aboutsummaryrefslogtreecommitdiff
path: root/src/backend/regex/regexport.c
Commit message (Collapse)AuthorAge
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Make locale-dependent regex character classes work for large char codes.Tom Lane2016-09-05
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, we failed to recognize Unicode characters above U+7FF as being members of locale-dependent character classes such as [[:alpha:]]. (Actually, the same problem occurs for large pg_wchar values in any multibyte encoding, but UTF8 is the only case people have actually complained about.) It's impractical to get Spencer's original code to handle character classes or ranges containing many thousands of characters, because it insists on considering each member character individually at regex compile time, whether or not the character will ever be of interest at run time. To fix, choose a cutoff point MAX_SIMPLE_CHR below which we process characters individually as before, and deal with entire ranges or classes as single entities above that. We can actually make things cheaper than before for chars below the cutoff, because the color map can now be a simple linear array for those chars, rather than the multilevel tree structure Spencer designed. It's more expensive than before for chars above the cutoff, because we must do a binary search in a list of high chars and char ranges used in the regex pattern, plus call iswalpha() and friends for each locale-dependent character class used in the pattern. However, multibyte encodings are normally designed to give smaller codes to popular characters, so that we can expect that the slow path will be taken relatively infrequently. In any case, the speed penalty appears minor except when we have to apply iswalpha() etc. to high character codes at runtime --- and the previous coding gave wrong answers for those cases, so whether it was faster is moot. Tom Lane, reviewed by Heikki Linnakangas Discussion: <15563.1471913698@sss.pgh.pa.us>
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Implement lookbehind constraints in our regular-expression engine.Tom Lane2015-10-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | A lookbehind constraint is like a lookahead constraint in that it consumes no text; but it checks for existence (or nonexistence) of a match *ending* at the current point in the string, rather than one *starting* at the current point. This is a long-requested feature since it exists in many other regex libraries, but Henry Spencer had never got around to implementing it in the code we use. Just making it work is actually pretty trivial; but naive copying of the logic for lookahead constraints leads to code that often spends O(N^2) time to scan an N-character string, because we have to run the match engine from string start to the current probe point each time the constraint is checked. In typical use-cases a lookbehind constraint will be written at the start of the regex and hence will need to be checked at every character --- so O(N^2) work overall. To fix that, I introduced a third copy of the core DFA matching loop, paralleling the existing longest() and shortest() loops. This version, matchuntil(), can suspend and resume matching given a couple of pointers' worth of storage space. So we need only run it across the string once, stopping at each interesting probe point and then resuming to advance to the next one. I also put in an optimization that simplifies one-character lookahead and lookbehind constraints, such as "(?=x)" or "(?<!\w)", into AHEAD and BEHIND constraints, which already existed in the engine. This avoids the overhead of the LACON machinery entirely for these rather common cases. The net result is that lookbehind constraints run a factor of three or so slower than Perl's for multi-character constraints, but faster than Perl's for one-character constraints ... and they work fine for variable-length constraints, which Perl gives up on entirely. So that's not bad from a competitive perspective, and there's room for further optimization if anyone cares. (In reality, raw scan rate across a large input string is probably not that big a deal for Postgres usage anyway; so I'm happy if it's linear.)
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Support indexing of regular-expression searches in contrib/pg_trgm.Tom Lane2013-04-09
This works by extracting trigrams from the given regular expression, in generally the same spirit as the previously-existing support for LIKE searches, though of course the details are far more complicated. Currently, only GIN indexes are supported. We might be able to make it work with GiST indexes later. The implementation includes adding API functions to backend/regex/ to provide a view of the search NFA created from a regular expression. These functions are meant to be generic enough to be supportable in a standalone version of the regex library, should that ever happen. Alexander Korotkov, reviewed by Heikki Linnakangas and Tom Lane