| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
do_text_output_multiline() would fail (typically with a null pointer
dereference crash) if its input string did not end with a newline. Such
cases do not arise in our current sources; but it certainly could happen
in future, or in extension code's usage of the function, so we should fix
it. To fix, replace "eol += len" with "eol = text + len".
While at it, make two cosmetic improvements: mark the input string const,
and rename the argument from "text" to "txt" to dodge pgindent strangeness
(since "text" is a typedef name).
Even though this problem is only latent at present, it seems like a good
idea to back-patch the fix, since it's a very simple/safe patch and it's
not out of the realm of possibility that we might in future back-patch
something that expects sane behavior from do_text_output_multiline().
Per report from Hao Lee.
Report: <CAGoxFiFPAGyPAJLcFxTB5cGhTW2yOVBDYeqDugYwV4dEd1L_Ag@mail.gmail.com>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch widens SPI_processed, EState's es_processed field, PortalData's
portalPos field, FuncCallContext's call_cntr and max_calls fields,
ExecutorRun's count argument, PortalRunFetch's result, and the max number
of rows in a SPITupleTable to uint64, and deals with (I hope) all the
ensuing fallout. Some of these values were declared uint32 before, and
others "long".
I also removed PortalData's posOverflow field, since that logic seems
pretty useless given that portalPos is now always 64 bits.
The user-visible results are that command tags for SELECT etc will
correctly report tuple counts larger than 4G, as will plpgsql's GET
GET DIAGNOSTICS ... ROW_COUNT command. Queries processing more tuples
than that are still not exactly the norm, but they're becoming more
common.
Most values associated with FETCH/MOVE distances, such as PortalRun's count
argument and the count argument of most SPI functions that have one, remain
declared as "long". It's not clear whether it would be worth promoting
those to int64; but it would definitely be a large dollop of additional
API churn on top of this, and it would only help 32-bit platforms which
seem relatively less likely to see any benefit.
Andreas Scherbaum, reviewed by Christian Ullrich, additional hacking by me
|
|
|
|
| |
Backpatch certain files through 9.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A Gather executor node runs any number of copies of a plan in an equal
number of workers and merges all of the results into a single tuple
stream. It can also run the plan itself, if the workers are
unavailable or haven't started up yet. It is intended to work with
the Partial Seq Scan node which will be added in future commits.
It could also be used to implement parallel query of a different sort
by itself, without help from Partial Seq Scan, if the single_copy mode
is used. In that mode, a worker executes the plan, and the parallel
leader does not, merely collecting the worker's results. So, a Gather
node could be inserted into a plan to split the execution of that plan
across two processes. Nested Gather nodes aren't currently supported,
but we might want to add support for that in the future.
There's nothing in the planner to actually generate Gather nodes yet,
so it's not quite time to break out the champagne. But we're getting
close.
Amit Kapila. Some designs suggestions were provided by me, and I also
reviewed the patch. Single-copy mode, documentation, and other minor
changes also by me.
|
|
|
|
| |
This became unused in a191a169d6d0b9558da4519e66510c4540204a51.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, FDWs could only do "early row locking", that is lock a row as
soon as it's fetched, even though local restriction/join conditions might
discard the row later. This patch adds callbacks that allow FDWs to do
late locking in the same way that it's done for regular tables.
To make use of this feature, an FDW must support the "ctid" column as a
unique row identifier. Currently, since ctid has to be of type TID,
the feature is of limited use, though in principle it could be used by
postgres_fdw. We may eventually allow FDWs to specify another data type
for ctid, which would make it possible for more FDWs to use this feature.
This commit does not modify postgres_fdw to use late locking. We've
tested some prototype code for that, but it's not in committable shape,
and besides it's quite unclear whether it actually makes sense to do late
locking against a remote server. The extra round trips required are likely
to outweigh any benefit from improved concurrency.
Etsuro Fujita, reviewed by Ashutosh Bapat, and hacked up a lot by me
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit e7cb7ee14555cc9c5773e2c102efd6371f6f2005 included some design
decisions that seem pretty questionable to me, and there was quite a lot
of stuff not to like about the documentation and comments. Clean up
as follows:
* Consider foreign joins only between foreign tables on the same server,
rather than between any two foreign tables with the same underlying FDW
handler function. In most if not all cases, the FDW would simply have had
to apply the same-server restriction itself (far more expensively, both for
lack of caching and because it would be repeated for each combination of
input sub-joins), or else risk nasty bugs. Anyone who's really intent on
doing something outside this restriction can always use the
set_join_pathlist_hook.
* Rename fdw_ps_tlist/custom_ps_tlist to fdw_scan_tlist/custom_scan_tlist
to better reflect what they're for, and allow these custom scan tlists
to be used even for base relations.
* Change make_foreignscan() API to include passing the fdw_scan_tlist
value, since the FDW is required to set that. Backwards compatibility
doesn't seem like an adequate reason to expect FDWs to set it in some
ad-hoc extra step, and anyway existing FDWs can just pass NIL.
* Change the API of path-generating subroutines of add_paths_to_joinrel,
and in particular that of GetForeignJoinPaths and set_join_pathlist_hook,
so that various less-used parameters are passed in a struct rather than
as separate parameter-list entries. The objective here is to reduce the
probability that future additions to those parameter lists will result in
source-level API breaks for users of these hooks. It's possible that this
is even a small win for the core code, since most CPU architectures can't
pass more than half a dozen parameters efficiently anyway. I kept root,
joinrel, outerrel, innerrel, and jointype as separate parameters to reduce
code churn in joinpath.c --- in particular, putting jointype into the
struct would have been problematic because of the subroutines' habit of
changing their local copies of that variable.
* Avoid ad-hocery in ExecAssignScanProjectionInfo. It was probably all
right for it to know about IndexOnlyScan, but if the list is to grow
we should refactor the knowledge out to the callers.
* Restore nodeForeignscan.c's previous use of the relcache to avoid
extra GetFdwRoutine lookups for base-relation scans.
* Lots of cleanup of documentation and missed comments. Re-order some
code additions into more logical places.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The RLS capability is built on top of the WITH CHECK OPTION
system which was added for auto-updatable views, however, unlike
WCOs on views (which are mandated by the SQL spec to not fire until
after all other constraints and checks are done), it makes much more
sense for RLS checks to happen earlier than constraint and uniqueness
checks.
This patch reworks the structure which holds the WCOs a bit to be
explicitly either VIEW or RLS checks and the RLS-related checks are
done prior to the constraint and uniqueness checks. This also allows
better error reporting as we are now reporting when a violation is due
to a WITH CHECK OPTION and when it's due to an RLS policy violation,
which was independently noted by Craig Ringer as being confusing.
The documentation is also updated to include a paragraph about when RLS
WITH CHECK handling is performed, as there have been a number of
questions regarding that and the documentation was previously silent on
the matter.
Author: Dean Rasheed, with some kabitzing and comment changes by me.
|
|
|
|
|
| |
There is enough code here to deserve a file of their own, not be buried
in the middle of execUtils.c.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit df630b0dd5ea2de52972d456f5978a012436115e moved enum LockWaitPolicy
into its very own header file utils/lockwaitpolicy.h, which does not seem
like a great idea from here. First, it's still a node-related declaration,
and second, a file named like that can never sensibly be used for anything
else. I do not think we want to encourage a one-typedef-per-header-file
approach. The upcoming foreign table inheritance patch was doubling down
on this bad idea by moving enum LockClauseStrength into its *own*
can-never-be-used-for-anything-else file. Instead, let's put them both in
a file named nodes/lockoptions.h. (They do seem to need a separate header
file because we need them in both parsenodes.h and plannodes.h, and we
don't want either of those including the other. Past practice might
suggest adding them to nodes/nodes.h, but they don't seem sufficiently
globally useful to justify that.)
Committed separately since there's no functional change here, just some
header-file refactoring.
|
|
|
|
| |
Backpatch certain files through 9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Get rid of the pernicious entanglement between planner and executor headers
introduced by commit 0b03e5951bf0a1a8868db13f02049cf686a82165.
Also, rearrange the CustomFoo struct/typedef definitions so that all the
typedef names are seen as used by the compiler. Without this pgindent
will mess things up a bit, which is not so important perhaps, but it also
removes a bizarre discrepancy between the declaration arrangement used for
CustomExecMethods and that used for CustomScanMethods and
CustomPathMethods.
Clean up the commentary around ExecSupportsMarkRestore to reflect the
rather large change in its API.
Const-ify register_custom_path_provider's argument. This necessitates
casting away const in the function, but that seems better than forcing
callers of the function to do so (or else not const-ify their method
pointer structs, which was sort of the whole point).
De-export fix_expr_common. I don't like the exporting of fix_scan_expr
or replace_nestloop_params either, but this one surely has got little
excuse.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
At one time it wasn't terribly important what column names were associated
with the fields of a composite Datum, but since the introduction of
operations like row_to_json(), it's important that looking up the rowtype
ID embedded in the Datum returns the column names that users would expect.
That did not work terribly well before this patch: you could get the column
names of the underlying table, or column aliases from any level of the
query, depending on minor details of the plan tree. You could even get
totally empty field names, which is disastrous for cases like row_to_json().
To fix this for whole-row Vars, look to the RTE referenced by the Var, and
make sure its column aliases are applied to the rowtype associated with
the result Datums. This is a tad scary because we might have to return
a transient RECORD type even though the Var is declared as having some
named rowtype. In principle it should be all right because the record
type will still be physically compatible with the named rowtype; but
I had to weaken one Assert in ExecEvalConvertRowtype, and there might be
third-party code containing similar assumptions.
Similarly, RowExprs have to be willing to override the column names coming
from a named composite result type and produce a RECORD when the column
aliases visible at the site of the RowExpr differ from the underlying
table's column names.
In passing, revert the decision made in commit 398f70ec070fe601 to add
an alias-list argument to ExecTypeFromExprList: better to provide that
functionality in a separate function. This also reverts most of the code
changes in d68581483564ec0f, which we don't need because we're no longer
depending on the tupdesc found in the child plan node's result slot to be
blessed.
Back-patch to 9.4, but not earlier, since this solution changes the results
in some cases that users might not have realized were buggy. We'll apply a
more restricted form of this patch in older branches.
|
|
|
|
|
|
|
|
|
|
|
| |
This allows extension modules to define their own methods for
scanning a relation, and get the core code to use them. It's
unclear as yet how much use this capability will find, but we
won't find out if we never commit it.
KaiGai Kohei, reviewed at various times and in various levels
of detail by Shigeru Hanada, Tom Lane, Andres Freund, Álvaro
Herrera, and myself.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This clause changes the behavior of SELECT locking clauses in the
presence of locked rows: instead of causing a process to block waiting
for the locks held by other processes (or raise an error, with NOWAIT),
SKIP LOCKED makes the new reader skip over such rows. While this is not
appropriate behavior for general purposes, there are some cases in which
it is useful, such as queue-like tables.
Catalog version bumped because this patch changes the representation of
stored rules.
Reviewed by Craig Ringer (based on a previous attempt at an
implementation by Simon Riggs, who also provided input on the syntax
used in the current patch), David Rowley, and Álvaro Herrera.
Author: Thomas Munro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If SELECT FOR UPDATE NOWAIT tries to lock a tuple that is concurrently
being updated, it might fail to honor its NOWAIT specification and block
instead of raising an error.
Fix by adding a no-wait flag to EvalPlanQualFetch which it can pass down
to heap_lock_tuple; also use it in EvalPlanQualFetch itself to avoid
blocking while waiting for a concurrent transaction.
Authors: Craig Ringer and Thomas Munro, tweaked by Álvaro
http://www.postgresql.org/message-id/51FB6703.9090801@2ndquadrant.com
Per Thomas Munro in the course of his SKIP LOCKED feature submission,
who also provided one of the isolation test specs.
Backpatch to 9.4, because that's as far back as it applies without
conflicts (although the bug goes all the way back). To that branch also
backpatch Thomas Munro's new NOWAIT test cases, committed in master by
Heikki as commit 9ee16b49f0aac819bd4823d9b94485ef608b34e8 .
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ExecMakeTableFunctionResult evaluated the arguments for a function-in-FROM
in the query-lifespan memory context. This is insignificant in simple
cases where the function relation is scanned only once; but if the function
is in a sub-SELECT or is on the inside of a nested loop, any memory
consumed during argument evaluation can add up quickly. (The potential for
trouble here had been foreseen long ago, per existing comments; but we'd
not previously seen a complaint from the field about it.) To fix, create
an additional temporary context just for this purpose.
Per an example from MauMau. Back-patch to all active branches.
|
|
|
|
|
| |
This includes removing tabs after periods in C comments, which was
applied to back branches, so this change should not effect backpatching.
|
|
|
|
|
| |
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For simple views which are automatically updatable, this patch allows
the user to specify what level of checking should be done on records
being inserted or updated. For 'LOCAL CHECK', new tuples are validated
against the conditionals of the view they are being inserted into, while
for 'CASCADED CHECK' the new tuples are validated against the
conditionals for all views involved (from the top down).
This option is part of the SQL specification.
Dean Rasheed, reviewed by Pavel Stehule
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Move checking for unscannable matviews into ExecOpenScanRelation, which is
a better place for it first because the open relation is already available
(saving a relcache lookup cycle), and second because this eliminates the
problem of telling the difference between rangetable entries that will or
will not be scanned by the query. In particular we can get rid of the
not-terribly-well-thought-out-or-implemented isResultRel field that the
initial matviews patch added to RangeTblEntry.
Also get rid of entirely unnecessary scannability check in the rewriter,
and a bogus decision about whether RefreshMatViewStmt requires a parse-time
snapshot.
catversion bump due to removal of a RangeTblEntry field, which changes
stored rules.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A materialized view has a rule just like a view and a heap and
other physical properties like a table. The rule is only used to
populate the table, references in queries refer to the
materialized data.
This is a minimal implementation, but should still be useful in
many cases. Currently data is only populated "on demand" by the
CREATE MATERIALIZED VIEW and REFRESH MATERIALIZED VIEW statements.
It is expected that future releases will add incremental updates
with various timings, and that a more refined concept of defining
what is "fresh" data will be developed. At some point it may even
be possible to have queries use a materialized in place of
references to underlying tables, but that requires the other
above-mentioned features to be working first.
Much of the documentation work by Robert Haas.
Review by Noah Misch, Thom Brown, Robert Haas, Marko Tiikkaja
Security review by KaiGai Kohei, with a decision on how best to
implement sepgsql still pending.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces two additional lock modes for tuples: "SELECT FOR
KEY SHARE" and "SELECT FOR NO KEY UPDATE". These don't block each
other, in contrast with already existing "SELECT FOR SHARE" and "SELECT
FOR UPDATE". UPDATE commands that do not modify the values stored in
the columns that are part of the key of the tuple now grab a SELECT FOR
NO KEY UPDATE lock on the tuple, allowing them to proceed concurrently
with tuple locks of the FOR KEY SHARE variety.
Foreign key triggers now use FOR KEY SHARE instead of FOR SHARE; this
means the concurrency improvement applies to them, which is the whole
point of this patch.
The added tuple lock semantics require some rejiggering of the multixact
module, so that the locking level that each transaction is holding can
be stored alongside its Xid. Also, multixacts now need to persist
across server restarts and crashes, because they can now represent not
only tuple locks, but also tuple updates. This means we need more
careful tracking of lifetime of pg_multixact SLRU files; since they now
persist longer, we require more infrastructure to figure out when they
can be removed. pg_upgrade also needs to be careful to copy
pg_multixact files over from the old server to the new, or at least part
of multixact.c state, depending on the versions of the old and new
servers.
Tuple time qualification rules (HeapTupleSatisfies routines) need to be
careful not to consider tuples with the "is multi" infomask bit set as
being only locked; they might need to look up MultiXact values (i.e.
possibly do pg_multixact I/O) to find out the Xid that updated a tuple,
whereas they previously were assured to only use information readily
available from the tuple header. This is considered acceptable, because
the extra I/O would involve cases that would previously cause some
commands to block waiting for concurrent transactions to finish.
Another important change is the fact that locking tuples that have
previously been updated causes the future versions to be marked as
locked, too; this is essential for correctness of foreign key checks.
This causes additional WAL-logging, also (there was previously a single
WAL record for a locked tuple; now there are as many as updated copies
of the tuple there exist.)
With all this in place, contention related to tuples being checked by
foreign key rules should be much reduced.
As a bonus, the old behavior that a subtransaction grabbing a stronger
tuple lock than the parent (sub)transaction held on a given tuple and
later aborting caused the weaker lock to be lost, has been fixed.
Many new spec files were added for isolation tester framework, to ensure
overall behavior is sane. There's probably room for several more tests.
There were several reviewers of this patch; in particular, Noah Misch
and Andres Freund spent considerable time in it. Original idea for the
patch came from Simon Riggs, after a problem report by Joel Jacobson.
Most code is from me, with contributions from Marti Raudsepp, Alexander
Shulgin, Noah Misch and Andres Freund.
This patch was discussed in several pgsql-hackers threads; the most
important start at the following message-ids:
AANLkTimo9XVcEzfiBR-ut3KVNDkjm2Vxh+t8kAmWjPuv@mail.gmail.com
1290721684-sup-3951@alvh.no-ip.org
1294953201-sup-2099@alvh.no-ip.org
1320343602-sup-2290@alvh.no-ip.org
1339690386-sup-8927@alvh.no-ip.org
4FE5FF020200002500048A3D@gw.wicourts.gov
4FEAB90A0200002500048B7D@gw.wicourts.gov
|
|
|
|
|
| |
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
|
|
| |
commit-fest.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Making this operation look like a utility statement seems generally a good
idea, and particularly so in light of the desire to provide command
triggers for utility statements. The original choice of representing it as
SELECT with an IntoClause appendage had metastasized into rather a lot of
places, unfortunately, so that this patch is a great deal more complicated
than one might at first expect.
In particular, keeping EXPLAIN working for SELECT INTO and CREATE TABLE AS
subcommands required restructuring some EXPLAIN-related APIs. Add-on code
that calls ExplainOnePlan or ExplainOneUtility, or uses
ExplainOneQuery_hook, will need adjustment.
Also, the cases PREPARE ... SELECT INTO and CREATE RULE ... SELECT INTO,
which formerly were accepted though undocumented, are no longer accepted.
The PREPARE case can be replaced with use of CREATE TABLE AS EXECUTE.
The CREATE RULE case doesn't seem to have much real-world use (since the
rule would work only once before failing with "table already exists"),
so we'll not bother with that one.
Both SELECT INTO and CREATE TABLE AS still return a command tag of
"SELECT nnnn". There was some discussion of returning "CREATE TABLE nnnn",
but for the moment backwards compatibility wins the day.
Andres Freund and Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The hstore and json datatypes both have record-conversion functions that
pay attention to column names in the composite values they're handed.
We used to not worry about inserting correct field names into tuple
descriptors generated at runtime, but given these examples it seems
useful to do so. Observe the nicer-looking results in the regression
tests whose results changed.
catversion bump because there is a subtle change in requirements for stored
rule parsetrees: RowExprs from ROW() constructs now have to include field
names.
Andrew Dunstan and Tom Lane
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The planner can sometimes compute very large values for numGroups, and in
cases where we have no alternative to building a hashtable, such a value
will get fed directly to BuildTupleHashTable as its nbuckets parameter.
There were two ways in which that could go bad. First, BuildTupleHashTable
declared the parameter as "int" but most callers were passing "long"s,
so on 64-bit machines undetected overflow could occur leading to a bogus
negative value. The obvious fix for that is to change the parameter to
"long", which is what I've done in HEAD. In the back branches that seems a
bit risky, though, since third-party code might be calling this function.
So for them, just put in a kluge to treat negative inputs as INT_MAX.
Second, hash_create can go nuts with extremely large requested table sizes
(notably, my_log2 becomes an infinite loop for inputs larger than
LONG_MAX/2). What seems most appropriate to avoid that is to bound the
initial table size request to work_mem.
This fixes bug #6035 reported by Daniel Schreiber. Although the reported
case only occurs back to 8.4 since it involves WITH RECURSIVE, I think
it's a good idea to install the defenses in all supported branches.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The originally committed patch for modifying CTEs didn't interact well
with EXPLAIN, as noted by myself, and also had corner-case problems with
triggers, as noted by Dean Rasheed. Those problems show it is really not
practical for ExecutorEnd to call any user-defined code; so split the
cleanup duties out into a new function ExecutorFinish, which must be called
between the last ExecutorRun call and ExecutorEnd. Some Asserts have been
added to these functions to help verify correct usage.
It is no longer necessary for callers of the executor to call
AfterTriggerBeginQuery/AfterTriggerEndQuery for themselves, as this is now
done by ExecutorStart/ExecutorFinish respectively. If you really need to
suppress that and do it for yourself, pass EXEC_FLAG_SKIP_TRIGGERS to
ExecutorStart.
Also, refactor portal commit processing to allow for the possibility that
PortalDrop will invoke user-defined code. I think this is not actually
necessary just yet, since the portal-execution-strategy logic forces any
non-pure-SELECT query to be run to completion before we will consider
committing. But it seems like good future-proofing.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch implements data-modifying WITH queries according to the
semantics that the updates all happen with the same command counter value,
and in an unspecified order. Therefore one WITH clause can't see the
effects of another, nor can the outer query see the effects other than
through the RETURNING values. And attempts to do conflicting updates will
have unpredictable results. We'll need to document all that.
This commit just fixes the code; documentation updates are waiting on
author.
Marko Tiikkaja and Hitoshi Harada
|
|
|
|
|
|
|
| |
This was a leftover from the pre-8.1 design of junkfilters. It doesn't
seem to have any reason to live, since it's merely a combination of two
easy function calls, and not a well-designed combination at that (it
encourages callers to leak the result tuple).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In an inherited UPDATE/DELETE, each target table has its own subplan,
because it might have a column set different from other targets. This
means that the resjunk columns we add to support EvalPlanQual might be
at different physical column numbers in each subplan. The EvalPlanQual
rewrite I did for 9.0 failed to account for this, resulting in possible
misbehavior or even crashes during concurrent updates to the same row,
as seen in a recent report from Gordon Shannon. Revise the data structure
so that we track resjunk column numbers separately for each subplan.
I also chose to move responsibility for identifying the physical column
numbers back to executor startup, instead of assuming that numbers derived
during preprocess_targetlist would stay valid throughout subsequent
massaging of the plan. That's a bit slower, so we might want to consider
undoing it someday; but it would complicate the patch considerably and
didn't seem justifiable in a bug fix that has to be back-patched to 9.0.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
| |
Remove bespoke code in DoCopy and RI_Initial_Check, which now instead
fabricate call ExecCheckRTPerms with a manufactured RangeTblEntry.
This is intended to make it feasible for an enhanced security provider
to actually make use of ExecutorCheckPerms_hook, but also has the
advantage that RI_Initial_Check can allow use of the fast-path when
column-level but not table-level permissions are present.
KaiGai Kohei. Reviewed (in an earlier version) by Stephen Frost, and by me.
Some further changes to the comments by me.
|
|
|
|
|
|
|
|
|
|
|
|
| |
relation using the general PARAM_EXEC executor parameter mechanism, rather
than the ad-hoc kluge of passing the outer tuple down through ExecReScan.
The previous method was hard to understand and could never be extended to
handle parameters coming from multiple join levels. This patch doesn't
change the set of possible plans nor have any significant performance effect,
but it's necessary infrastructure for future generalization of the concept
of an inner indexscan plan.
ExecReScan's second parameter is now unused, so it's removed.
|
|
|
|
|
|
|
|
|
|
|
| |
This hook allows a loadable module to gain control when table permissions
are checked. It is expected to be used by an eventual SE-PostgreSQL
implementation, but there are other possible applications as well. A
sample contrib module can be found in the archives at:
http://archives.postgresql.org/pgsql-hackers/2010-05/msg01095.php
Robert Haas and Stephen Frost
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
VACUUM FULL INPLACE), along with a boatload of subsidiary code and complexity.
Per discussion, the use case for this method of vacuuming is no longer large
enough to justify maintaining it; not to mention that we don't wish to invest
the work that would be needed to make it play nicely with Hot Standby.
Aside from the code directly related to old-style VACUUM FULL, this commit
removes support for certain WAL record types that could only be generated
within VACUUM FULL, redirect-pointer removal in heap_page_prune, and
nontransactional generation of cache invalidation sinval messages (the last
being the sticking point for Hot Standby).
We still have to retain all code that copes with finding HEAP_MOVED_OFF and
HEAP_MOVED_IN flag bits on existing tuples. This can't be removed as long
as we want to support in-place update from pre-9.0 databases.
|
| |
|
|
|
|
|
|
|
|
| |
This patch also removes buffer-usage statistics from the track_counts
output, since this (or the global server statistics) is deemed to be a better
interface to this information.
Itagaki Takahiro, reviewed by Euler Taveira de Oliveira.
|
|
|
|
|
|
|
|
| |
support any indexable commutative operator, not just equality. Two rows
violate the exclusion constraint if "row1.col OP row2.col" is TRUE for
each of the columns in the constraint.
Jeff Davis, reviewed by Robert Haas
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
execMain.c and into a new plan node type LockRows. Like the recent change
to put table updating into a ModifyTable plan node, this increases planning
flexibility by allowing the operations to occur below the top level of the
plan tree. It's necessary in any case to restore the previous behavior of
having FOR UPDATE locking occur before ModifyTable does.
This partially refactors EvalPlanQual to allow multiple rows-under-test
to be inserted into the EPQ machinery before starting an EPQ test query.
That isn't sufficient to fix EPQ's general bogosity in the face of plans
that return multiple rows per test row, though. Since this patch is
mostly about getting some plan node infrastructure in place and not about
fixing ten-year-old bugs, I will leave EPQ improvements for another day.
Another behavioral change that we could now think about is doing FOR UPDATE
before LIMIT, but that too seems like it should be treated as a followon
patch.
|
|
|
|
|
|
|
|
|
|
| |
They are now handled by a new plan node type called ModifyTable, which is
placed at the top of the plan tree. In itself this change doesn't do much,
except perhaps make the handling of RETURNING lists and inherited UPDATEs a
tad less klugy. But it is necessary preparation for the intended extension of
allowing RETURNING queries inside WITH.
Marko Tiikkaja
|
| |
|