT x) dropped null values of x unconditionally. Now, it does so only if the agg transition function is strict; otherwise nulls are treated as DISTINCT normally would, ie, you get one copy. Andrew Gierth, reviewed by Hitoshi Harada
* 8.4 pgindent run, with new combined Linux/FreeBSD/MinGW typedef listBruce Momjian2009-06-11
| | | | provided by Andrew.
* Update copyright for 2009.Bruce Momjian2009-01-01
|
* Add some basic support for window frame clauses to the window-functionsTom Lane2008-12-31
| | | | | | | | patch. This includes the ability to force the frame to cover the whole partition, and the ability to make the frame end exactly on the current row rather than its last ORDER BY peer. Supporting any more of the full SQL frame-clause syntax will require nontrivial hacking on the window aggregate code, so it'll have to wait for 8.5 or beyond.
* Support window functions a la SQL:2008.Tom Lane2008-12-28
| | | | Hitoshi Harada, with some kibitzing from Heikki and Tom.
* Implement SQL-standard WITH clauses, including WITH RECURSIVE.Tom Lane2008-10-04
| | | | | | | | | | | | | There are some unimplemented aspects: recursive queries must use UNION ALL (should allow UNION too), and we don't have SEARCH or CYCLE clauses. These might or might not get done for 8.4, but even without them it's a pretty useful feature. There are also a couple of small loose ends and definitional quibbles, which I'll send a memo about to pgsql-hackers shortly. But let's land the patch now so we can get on with other development. Yoshiyuki Asaba, with lots of help from Tatsuo Ishii and Tom Lane
* Add a bunch of new error location reports to parse-analysis error messages.Tom Lane2008-09-01
| | | | | There are still some weak spots around JOIN USING and relation alias lists, but most errors reported within backend/parser/ now have locations.
* Extend the parser location infrastructure to include a location field inTom Lane2008-08-28
| | | | | | | | | | | | | most node types used in expression trees (both before and after parse analysis). This allows us to place an error cursor in many situations where we formerly could not, because the information wasn't available beyond the very first level of parse analysis. There's a fair amount of work still to be done to persuade individual ereport() calls to actually include an error location, but this gets the initdb-forcing part of the work out of the way; and the situation is already markedly better than before for complaints about unimplementable implicit casts, such as CASE and UNION constructs with incompatible alternative data types. Per my proposal of a few days ago.
* Move exprType(), exprTypmod(), expression_tree_walker(), and related routinesTom Lane2008-08-25
| | | | | | into nodes/nodeFuncs, so as to reduce wanton cross-subsystem #includes inside the backend. There's probably more that should be done along this line, but this is a start anyway.
* Rearrange the querytree representation of ORDER BY/GROUP BY/DISTINCT itemsTom Lane2008-08-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | as per my recent proposal: 1. Fold SortClause and GroupClause into a single node type SortGroupClause. We were already relying on them to be struct-equivalent, so using two node tags wasn't accomplishing much except to get in the way of comparing items with equal(). 2. Add an "eqop" field to SortGroupClause to carry the associated equality operator. This is cheap for the parser to get at the same time it's looking up the sort operator, and storing it eliminates the need for repeated not-so-cheap lookups during planning. In future this will also let us represent GROUP/DISTINCT operations on datatypes that have hash opclasses but no btree opclasses (ie, they have equality but no natural sort order). The previous representation simply didn't work for that, since its only indicator of comparison semantics was a sort operator. 3. Add a hasDistinctOn boolean to struct Query to explicitly record whether the distinctClause came from DISTINCT or DISTINCT ON. This allows removing some complicated and not 100% bulletproof code that attempted to figure that out from the distinctClause alone. This patch doesn't in itself create any new capability, but it's necessary infrastructure for future attempts to use hash-based grouping for DISTINCT and UNION/INTERSECT/EXCEPT.
* Update copyrights in source tree to 2008.Bruce Momjian2008-01-01
|
* Fix up text concatenation so that it accepts all the reasonable cases thatTom Lane2007-06-06
| | | | | | | | were accepted by prior Postgres releases. This takes care of the loose end left by the preceding patch to downgrade implicit casts-to-text. To avoid breaking desirable behavior for array concatenation, introduce a new polymorphic pseudo-type "anynonarray" --- the added concatenation operators are actually text || anynonarray and anynonarray || text.