| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
| |
This adds collation support for columns and domains, a COLLATE clause
to override it per expression, and B-tree index support.
Peter Eisentraut
reviewed by Pavel Stehule, Itagaki Takahiro, Robert Haas, Noah Misch
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is a heavily revised version of builtin_knngist_core-0.9. The
ordering operators are no longer mixed in with actual quals, which would
have confused not only humans but significant parts of the planner.
Instead, ordering operators are carried separately throughout planning and
execution.
Since the API for ambeginscan and amrescan functions had to be changed
anyway, this commit takes the opportunity to rationalize that a bit.
RelationGetIndexScan no longer forces a premature index_rescan call;
instead, callers of index_beginscan must call index_rescan too. Aside from
making the AM-side initialization logic a bit less peculiar, this has the
advantage that we do not make a useless extra am_rescan call when there are
runtime key values. AMs formerly could not assume that the key values
passed to amrescan were actually valid; now they can.
Teodor Sigaev and Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit adds columns amoppurpose and amopsortfamily to pg_amop, and
column amcanorderbyop to pg_am. For the moment all the entries in
amcanorderbyop are "false", since the underlying support isn't there yet.
Also, extend the CREATE OPERATOR CLASS/ALTER OPERATOR FAMILY commands with
[ FOR SEARCH | FOR ORDER BY sort_operator_family ] clauses to allow the new
columns of pg_amop to be populated, and create pg_dump support for dumping
that information.
I also added some documentation, although it's perhaps a bit premature
given that the feature doesn't do anything useful yet.
Teodor Sigaev, Robert Haas, Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The core of this patch is hash_array() and associated typcache
infrastructure, which works just about exactly like the existing support
for array comparison.
In addition I did some work to ensure that the planner won't think that an
array type is hashable unless its element type is hashable, and similarly
for sorting. This includes adding a datatype parameter to op_hashjoinable
and op_mergejoinable, and adding an explicit "hashable" flag to
SortGroupClause. The lack of a cross-check on the element type was a
pre-existing bug in mergejoin support --- but it didn't matter so much
before, because if you couldn't sort the element type there wasn't any good
alternative to failing anyhow. Now that we have the alternative of hashing
the array type, there are cases where we can avoid a failure by being picky
at the planner stage, so it's time to be picky.
The issue of exactly how to combine the per-element hash values to produce
an array hash is still open for discussion, but the rest of this is pretty
solid, so I'll commit it as-is.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch eliminates various bizarre behaviors caused by sloppy thinking
about the difference between a domain type and its underlying array type.
In particular, the operation of updating one element of such an array
has to be considered as yielding a value of the underlying array type,
*not* a value of the domain, because there's no assurance that the
domain's CHECK constraints are still satisfied. If we're intending to
store the result back into a domain column, we have to re-cast to the
domain type so that constraints are re-checked.
For similar reasons, such a domain can't be blindly matched to an ANYARRAY
polymorphic parameter, because the polymorphic function is likely to apply
array-ish operations that could invalidate the domain constraints. For the
moment, we just forbid such matching. We might later wish to insert an
automatic downcast to the underlying array type, but such a change should
also change matching of domains to ANYELEMENT for consistency.
To ensure that all such logic is rechecked, this patch removes the original
hack of setting a domain's pg_type.typelem field to match its base type;
the typelem will always be zero instead. In those places where it's really
okay to look through the domain type with no other logic changes, use the
newly added get_base_element_type function in place of get_element_type.
catversion bumped due to change in pg_type contents.
Per bug #5717 from Richard Huxton and subsequent discussion.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
unqualified names.
- Add a missing_ok parameter to get_tablespace_oid.
- Avoid duplicating get_tablespace_od guts in objectNamesToOids.
- Add a missing_ok parameter to get_database_oid.
- Replace get_roleid and get_role_checked with get_role_oid.
- Add get_namespace_oid, get_language_oid, get_am_oid.
- Refactor existing code to use new interfaces.
Thanks to KaiGai Kohei for the review.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
use the actual element type of the array it's disassembling, rather than
trusting the type OID passed in by its caller. This is needed because
sometimes the planner passes in a type OID that's only binary-compatible
with the target column's type, rather than being an exact match. Per an
example from Bernd Helmle.
Possibly we should refactor get_attstatsslot/free_attstatsslot to not expect
the caller to supply type ID data at all, but for now I'll just do the
minimum-change fix.
Back-patch to 7.4. Bernd's test case only crashes back to 8.0, but since
these subroutines are the same in 7.4, I suspect there may be variant
cases that would crash 7.4 as well.
|
| |
|
|
|
|
|
| |
Closely follow design of other optimizer hooks: if hook exists
retrieve value from plugin; if still not set then get from cache.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
The purpose of this change is to eliminate the need for every caller
of SearchSysCache, SearchSysCacheCopy, SearchSysCacheExists,
GetSysCacheOid, and SearchSysCacheList to know the maximum number
of allowable keys for a syscache entry (currently 4). This will
make it far easier to increase the maximum number of keys in a
future release should we choose to do so, and it makes the code
shorter, too.
Design and review by Tom Lane.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
"column < constant", and the comparison value is in the first or last
histogram bin or outside the histogram entirely, try to fetch the actual
column min or max value using an index scan (if there is an index on the
column). If successful, replace the lower or upper histogram bound with
that value before carrying on with the estimate. This limits the
estimation error caused by moving min/max values when the comparison
value is close to the min or max. Per a complaint from Josh Berkus.
It is tempting to consider using this mechanism for mergejoinscansel as well,
but that would inject index fetches into main-line join estimation not just
endpoint cases. I'm refraining from that until we can get a better handle
on the costs of doing this type of lookup.
|
| |
|
|
|
|
|
|
|
|
| |
and teach ANALYZE to compute such stats for tables that have subclasses.
Per my proposal of yesterday.
autovacuum still needs to be taught about running ANALYZE on parent tables
when their subclasses change, but the feature is useful even without that.
|
|
|
|
|
|
|
| |
There are probably still some adjustments to be made in the details
of the output, but this gets the basic structure in place.
Robert Haas
|
|
|
|
| |
provided by Andrew.
|
| |
|
|
|
|
| |
Simon Riggs, with some editorialization by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as per my recent proposal:
1. Fold SortClause and GroupClause into a single node type SortGroupClause.
We were already relying on them to be struct-equivalent, so using two node
tags wasn't accomplishing much except to get in the way of comparing items
with equal().
2. Add an "eqop" field to SortGroupClause to carry the associated equality
operator. This is cheap for the parser to get at the same time it's looking
up the sort operator, and storing it eliminates the need for repeated
not-so-cheap lookups during planning. In future this will also let us
represent GROUP/DISTINCT operations on datatypes that have hash opclasses
but no btree opclasses (ie, they have equality but no natural sort order).
The previous representation simply didn't work for that, since its only
indicator of comparison semantics was a sort operator.
3. Add a hasDistinctOn boolean to struct Query to explicitly record whether
the distinctClause came from DISTINCT or DISTINCT ON. This allows removing
some complicated and not 100% bulletproof code that attempted to figure
that out from the distinctClause alone.
This patch doesn't in itself create any new capability, but it's necessary
infrastructure for future attempts to use hash-based grouping for DISTINCT
and UNION/INTERSECT/EXCEPT.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with system catalog lookups, as was foreseen to be necessary almost since
their creation. Instead put the information into two new pg_type columns,
typcategory and typispreferred. Add support for setting these when
creating a user-defined base type.
The category column is just a "char" (i.e. a poor man's enum), allowing
a crude form of user extensibility of the category list: just use an
otherwise-unused character. This seems sufficient for foreseen uses,
but we could upgrade to having an actual category catalog someday, if
there proves to be a huge demand for custom type categories.
In this patch I have attempted to hew exactly to the behavior of the
previous hardwired logic, except for introducing new type categories for
arrays, composites, and enums. In particular the default preferred state
for user-defined types remains TRUE. That seems worth revisiting, but it
should be done as a separate patch from introducing the infrastructure.
Likewise, any adjustment of the standard set of categories should be done
separately.
|
|
|
|
|
|
|
|
|
|
| |
no particular need to do get_op_opfamily_properties() while building an
indexscan plan. Postpone that lookup until executor start. This simplifies
createplan.c a lot more than it complicates nodeIndexscan.c, and makes things
more uniform since we already had to do it that way for RowCompare
expressions. Should be a bit faster too, at least for plans that aren't
re-used many times, since we avoid palloc'ing and perhaps copying the
intermediate list data structure.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
strings. This patch introduces four support functions cstring_to_text,
cstring_to_text_with_len, text_to_cstring, and text_to_cstring_buffer, and
two macros CStringGetTextDatum and TextDatumGetCString. A number of
existing macros that provided variants on these themes were removed.
Most of the places that need to make such conversions now require just one
function or macro call, in place of the multiple notational layers that used
to be needed. There are no longer any direct calls of textout or textin,
and we got most of the places that were using handmade conversions via
memcpy (there may be a few still lurking, though).
This commit doesn't make any serious effort to eliminate transient memory
leaks caused by detoasting toasted text objects before they reach
text_to_cstring. We changed PG_GETARG_TEXT_P to PG_GETARG_TEXT_PP in a few
places where it was easy, but much more could be done.
Brendan Jurd and Tom Lane
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
it affects. The original coding neglected tablespace entirely (causing
the indexes to move to the database's default tablespace) and for an index
belonging to a UNIQUE or PRIMARY KEY constraint, it would actually try to
assign the parent table's reloptions to the index :-(. Per bug #3672 and
subsequent investigation.
8.0 and 8.1 did not have reloptions, but the tablespace bug is present.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
and views (but not system catalogs, nor sequences or toast tables). Get rid
of the hardwired convention that a type's array type is named exactly "_type",
instead using a new column pg_type.typarray to provide the linkage. (It still
will be named "_type", though, except in odd corner cases such as
maximum-length type names.)
Along the way, make tracking of owner and schema dependencies for types more
uniform: a type directly created by the user has these dependencies, while a
table rowtype or auto-generated array type does not have them, but depends on
its parent object instead.
David Fetter, Andrew Dunstan, Tom Lane
|
|
|
|
|
| |
pg_type.typtype whereever practical. Tom Dunstan, with some kibitzing
from Tom Lane.
|
|
|
|
| |
to cover it. Per report from Anton Pikhteryev.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
available information about the typmod of an expression; namely, Const,
ArrayRef, ArrayExpr, and EXPR and ARRAY SubLinks. In the ArrayExpr and
SubLink cases it wasn't really the data structure's fault, but exprTypmod()
being lazy. This seems like a good idea in view of the expected increase in
typmod usage from Teodor's work to allow user-defined types to have typmods.
In particular this responds to the concerns we had about eliminating the
special-purpose hack that exprTypmod() used to have for BPCHAR Consts.
We can now tell whether or not such a Const has been cast to a specific
length, and report or display properly if so.
initdb forced due to changes in stored rules.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
equality checks it applies, instead of a random dependence on whatever
operators might be named "=". The equality operators will now be selected
from the opfamily of the unique index that the FK constraint depends on to
enforce uniqueness of the referenced columns; therefore they are certain to be
consistent with that index's notion of equality. Among other things this
should fix the problem noted awhile back that pg_dump may fail for foreign-key
constraints on user-defined types when the required operators aren't in the
search path. This also means that the former warning condition about "foreign
key constraint will require costly sequential scans" is gone: if the
comparison condition isn't indexable then we'll reject the constraint
entirely. All per past discussions.
Along the way, make the RI triggers look into pg_constraint for their
information, instead of using pg_trigger.tgargs; and get rid of the always
error-prone fixed-size string buffers in ri_triggers.c in favor of building up
the RI queries in StringInfo buffers.
initdb forced due to columns added to pg_constraint and pg_trigger.
|
|
|
|
|
|
| |
Hashing for aggregation purposes still needs work, so it's not time to
mark any cross-type operators as hashable for general use, but these cases
work if the operators are so marked by hand in the system catalogs.
|
|
|
|
|
|
|
|
|
|
|
|
| |
columns procost and prorows, to allow simple user adjustment of the estimated
cost of a function call, as well as control of the estimated number of rows
returned by a set-returning function. We might eventually wish to extend this
to allow function-specific estimation routines, but there seems to be
consensus that we should try a simple constant estimate first. In particular
this provides a relatively simple way to control the order in which different
WHERE clauses are applied in a plan node, which is a Good Thing in view of the
fact that the recent EquivalenceClass planner rewrite made that much less
predictable than before.
|
|
|
|
| |
a couple of syscache lookups in make_pathkey_from_sortinfo().
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
representation of equivalence classes of variables. This is an extensive
rewrite, but it brings a number of benefits:
* planner no longer fails in the presence of "incomplete" operator families
that don't offer operators for every possible combination of datatypes.
* avoid generating and then discarding redundant equality clauses.
* remove bogus assumption that derived equalities always use operators
named "=".
* mergejoins can work with a variety of sort orders (e.g., descending) now,
instead of tying each mergejoinable operator to exactly one sort order.
* better recognition of redundant sort columns.
* can make use of equalities appearing underneath an outer join.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
which comparison operators to use for plan nodes involving tuple comparison
(Agg, Group, Unique, SetOp). Formerly the executor looked up the default
equality operator for the datatype, which was really pretty shaky, since it's
possible that the data being fed to the node is sorted according to some
nondefault operator class that could have an incompatible idea of equality.
The planner knows what it has sorted by and therefore can provide the right
equality operator to use. Also, this change moves a couple of catalog lookups
out of the executor and into the planner, which should help startup time for
pre-planned queries by some small amount. Modify the planner to remove some
other cavalier assumptions about always being able to use the default
operators. Also add "nulls first/last" info to the Plan node for a mergejoin
--- neither the executor nor the planner can cope yet, but at least the API is
in place.
|
|
|
|
|
|
|
|
|
|
|
|
| |
per-column options for btree indexes. The planner's support for this is still
pretty rudimentary; it does not yet know how to plan mergejoins with
nondefault ordering options. The documentation is pretty rudimentary, too.
I'll work on improving that stuff later.
Note incompatible change from prior behavior: ORDER BY ... USING will now be
rejected if the operator is not a less-than or greater-than member of some
btree opclass. This prevents less-than-sane behavior if an operator that
doesn't actually define a proper sort ordering is selected.
|
|
|
|
| |
back-stamped for this.
|
|
|
|
|
|
| |
about typmod representation for standard types out into type-specific
typmod I/O functions. Teodor Sigaev, with some editorialization by
Tom Lane.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
cases. Operator classes now exist within "operator families". While most
families are equivalent to a single class, related classes can be grouped
into one family to represent the fact that they are semantically compatible.
Cross-type operators are now naturally adjunct parts of a family, without
having to wedge them into a particular opclass as we had done originally.
This commit restructures the catalogs and cleans up enough of the fallout so
that everything still works at least as well as before, but most of the work
needed to actually improve the planner's behavior will come later. Also,
there are not yet CREATE/DROP/ALTER OPERATOR FAMILY commands; the only way
to create a new family right now is to allow CREATE OPERATOR CLASS to make
one by default. I owe some more documentation work, too. But that can all
be done in smaller pieces once this infrastructure is in place.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
the SQL spec, viz IS NULL is true if all the row's fields are null, IS NOT
NULL is true if all the row's fields are not null. The former coding got
this right for a limited number of cases with IS NULL (ie, those where it
could disassemble a ROW constructor at parse time), but was entirely wrong
for IS NOT NULL. Per report from Teodor.
I desisted from changing the behavior for arrays, since on closer inspection
it's not clear that there's any support for that in the SQL spec. This
probably needs more consideration.
|
|
|
|
|
|
| |
internal TypInfo table in bootstrap mode. This allows array_in and
array_out to be used during early bootstrap, which eliminates the
former obstacle to giving OUT parameters to built-in functions.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
that apply the necessary domain constraint checks immediately. This fixes
cases where domain constraints went unchecked for statement parameters,
PL function local variables and results, etc. We can also eliminate existing
special cases for domains in places that had gotten it right, eg COPY.
Also, allow domains over domains (base of a domain is another domain type).
This almost worked before, but was disallowed because the original patch
hadn't gotten it quite right.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functions are not strict, they will be called (passing a NULL first parameter)
during any attempt to input a NULL value of their datatype. Currently, all
our input functions are strict and so this commit does not change any
behavior. However, this will make it possible to build domain input functions
that centralize checking of domain constraints, thereby closing numerous holes
in our domain support, as per previous discussion.
While at it, I took the opportunity to introduce convenience functions
InputFunctionCall, OutputFunctionCall, etc to use in code that calls I/O
functions. This eliminates a lot of grotty-looking casts, but the main
motivation is to make it easier to grep for these places if we ever need
to touch them again.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
(previously we only did = and <> correctly). Also, allow row comparisons
with any operators that are in btree opclasses, not only those with these
specific names. This gets rid of a whole lot of indefensible assumptions
about the behavior of particular operators based on their names ... though
it's still true that IN and NOT IN expand to "= ANY". The patch adds a
RowCompareExpr expression node type, and makes some changes in the
representation of ANY/ALL/ROWCOMPARE SubLinks so that they can share code
with RowCompareExpr.
I have not yet done anything about making RowCompareExpr an indexable
operator, but will look at that soon.
initdb forced due to changes in stored rules.
|
|
|
|
|
|
|
|
| |
functionality, but I still need to make another pass looking at places
that incidentally use arrays (such as ACL manipulation) to make sure they
are null-safe. Contrib needs work too.
I have not changed the behaviors that are still under discussion about
array comparison and what to do with lower bounds.
|