| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
postmaster startup scrutinizes any shared memory segment recorded in
postmaster.pid, exiting if that segment matches the current data
directory and has an attached process. When the postmaster.pid file was
missing, a starting postmaster used weaker checks. Change to use the
same checks in both scenarios. This increases the chance of a startup
failure, in lieu of data corruption, if the DBA does "kill -9 `head -n1
postmaster.pid` && rm postmaster.pid && pg_ctl -w start". A postmaster
will no longer stop if shmat() of an old segment fails with EACCES. A
postmaster will no longer recycle segments pertaining to other data
directories. That's good for production, but it's bad for integration
tests that crash a postmaster and immediately delete its data directory.
Such a test now leaks a segment indefinitely. No "make check-world"
test does that. win32_shmem.c already avoided all these problems. In
9.6 and later, enhance PostgresNode to facilitate testing. Back-patch
to 9.4 (all supported versions).
Reviewed (in earlier versions) by Daniel Gustafsson and Kyotaro HORIGUCHI.
Discussion: https://postgr.es/m/20190408064141.GA2016666@rfd.leadboat.com
|
|
|
|
|
|
|
|
|
| |
This reverts commits 2f932f71d9f2963bbd201129d7b971c8f5f077fd,
16ee6eaf80a40007a138b60bb5661660058d0422 and
6f0e190056fe441f7cf788ff19b62b13c94f68f3. The buildfarm has revealed
several bugs. Back-patch like the original commits.
Discussion: https://postgr.es/m/20190404145319.GA1720877@rfd.leadboat.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
postmaster startup scrutinizes any shared memory segment recorded in
postmaster.pid, exiting if that segment matches the current data
directory and has an attached process. When the postmaster.pid file was
missing, a starting postmaster used weaker checks. Change to use the
same checks in both scenarios. This increases the chance of a startup
failure, in lieu of data corruption, if the DBA does "kill -9 `head -n1
postmaster.pid` && rm postmaster.pid && pg_ctl -w start". A postmaster
will no longer recycle segments pertaining to other data directories.
That's good for production, but it's bad for integration tests that
crash a postmaster and immediately delete its data directory. Such a
test now leaks a segment indefinitely. No "make check-world" test does
that. win32_shmem.c already avoided all these problems. In 9.6 and
later, enhance PostgresNode to facilitate testing. Back-patch to 9.4
(all supported versions).
Reviewed by Daniel Gustafsson and Kyotaro HORIGUCHI.
Discussion: https://postgr.es/m/20130911033341.GD225735@tornado.leadboat.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since 9.3 we have used anonymous shared mmap for our main shared memory
region, except in EXEC_BACKEND builds. Provide a GUC so that users
can opt for System V shared memory once again, like in 9.2 and earlier.
A later patch proposes to add huge/large page support for AIX, which
requires System V shared memory and provided the motivation to revive
this possibility. It may also be useful on some BSDs.
Author: Andres Freund (revived and documented by Thomas Munro)
Discussion: https://postgr.es/m/HE1PR0202MB28126DB4E0B6621CC6A1A91286D90%40HE1PR0202MB2812.eurprd02.prod.outlook.com
Discussion: https://postgr.es/m/2AE143D2-87D3-4AD1-AC78-CE2258230C05%40FreeBSD.org
|
|
|
|
| |
Backpatch-through: certain files through 9.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This removes a portion of infrastructure introduced by fe0a0b5 to allow
compilation of Postgres in environments where no strong random source is
available, meaning that there is no linking to OpenSSL and no
/dev/urandom (Windows having its own CryptoAPI). No systems shipped
this century lack /dev/urandom, and the buildfarm is actually not
testing this switch at all, so just remove it. This simplifies
particularly some backend code which included a fallback implementation
using shared memory, and removes a set of alternate regression output
files from pgcrypto.
Author: Michael Paquier
Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/20181230063219.GG608@paquier.xyz
|
|
|
|
|
|
|
|
| |
This reverts the backend sides of commit 1fde38beaa0c3e66c340efc7cc0dc272d6254bb0.
I have, at least for now, left the pg_verify_checksums tool in place, as
this tool can be very valuable without the rest of the patch as well,
and since it's a read-only tool that only runs when the cluster is down
it should be a lot safer.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes it possible to turn checksums on in a live cluster, without
the previous need for dump/reload or logical replication (and to turn it
off).
Enabling checkusm starts a background process in the form of a
launcher/worker combination that goes through the entire database and
recalculates checksums on each and every page. Only when all pages have
been checksummed are they fully enabled in the cluster. Any failure of
the process will revert to checksums off and the process has to be
started.
This adds a new WAL record that indicates the state of checksums, so
the process works across replicated clusters.
Authors: Magnus Hagander and Daniel Gustafsson
Review: Tomas Vondra, Michael Banck, Heikki Linnakangas, Andrey Borodin
|
|
|
|
| |
Backpatch-through: certain files through 9.3
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- Add PUBLICATION catalogs and DDL
- Add SUBSCRIPTION catalog and DDL
- Define logical replication protocol and output plugin
- Add logical replication workers
From: Petr Jelinek <petr@2ndquadrant.com>
Reviewed-by: Steve Singer <steve@ssinger.info>
Reviewed-by: Andres Freund <andres@anarazel.de>
Reviewed-by: Erik Rijkers <er@xs4all.nl>
Reviewed-by: Peter Eisentraut <peter.eisentraut@2ndquadrant.com>
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the "sem" field of PGPROC varied in size depending on which
kernel semaphore API we were using. That was okay as long as there was
only one likely choice per platform, but in the wake of commit ecb0d20a9,
that assumption seems rather shaky. It doesn't seem out of the question
anymore that an extension compiled against one API choice might be loaded
into a postmaster built with another choice. Moreover, this prevents any
possibility of selecting the semaphore API at postmaster startup, which
might be something we want to do in future.
Hence, change PGPROC.sem to be PGSemaphore (i.e. a pointer) for all Unix
semaphore APIs, and turn the pointed-to data into an opaque struct whose
contents are only known within the responsible modules.
For the SysV and unnamed-POSIX APIs, the pointed-to data has to be
allocated elsewhere in shared memory, which takes a little bit of
rejiggering of the InitShmemAllocation code sequence. (I invented a
ShmemAllocUnlocked() function to make that a little cleaner than it used
to be. That function is not meant for any uses other than the ones it
has now, but it beats having InitShmemAllocation() know explicitly about
allocation of space for semaphores and spinlocks.) This change means an
extra indirection to access the semaphore data, but since we only touch
that when blocking or awakening a process, there shouldn't be any
meaningful performance penalty. Moreover, at least for the unnamed-POSIX
case on Linux, the sem_t type is quite a bit wider than a pointer, so this
reduces sizeof(PGPROC) which seems like a good thing.
For the named-POSIX API, there's effectively no change: the PGPROC.sem
field was and still is a pointer to something returned by sem_open() in
the postmaster's memory space. Document and check the pre-existing
limitation that this case can't work in EXEC_BACKEND mode.
It did not seem worth unifying the Windows semaphore ABI with the Unix
cases, since there's no likelihood of needing ABI compatibility much less
runtime switching across those cases. However, we can simplify the Windows
code a bit if we define PGSemaphore as being directly a HANDLE, rather than
pointer to HANDLE, so let's do that while we're here. (This also ends up
being no change in what's physically stored in PGPROC.sem. We're just
moving the HANDLE fetch from callees to callers.)
It would take a bunch of additional code shuffling to get to the point of
actually choosing a semaphore API at postmaster start, but the effects
of that would now be localized in the port/XXX_sema.c files, so it seems
like fit material for a separate patch. The need for it is unproven as
yet, anyhow, whereas the ABI risk to extensions seems real enough.
Discussion: https://postgr.es/m/4029.1481413370@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This adds a new routine, pg_strong_random() for generating random bytes,
for use in both frontend and backend. At the moment, it's only used in
the backend, but the upcoming SCRAM authentication patches need strong
random numbers in libpq as well.
pg_strong_random() is based on, and replaces, the existing implementation
in pgcrypto. It can acquire strong random numbers from a number of sources,
depending on what's available:
- OpenSSL RAND_bytes(), if built with OpenSSL
- On Windows, the native cryptographic functions are used
- /dev/urandom
Unlike the current pgcrypto function, the source is chosen by configure.
That makes it easier to test different implementations, and ensures that
we don't accidentally fall back to a less secure implementation, if the
primary source fails. All of those methods are quite reliable, it would be
pretty surprising for them to fail, so we'd rather find out by failing
hard.
If no strong random source is available, we fall back to using erand48(),
seeded from current timestamp, like PostmasterRandom() was. That isn't
cryptographically secure, but allows us to still work on platforms that
don't have any of the above stronger sources. Because it's not very secure,
the built-in implementation is only used if explicitly requested with
--disable-strong-random.
This replaces the more complicated Fortuna algorithm we used to have in
pgcrypto, which is unfortunate, but all modern platforms have /dev/urandom,
so it doesn't seem worth the maintenance effort to keep that. pgcrypto
functions that require strong random numbers will be disabled with
--disable-strong-random.
Original patch by Magnus Hagander, tons of further work by Michael Paquier
and me.
Discussion: https://www.postgresql.org/message-id/CAB7nPqRy3krN8quR9XujMVVHYtXJ0_60nqgVc6oUk8ygyVkZsA@mail.gmail.com
Discussion: https://www.postgresql.org/message-id/CAB7nPqRWkNYRRPJA7-cF+LfroYV10pvjdz6GNvxk-Eee9FypKA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature is controlled by a new old_snapshot_threshold GUC. A
value of -1 disables the feature, and that is the default. The
value of 0 is just intended for testing. Above that it is the
number of minutes a snapshot can reach before pruning and vacuum
are allowed to remove dead tuples which the snapshot would
otherwise protect. The xmin associated with a transaction ID does
still protect dead tuples. A connection which is using an "old"
snapshot does not get an error unless it accesses a page modified
recently enough that it might not be able to produce accurate
results.
This is similar to the Oracle feature, and we use the same SQLSTATE
and error message for compatibility.
|
|
|
|
| |
Backpatch certain files through 9.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When implementing a replication solution ontop of logical decoding, two
related problems exist:
* How to safely keep track of replication progress
* How to change replication behavior, based on the origin of a row;
e.g. to avoid loops in bi-directional replication setups
The solution to these problems, as implemented here, consist out of
three parts:
1) 'replication origins', which identify nodes in a replication setup.
2) 'replication progress tracking', which remembers, for each
replication origin, how far replay has progressed in a efficient and
crash safe manner.
3) The ability to filter out changes performed on the behest of a
replication origin during logical decoding; this allows complex
replication topologies. E.g. by filtering all replayed changes out.
Most of this could also be implemented in "userspace", e.g. by inserting
additional rows contain origin information, but that ends up being much
less efficient and more complicated. We don't want to require various
replication solutions to reimplement logic for this independently. The
infrastructure is intended to be generic enough to be reusable.
This infrastructure also replaces the 'nodeid' infrastructure of commit
timestamps. It is intended to provide all the former capabilities,
except that there's only 2^16 different origins; but now they integrate
with logical decoding. Additionally more functionality is accessible via
SQL. Since the commit timestamp infrastructure has also been introduced
in 9.5 (commit 73c986add) changing the API is not a problem.
For now the number of origins for which the replication progress can be
tracked simultaneously is determined by the max_replication_slots
GUC. That GUC is not a perfect match to configure this, but there
doesn't seem to be sufficient reason to introduce a separate new one.
Bumps both catversion and wal page magic.
Author: Andres Freund, with contributions from Petr Jelinek and Craig Ringer
Reviewed-By: Heikki Linnakangas, Petr Jelinek, Robert Haas, Steve Singer
Discussion: 20150216002155.GI15326@awork2.anarazel.de,
20140923182422.GA15776@alap3.anarazel.de,
20131114172632.GE7522@alap2.anarazel.de
|
|
|
|
| |
Backpatch certain files through 9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Transactions can now set their commit timestamp directly as they commit,
or an external transaction commit timestamp can be fed from an outside
system using the new function TransactionTreeSetCommitTsData(). This
data is crash-safe, and truncated at Xid freeze point, same as pg_clog.
This module is disabled by default because it causes a performance hit,
but can be enabled in postgresql.conf requiring only a server restart.
A new test in src/test/modules is included.
Catalog version bumped due to the new subdirectory within PGDATA and a
couple of new SQL functions.
Authors: Álvaro Herrera and Petr Jelínek
Reviewed to varying degrees by Michael Paquier, Andres Freund, Robert
Haas, Amit Kapila, Fujii Masao, Jaime Casanova, Simon Riggs, Steven
Singer, Peter Eisentraut
|
|
|
|
|
| |
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of storing the ID of the dynamic shared memory control
segment in a file within the data directory, store it in the main
control segment. This avoids a number of nasty corner cases,
most seriously that doing an online backup and then using it on
the same machine (e.g. to fire up a standby) would result in the
standby clobbering all of the master's dynamic shared memory
segments.
Per complaints from Heikki Linnakangas, Fujii Masao, and Tom
Lane.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Replication slots are a crash-safe data structure which can be created
on either a master or a standby to prevent premature removal of
write-ahead log segments needed by a standby, as well as (with
hot_standby_feedback=on) pruning of tuples whose removal would cause
replication conflicts. Slots have some advantages over existing
techniques, as explained in the documentation.
In a few places, we refer to the type of replication slots introduced
by this patch as "physical" slots, because forthcoming patches for
logical decoding will also have slots, but with somewhat different
properties.
Andres Freund and Robert Haas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This makes it possible to store lwlocks as part of some other data
structure in the main shared memory segment, or in a dynamic shared
memory segment. There is still a main LWLock array and this patch does
not move anything out of it, but it provides necessary infrastructure
for doing that in the future.
This change is likely to increase the size of LWLockPadded on some
platforms, especially 32-bit platforms where it was previously only
16 bytes.
Patch by me. Review by Andres Freund and KaiGai Kohei.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since C99, it's been standard for printf and friends to accept a "z" size
modifier, meaning "whatever size size_t has". Up to now we've generally
dealt with printing size_t values by explicitly casting them to unsigned
long and using the "l" modifier; but this is really the wrong thing on
platforms where pointers are wider than longs (such as Win64). So let's
start using "z" instead. To ensure we can do that on all platforms, teach
src/port/snprintf.c to understand "z", and add a configure test to force
use of that implementation when the platform's version doesn't handle "z".
Having done that, modify a bunch of places that were using the
unsigned-long hack to use "z" instead. This patch doesn't pretend to have
gotten everyplace that could benefit, but it catches many of them. I made
an effort in particular to ensure that all uses of the same error message
text were updated together, so as not to increase the number of
translatable strings.
It's possible that this change will result in format-string warnings from
pre-C99 compilers. We might have to reconsider if there are any popular
compilers that will warn about this; but let's start by seeing what the
buildfarm thinks.
Andres Freund, with a little additional work by me
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of allocating a semaphore from the operating system for every
spinlock, allocate a fixed number of semaphores (by default, 1024)
from the operating system and multiplex all the spinlocks that get
created onto them. This could self-deadlock if a process attempted
to acquire more than one spinlock at a time, but since processes
aren't supposed to execute anything other than short stretches of
straight-line code while holding a spinlock, that shouldn't happen.
One motivation for this change is that, with the introduction of
dynamic shared memory, it may be desirable to create spinlocks that
last for less than the lifetime of the server. Without this change,
attempting to use such facilities under --disable-spinlocks would
quickly exhaust any supply of available semaphores. Quite apart
from that, it's desirable to contain the quantity of semaphores
needed to run the server simply on convenience grounds, since using
too many may make it harder to get PostgreSQL running on a new
platform, which is mostly the point of --disable-spinlocks in the
first place.
Patch by me; review by Tom Lane.
|
|
|
|
|
| |
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
|
|
|
|
|
| |
Patch by myself and Amit Kapila. Design help from Noah Misch. Review
by Andres Freund.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There is a new API, RegisterDynamicBackgroundWorker, which allows
an ordinary user backend to register a new background writer during
normal running. This means that it's no longer necessary for all
background workers to be registered during processing of
shared_preload_libraries, although the option of registering workers
at that time remains available.
When a background worker exits and will not be restarted, the
slot previously used by that background worker is automatically
released and becomes available for reuse. Slots used by background
workers that are configured for automatic restart can't (yet) be
released without shutting down the system.
This commit adds a new source file, bgworker.c, and moves some
of the existing control logic for background workers there.
Previously, there was little enough logic that it made sense to
keep everything in postmaster.c, but not any more.
This commit also makes the worker_spi contrib module into an
extension and adds a new function, worker_spi_launch, which can
be used to demonstrate the new facility.
|
|
|
|
|
| |
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
|
|
|
| |
Remove proc.h from sinvaladt.h and twophase.h; also replace xlog.h in
proc.h with xlogdefs.h.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
This speeds up snapshot-taking and reduces ProcArrayLock contention.
Also, the PGPROC (and PGXACT) structures used by two-phase commit are
now allocated as part of the main array, rather than in a separate
array, and we keep ProcArray sorted in pointer order. These changes
are intended to minimize the number of cache lines that must be pulled
in to take a snapshot, and testing shows a substantial increase in
performance on both read and write workloads at high concurrencies.
Pavan Deolasee, Heikki Linnakangas, Robert Haas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Until now, our Serializable mode has in fact been what's called Snapshot
Isolation, which allows some anomalies that could not occur in any
serialized ordering of the transactions. This patch fixes that using a
method called Serializable Snapshot Isolation, based on research papers by
Michael J. Cahill (see README-SSI for full references). In Serializable
Snapshot Isolation, transactions run like they do in Snapshot Isolation,
but a predicate lock manager observes the reads and writes performed and
aborts transactions if it detects that an anomaly might occur. This method
produces some false positives, ie. it sometimes aborts transactions even
though there is no anomaly.
To track reads we implement predicate locking, see storage/lmgr/predicate.c.
Whenever a tuple is read, a predicate lock is acquired on the tuple. Shared
memory is finite, so when a transaction takes many tuple-level locks on a
page, the locks are promoted to a single page-level lock, and further to a
single relation level lock if necessary. To lock key values with no matching
tuple, a sequential scan always takes a relation-level lock, and an index
scan acquires a page-level lock that covers the search key, whether or not
there are any matching keys at the moment.
A predicate lock doesn't conflict with any regular locks or with another
predicate locks in the normal sense. They're only used by the predicate lock
manager to detect the danger of anomalies. Only serializable transactions
participate in predicate locking, so there should be no extra overhead for
for other transactions.
Predicate locks can't be released at commit, but must be remembered until
all the transactions that overlapped with it have completed. That means that
we need to remember an unbounded amount of predicate locks, so we apply a
lossy but conservative method of tracking locks for committed transactions.
If we run short of shared memory, we overflow to a new "pg_serial" SLRU
pool.
We don't currently allow Serializable transactions in Hot Standby mode.
That would be hard, because even read-only transactions can cause anomalies
that wouldn't otherwise occur.
Serializable isolation mode now means the new fully serializable level.
Repeatable Read gives you the old Snapshot Isolation level that we have
always had.
Kevin Grittner and Dan Ports, reviewed by Jeff Davis, Heikki Linnakangas and
Anssi Kääriäinen
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
dynamic pool of event handles, we can permanently assign one for each
shared latch. Thanks to that, we no longer need a separate shared memory
block for latches, and we don't need to know in advance how many shared
latches there is, so you no longer need to remember to update
NumSharedLatches when you introduce a new latch to the system.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
wait until it is set. Latches can be used to reliably wait until a signal
arrives, which is hard otherwise because signals don't interrupt select()
on some platforms, and even when they do, there's race conditions.
On Unix, latches use the so called self-pipe trick under the covers to
implement the sleep until the latch is set, without race conditions. On
Windows, Windows events are used.
Use the new latch abstraction to sleep in walsender, so that as soon as
a transaction finishes, walsender is woken up to immediately send the WAL
to the standby. This reduces the latency between master and standby, which
is good.
Preliminary work by Fujii Masao. The latch implementation is by me, with
helpful comments from many people.
|
|
|
|
|
|
|
|
|
|
|
|
| |
In addition, add support for a "payload" string to be passed along with
each notify event.
This implementation should be significantly more efficient than the old one,
and is also more compatible with Hot Standby usage. There is not yet any
facility for HS slaves to receive notifications generated on the master,
although such a thing is possible in future.
Joachim Wieland, reviewed by Jeff Davis; also hacked on by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This includes two new kinds of postmaster processes, walsenders and
walreceiver. Walreceiver is responsible for connecting to the primary server
and streaming WAL to disk, while walsender runs in the primary server and
streams WAL from disk to the client.
Documentation still needs work, but the basics are there. We will probably
pull the replication section to a new chapter later on, as well as the
sections describing file-based replication. But let's do that as a separate
patch, so that it's easier to see what has been added/changed. This patch
also adds a new section to the chapter about FE/BE protocol, documenting the
protocol used by walsender/walreceivxer.
Bump catalog version because of two new functions,
pg_last_xlog_receive_location() and pg_last_xlog_replay_location(), for
monitoring the progress of replication.
Fujii Masao, with additional hacking by me
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch gets us out from under the Unix limitation of two user-defined
signal types. We already had done something similar for signals directed to
the postmaster process; this adds multiplexing for signals directed to
backends and auxiliary processes (so long as they're connected to shared
memory).
As proof of concept, replace the former usage of SIGUSR1 and SIGUSR2
for backends with use of the multiplexing mechanism. There are still some
hard-wired definitions of SIGUSR1 and SIGUSR2 for other process types,
but getting rid of those doesn't seem interesting at the moment.
Fujii Masao
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a backend has done exit(0) or exit(1) without having disengaged itself
from shared memory. We are at risk for this whenever third-party code is
loaded into a backend, since such code might not know it's supposed to go
through proc_exit() instead. Also, it is reported that under Windows
there are ways to externally kill a process that cause the status code
returned to the postmaster to be indistinguishable from a voluntary exit
(thank you, Microsoft). If this does happen then the system is probably
hosed --- for instance, the dead session might still be holding locks.
So the best recovery method is to treat this like a backend crash.
The dead man switch is armed for a particular child process when it
acquires a regular PGPROC, and disarmed when the PGPROC is released;
these should be the first and last touches of shared memory resources
in a backend, or close enough anyway. This choice means there is no
coverage for auxiliary processes, but I doubt we need that, since they
shouldn't be executing any user-provided code anyway.
This patch also improves the management of the EXEC_BACKEND
ShmemBackendArray array a bit, by reducing search costs.
Although this problem is of long standing, the lack of field complaints
seems to mean it's not critical enough to risk back-patching; at least
not till we get some more testing of this mechanism.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
initialization, to give loadable modules a reasonable place to perform
creation of any shared memory areas they need. This is the logical conclusion
of our previous creation of RequestAddinShmemSpace() and RequestAddinLWLocks().
We don't need an explicit shmem_shutdown_hook, because the existing
on_shmem_exit and on_proc_exit mechanisms serve that need.
Also, adjust SubPostmasterMain so that libraries that got loaded into the
postmaster will be loaded into all child processes, not only regular backends.
This improves consistency with the non-EXEC_BACKEND behavior, and might be
necessary for functionality for some types of add-ons.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
free space information is stored in a dedicated FSM relation fork, with each
relation (except for hash indexes; they don't use FSM).
This eliminates the max_fsm_relations and max_fsm_pages GUC options; remove any
trace of them from the backend, initdb, and documentation.
Rewrite contrib/pg_freespacemap to match the new FSM implementation. Also
introduce a new variant of the get_raw_page(regclass, int4, int4) function in
contrib/pageinspect that let's you to return pages from any relation fork, and
a new fsm_page_contents() function to inspect the new FSM pages.
|
|
|
|
|
|
|
|
|
|
|
|
| |
unnecessary #include lines in it. Also, move some tuple routine prototypes and
macros to htup.h, which allows removal of heapam.h inclusion from some .c
files.
For this to work, a new header file access/sysattr.h needed to be created,
initially containing attribute numbers of system columns, for pg_dump usage.
While at it, make contrib ltree, intarray and hstore header files more
consistent with our header style.
|
|
|
|
|
|
|
|
| |
deals with the queue, including locking etc, is all in sinvaladt.c. This means
that the struct definition of the queue, and the queue pointer, are now
internal "implementation details" inside sinvaladt.c.
Per my proposal dated 25-Jun-2007 and followup discussion.
|
| |
|
| |
|
|
|
|
|
|
|
| |
when multiple backends are scanning the same relation concurrently, each page
is (ideally) read only once.
Jeff Davis, with review by Heikki and Tom.
|