| Commit message (Collapse) | Author | Age |
... | |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch generalizes the subscripting infrastructure so that any
data type can be subscripted, if it provides a handler function to
define what that means. Traditional variable-length (varlena) arrays
all use array_subscript_handler(), while the existing fixed-length
types that support subscripting use raw_array_subscript_handler().
It's expected that other types that want to use subscripting notation
will define their own handlers. (This patch provides no such new
features, though; it only lays the foundation for them.)
To do this, move the parser's semantic processing of subscripts
(including coercion to whatever data type is required) into a
method callback supplied by the handler. On the execution side,
replace the ExecEvalSubscriptingRef* layer of functions with direct
calls to callback-supplied execution routines. (Thus, essentially
no new run-time overhead should be caused by this patch. Indeed,
there is room to remove some overhead by supplying specialized
execution routines. This patch does a little bit in that line,
but more could be done.)
Additional work is required here and there to remove formerly
hard-wired assumptions about the result type, collation, etc
of a SubscriptingRef expression node; and to remove assumptions
that the subscript values must be integers.
One useful side-effect of this is that we now have a less squishy
mechanism for identifying whether a data type is a "true" array:
instead of wiring in weird rules about typlen, we can look to see
if pg_type.typsubscript == F_ARRAY_SUBSCRIPT_HANDLER. For this
to be bulletproof, we have to forbid user-defined types from using
that handler directly; but there seems no good reason for them to
do so.
This patch also removes assumptions that the number of subscripts
is limited to MAXDIM (6), or indeed has any hard-wired limit.
That limit still applies to types handled by array_subscript_handler
or raw_array_subscript_handler, but to discourage other dependencies
on this constant, I've moved it from c.h to utils/array.h.
Dmitry Dolgov, reviewed at various times by Tom Lane, Arthur Zakirov,
Peter Eisentraut, Pavel Stehule
Discussion: https://postgr.es/m/CA+q6zcVDuGBv=M0FqBYX8DPebS3F_0KQ6OVFobGJPM507_SZ_w@mail.gmail.com
Discussion: https://postgr.es/m/CA+q6zcVovR+XY4mfk-7oNk-rF91gH0PebnNfuUjuuDsyHjOcVA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
| |
This has the advantage that the cost estimates for aggregates can count
the number of calls to transition and final functions correctly.
Bump catalog version, because views can contain Aggrefs.
Reviewed-by: Andres Freund
Discussion: https://www.postgresql.org/message-id/b2e3536b-1dbc-8303-c97e-89cb0b4a9a48%40iki.fi
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, ExecInitModifyTable relied on ExecInitJunkFilter,
and thence ExecCleanTypeFromTL, to build the target descriptor from
the query tlist. While we just checked (in ExecCheckPlanOutput)
that the tlist produces compatible output, this is not a great
substitute for the relation's actual tuple descriptor that's
available from the relcache. For one thing, dropped columns will
not be correctly marked attisdropped; it's a bit surprising that
we've gotten away with that this long. But the real reason for
being concerned with this is that using the table's descriptor means
that the slot will have correct attrmissing data, allowing us to
revert the klugy fix of commit ba9f18abd. (This commit undoes
that one's changes in trigger.c, but keeps the new test case.)
Thus we can solve the bogus-trigger-tuple problem with fewer cycles
rather than more.
No back-patch, since this doesn't fix any additional bug, and it
seems somewhat more likely to have unforeseen side effects than
ba9f18abd's narrow fix.
Discussion: https://postgr.es/m/16644-5da7ef98a7ac4545@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since commit 913bbd88d, check_sql_fn_retval() can either insert type
coercion steps in-line in the Query that produces the SQL function's
results, or generate a new top-level Query to perform the coercions,
if modifying the Query's output in-place wouldn't be safe. However,
it appears that the latter case has never actually worked, because
the code tried to inject the new Query back into the query list it was
passed ... which is not the list that will be used for later processing
when we execute the SQL function "normally" (without inlining it).
So we ended up with no coercion happening at run-time, leading to
wrong results or crashes depending on the datatypes involved.
While the regression tests look like they cover this area well enough,
through a huge bit of bad luck all the test cases that exercise the
separate-Query path were checking either inline-able cases (which
accidentally didn't have the bug) or cases that are no-ops at runtime
(e.g., varchar to text), so that the failure to perform the coercion
wasn't obvious. The fact that the cases that don't work weren't
allowed at all before v13 probably contributed to not noticing the
problem sooner, too.
To fix, get rid of the separate "flat" list of Query nodes and instead
pass the real two-level list that is going to be used later. I chose
to make the same change in check_sql_fn_statements(), although that has
no actual bug, just so that we don't need that data structure at all.
This is an API change, as evidenced by the adjustments needed to
callers outside functions.c. That's a bit scary to be doing in a
released branch, but so far as I can tell from a quick search,
there are no outside callers of these functions (and they are
sufficiently specific to our semantics for SQL-language functions that
it's not apparent why any extension would need to call them). In any
case, v13 already changed the API of check_sql_fn_retval() compared to
prior branches.
Per report from pinker. Back-patch to v13 where this code came in.
Discussion: https://postgr.es/m/1603050466566-0.post@n3.nabble.com
|
|
|
|
|
|
|
|
|
|
| |
The extra indirection neeeded to access its members via its enclosing
ResultRelInfo seems pointless. Move all the fields from
PartitionRoutingInfo to ResultRelInfo.
Author: Amit Langote
Reviewed-by: Alvaro Herrera
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqFViT47Zbr_ASBejiK7iDG8%3DQ1swQ-tjM6caRPQ67pT%3Dw%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Store the tuple conversion map to convert a tuple from a child table's
format to the root format in a new ri_ChildToRootMap field in
ResultRelInfo. It is initialized if transition tuple capture for FOR
STATEMENT triggers or INSERT tuple routing on a partitioned table is
needed. Previously, ModifyTable kept the maps in the per-subplan
ModifyTableState->mt_per_subplan_tupconv_maps array, or when tuple
routing was used, in
ResultRelInfo->ri_Partitioninfo->pi_PartitionToRootMap. The new field
replaces both of those.
Now that the child-to-root tuple conversion map is always available in
ResultRelInfo (when needed), remove the TransitionCaptureState.tcs_map
field. The callers of Exec*Trigger() functions no longer need to set or
save it, which is much less confusing and bug-prone. Also, as a future
optimization, this will allow us to delay creating the map for a given
result relation until the relation is actually processed during
execution.
Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqHtCWLdK-LO%3DNEsvOdHx%2B7yv4mE_zYK0i3BH7dXb-wxog%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Maintaining 'es_result_relation_info' correctly at all times has become
cumbersome, especially with partitioning where each partition gets its
own result relation info. Having to set and reset it across arbitrary
operations has caused bugs in the past.
This changes all the places that used 'es_result_relation_info', to
receive the currently active ResultRelInfo via function parameters
instead.
Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of allocating all the ResultRelInfos upfront in one big array,
allocate them in ExecInitModifyTable(). es_result_relations is now an
array of ResultRelInfo pointers, rather than an array of structs, and it
is indexed by the RT index.
This simplifies things: we get rid of the separate concept of a "result
rel index", and don't need to set it in setrefs.c anymore. This also
allows follow-up optimizations (not included in this commit yet) to skip
initializing ResultRelInfos for target relations that were not needed at
runtime, and removal of the es_result_relation_info pointer.
The EState arrays of regular result rels and root result rels are merged
into one array. Similarly, the resultRelations and rootResultRelations
lists in PlannedStmt are merged into one. It's not actually clear to me
why they were kept separate in the first place, but now that the
es_result_relations array is indexed by RT index, it certainly seems
pointless.
The PlannedStmt->resultRelations list is now only needed for
ExecRelationIsTargetRelation(). One visible effect of this change is that
ExecRelationIsTargetRelation() will now return 'true' also for the
partition root, if a partitioned table is updated. That seems like a good
thing, although the function isn't used in core code, and I don't see any
reason for an FDW to call it on a partition root.
Author: Amit Langote
Discussion: https://www.postgresql.org/message-id/CA%2BHiwqGEmiib8FLiHMhKB%2BCH5dRgHSLc5N5wnvc4kym%2BZYpQEQ%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When commit bd3daddaf introduced AlternativeSubPlans, I had some
ambitions towards allowing the choice of subplan to change during
execution. That has not happened, or even been thought about, in the
ensuing twelve years; so it seems like a failed experiment. So let's
rip that out and resolve the choice of subplan at the end of planning
(in setrefs.c) rather than during executor startup. This has a number
of positive benefits:
* Removal of a few hundred lines of executor code, since
AlternativeSubPlans need no longer be supported there.
* Removal of executor-startup overhead (particularly, initialization
of subplans that won't be used).
* Removal of incidental costs of having a larger plan tree, such as
tree-scanning and copying costs in the plancache; not to mention
setrefs.c's own costs of processing the discarded subplans.
* EXPLAIN no longer has to print a weird (and undocumented)
representation of an AlternativeSubPlan choice; it sees only the
subplan actually used. This should mean less confusion for users.
* Since setrefs.c knows which subexpression of a plan node it's
working on at any instant, it's possible to adjust the estimated
number of executions of the subplan based on that. For example,
we should usually estimate more executions of a qual expression
than a targetlist expression. The implementation used here is
pretty simplistic, because we don't want to expend a lot of cycles
on the issue; but it's better than ignoring the point entirely,
as the executor had to.
That last point might possibly result in shifting the choice
between hashed and non-hashed EXISTS subplans in a few cases,
but in general this patch isn't meant to change planner choices.
Since we're doing the resolution so late, it's really impossible
to change any plan choices outside the AlternativeSubPlan itself.
Patch by me; thanks to David Rowley for review.
Discussion: https://postgr.es/m/1992952.1592785225@sss.pgh.pa.us
|
|
|
|
|
|
|
|
| |
local_blks_dirtied tracks the number of local blocks dirtied, not shared
ones.
Author: Kirk Jamison
Discussion: https://postgr.es/m/OSBPR01MB2341760686DC056DE89D2AB9EF710@OSBPR01MB2341.jpnprd01.prod.outlook.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Add a GUC that acts as a multiplier on work_mem. It gets applied when
sizing executor node hash tables that were previously size constrained
using work_mem alone.
The new GUC can be used to preferentially give hash-based nodes more
memory than the generic work_mem limit. It is intended to enable admin
tuning of the executor's memory usage. Overall system throughput and
system responsiveness can be improved by giving hash-based executor
nodes more memory (especially over sort-based alternatives, which are
often much less sensitive to being memory constrained).
The default value for hash_mem_multiplier is 1.0, which is also the
minimum valid value. This means that hash-based nodes continue to apply
work_mem in the traditional way by default.
hash_mem_multiplier is generally useful. However, it is being added now
due to concerns about hash aggregate performance stability for users
that upgrade to Postgres 13 (which added disk-based hash aggregation in
commit 1f39bce0). While the old hash aggregate behavior risked
out-of-memory errors, it is nevertheless likely that many users actually
benefited. Hash agg's previous indifference to work_mem during query
execution was not just faster; it also accidentally made aggregation
resilient to grouping estimate problems (at least in cases where this
didn't create destabilizing memory pressure).
hash_mem_multiplier can provide a certain kind of continuity with the
behavior of Postgres 12 hash aggregates in cases where the planner
incorrectly estimates that all groups (plus related allocations) will
fit in work_mem/hash_mem. This seems necessary because hash-based
aggregation is usually much slower when only a small fraction of all
groups can fit. Even when it isn't possible to totally avoid hash
aggregates that spill, giving hash aggregation more memory will reliably
improve performance (the same cannot be said for external sort
operations, which appear to be almost unaffected by memory availability
provided it's at least possible to get a single merge pass).
The PostgreSQL 13 release notes should advise users that increasing
hash_mem_multiplier can help with performance regressions associated
with hash aggregation. That can be taken care of by a later commit.
Author: Peter Geoghegan
Reviewed-By: Álvaro Herrera, Jeff Davis
Discussion: https://postgr.es/m/20200625203629.7m6yvut7eqblgmfo@alap3.anarazel.de
Discussion: https://postgr.es/m/CAH2-WzmD%2Bi1pG6rc1%2BCjc4V6EaFJ_qSuKCCHVnH%3DoruqD-zqow%40mail.gmail.com
Backpatch: 13-, where disk-based hash aggregation was introduced.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use HyperLogLog to estimate the group cardinality in a spilled
partition. This estimate is used to choose the number of partitions if
we recurse.
The previous behavior was to use the number of tuples in a spilled
partition as the estimate for the number of groups, which lead to
overpartitioning. That could cause the number of batches to be much
higher than expected (with each batch being very small), which made it
harder to interpret EXPLAIN ANALYZE results.
Reviewed-by: Peter Geoghegan
Discussion: https://postgr.es/m/a856635f9284bc36f7a77d02f47bbb6aaf7b59b3.camel@j-davis.com
Backpatch-through: 13
|
|
|
|
|
|
|
|
| |
Refactor hash lookups in nodeAgg.c to improve performance.
Author: Andres Freund and Jeff Davis
Discussion: https://postgr.es/m/20200612213715.op4ye4q7gktqvpuo%40alap3.anarazel.de
Backpatch-through: 13
|
|
|
|
|
|
|
|
|
|
|
|
| |
This representation saves 8 bytes per tuple compared to HeapTuple, and
avoids the need to allocate, copy and free on the receiving side.
Gather can emit the returned MinimalTuple directly, but GatherMerge now
needs to make an explicit copy because it buffers multiple tuples at a
time. That should be no worse than before.
Reviewed-by: Soumyadeep Chakraborty <soumyadeep2007@gmail.com>
Discussion: https://postgr.es/m/CA%2BhUKG%2B8T_ggoUTAE-U%3DA%2BOcPc4%3DB0nPPHcSfffuQhvXXjML6w%40mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since 1f39bce02, HashAgg nodes have had the ability to spill to disk when
memory consumption exceeds work_mem. That commit added new properties to
EXPLAIN ANALYZE to show the maximum memory usage and disk usage, however,
it didn't quite go as far as showing that information for parallel
workers. Since workers may have experienced something very different from
the main process, we should show this information per worker, as is done
in Sort.
Reviewed-by: Justin Pryzby
Reviewed-by: Jeff Davis
Discussion: https://postgr.es/m/CAApHDvpEKbfZa18mM1TD7qV6PG+w97pwCWq5tVD0dX7e11gRJw@mail.gmail.com
Backpatch-through: 13, where the hashagg spilling code was added.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
plpgsql has always executed the query given in a RETURN QUERY command
by opening it as a cursor and then fetching a few rows at a time,
which it turns around and dumps into the function's result tuplestore.
The point of this was to keep from blowing out memory with an oversized
SPITupleTable result (note that while a tuplestore can spill tuples
to disk, SPITupleTable cannot). However, it's rather inefficient, both
because of extra data copying and because of executor entry/exit
overhead. In recent versions, a new performance problem has emerged:
use of a cursor prevents use of a parallel plan for the executed query.
We can improve matters by skipping use of a cursor and having the
executor push result tuples directly into the function's result
tuplestore. However, a moderate amount of new infrastructure is needed
to make that idea work:
* We can use the existing tstoreReceiver.c DestReceiver code to funnel
executor output to the tuplestore, but it has to be extended to support
plpgsql's requirement for possibly applying a tuple conversion map.
* SPI needs to be extended to allow use of a caller-supplied
DestReceiver instead of its usual receiver that puts tuples into
a SPITupleTable. Two new API calls are needed to handle both the
RETURN QUERY and RETURN QUERY EXECUTE cases.
I also felt that I didn't want these new API calls to use the legacy
method of specifying query parameter values with "char" null flags
(the old ' '/'n' convention); rather they should accept ParamListInfo
objects containing the parameter type and value info. This required
a bit of additional new infrastructure since we didn't yet have any
parse analysis callback that would interpret $N parameter symbols
according to type data supplied in a ParamListInfo. There seems to be
no harm in letting makeParamList install that callback by default,
rather than leaving a new ParamListInfo's parserSetup hook as NULL.
(Indeed, as of HEAD, I couldn't find anyplace that was using the
parserSetup field at all; plpgsql was using parserSetupArg for its
own purposes, but parserSetup seemed to be write-only.)
We can actually get plpgsql out of the business of using legacy null
flags altogether, and using ParamListInfo instead of its ad-hoc
PreparedParamsData structure; but this requires inventing one more
SPI API call that can replace SPI_cursor_open_with_args. That seems
worth doing, though.
SPI_execute_with_args and SPI_cursor_open_with_args are now unused
anywhere in the core PG distribution. Perhaps someday we could
deprecate/remove them. But cleaning up the crufty bits of the SPI
API is a task for a different patch.
Per bug #16040 from Jeremy Smith. This is unfortunately too invasive to
consider back-patching. Patch by me; thanks to Hamid Akhtar for review.
Discussion: https://postgr.es/m/16040-eaacad11fecfb198@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
| |
Includes some manual cleanup of places that pgindent messed up,
most of which weren't per project style anyway.
Notably, it seems some people didn't absorb the style rules of
commit c9d297751, because there were a bunch of new occurrences
of function calls with a newline just after the left paren, all
with faulty expectations about how the rest of the call would get
indented.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In commit 33e05f89c5, we have added the option to display WAL usage
statistics in Explain and auto_explain. The display format used two spaces
between each field which is inconsistent with Buffer usage statistics which
is using one space between each field. Change the format to make WAL usage
statistics consistent with Buffer usage statistics.
This commit also changed the usage of "full page writes" to
"full page images" for WAL usage statistics to make it consistent with
other parts of code and docs.
Author: Julien Rouhaud, Amit Kapila
Reviewed-by: Justin Pryzby, Kyotaro Horiguchi and Amit Kapila
Discussion: https://postgr.es/m/CAB-hujrP8ZfUkvL5OYETipQwA=e3n7oqHFU=4ZLxWS_Cza3kQQ@mail.gmail.com
|
|
|
|
|
|
|
| |
Reported-by: Justin Pryzby and Euler Taveira
Author: Justin Pryzby and Julien Rouhaud
Reviewed-by: Amit Kapila
Discussion: https://postgr.es/m/CAB-hujrP8ZfUkvL5OYETipQwA=e3n7oqHFU=4ZLxWS_Cza3kQQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Before discarding the old hash table in ExecReScanHashJoin, capture
its statistics, ensuring that we report the maximum hashtable size
across repeated rescans of the hash input relation. We can repurpose
the existing code for reporting hashtable size in parallel workers
to help with this, making the patch pretty small. This also ensures
that if rescans happen within parallel workers, we get the correct
maximums across all instances.
Konstantin Knizhnik and Tom Lane, per diagnosis by Thomas Munro
of a trouble report from Alvaro Herrera.
Discussion: https://postgr.es/m/20200323165059.GA24950@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If the memory context's maxBlockSize is too big, a single block
allocation can suddenly exceed work_mem. For Hash Aggregation, this
can mean spilling to disk too early or reporting a confusing memory
usage number for EXPLAN ANALYZE.
Introduce CreateWorkExprContext(), which is like CreateExprContext(),
except that it creates the AllocSet with a maxBlockSize that is
reasonable in proportion to work_mem.
Right now, CreateWorkExprContext() is only used by Hash Aggregation,
but it may be generally useful in the future.
Discussion: https://postgr.es/m/412a3fbf306f84d8d78c4009e11791867e62b87c.camel@j-davis.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Incremental Sort is an optimized variant of multikey sort for cases when
the input is already sorted by a prefix of the requested sort keys. For
example when the relation is already sorted by (key1, key2) and we need
to sort it by (key1, key2, key3) we can simply split the input rows into
groups having equal values in (key1, key2), and only sort/compare the
remaining column key3.
This has a number of benefits:
- Reduced memory consumption, because only a single group (determined by
values in the sorted prefix) needs to be kept in memory. This may also
eliminate the need to spill to disk.
- Lower startup cost, because Incremental Sort produce results after each
prefix group, which is beneficial for plans where startup cost matters
(like for example queries with LIMIT clause).
We consider both Sort and Incremental Sort, and decide based on costing.
The implemented algorithm operates in two different modes:
- Fetching a minimum number of tuples without check of equality on the
prefix keys, and sorting on all columns when safe.
- Fetching all tuples for a single prefix group and then sorting by
comparing only the remaining (non-prefix) keys.
We always start in the first mode, and employ a heuristic to switch into
the second mode if we believe it's beneficial - the goal is to minimize
the number of unnecessary comparions while keeping memory consumption
below work_mem.
This is a very old patch series. The idea was originally proposed by
Alexander Korotkov back in 2013, and then revived in 2017. In 2018 the
patch was taken over by James Coleman, who wrote and rewrote most of the
current code.
There were many reviewers/contributors since 2013 - I've done my best to
pick the most active ones, and listed them in this commit message.
Author: James Coleman, Alexander Korotkov
Reviewed-by: Tomas Vondra, Andreas Karlsson, Marti Raudsepp, Peter Geoghegan, Robert Haas, Thomas Munro, Antonin Houska, Andres Freund, Alexander Kuzmenkov
Discussion: https://postgr.es/m/CAPpHfdscOX5an71nHd8WSUH6GNOCf=V7wgDaTXdDd9=goN-gfA@mail.gmail.com
Discussion: https://postgr.es/m/CAPpHfds1waRZ=NOmueYq0sx1ZSCnt+5QJvizT8ndT2=etZEeAQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows gathering the WAL generation statistics for each statement
execution. The three statistics that we collect are the number of WAL
records, the number of full page writes and the amount of WAL bytes
generated.
This helps the users who have write-intensive workload to see the impact
of I/O due to WAL. This further enables us to see approximately what
percentage of overall WAL is due to full page writes.
In the future, we can extend this functionality to allow us to compute the
the exact amount of WAL data due to full page writes.
This patch in itself is just an infrastructure to compute WAL usage data.
The upcoming patches will expose this data via explain, auto_explain,
pg_stat_statements and verbose (auto)vacuum output.
Author: Kirill Bychik, Julien Rouhaud
Reviewed-by: Dilip Kumar, Fujii Masao and Amit Kapila
Discussion: https://postgr.es/m/CAB-hujrP8ZfUkvL5OYETipQwA=e3n7oqHFU=4ZLxWS_Cza3kQQ@mail.gmail.com
|
|
|
|
|
|
|
|
| |
Don't try to be precise about it, just use a constant 16 bytes of
chunk overhead. Being smarter would require knowing the memory context
where the chunk will be allocated, which is not known by all callers.
Discussion: https://postgr.es/m/20200325220936.il3ni2fj2j2b45y5@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously pg_stat_statements calculated the difference of buffer counters
by its own code even while BufferUsageAccumDiff() had the same code.
This commit expose BufferUsageAccumDiff() and makes pg_stat_statements
use it for the calculation, in order to simply the code.
This change also would be useful for the upcoming patch for the planning
counters in pg_stat_statements because the patch will add one more code
for the calculation of difference of buffer counters and that can easily be
done by using BufferUsageAccumDiff().
Author: Julien Rouhaud
Reviewed-by: Fujii Masao
Discussion: https://postgr.es/m/bdfee4e0-a304-2498-8da5-3cb52c0a193e@oss.nttdata.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This reverts the parts of commit 17a28b03645e27d73bf69a95d7569b61e58f06eb
that changed ereport's auxiliary functions from returning dummy integer
values to returning void. It turns out that a minority of compilers
complain (not entirely unreasonably) about constructs such as
(condition) ? errdetail(...) : 0
if errdetail() returns void rather than int. We could update those
call sites to say "(void) 0" perhaps, but the expectation for this
patch set was that ereport callers would not have to change anything.
And this aspect of the patch set was already the most invasive and
least compelling part of it, so let's just drop it.
Per buildfarm.
Discussion: https://postgr.es/m/CA+fd4k6N8EjNvZpM8nme+y+05mz-SM8Z_BgkixzkA34R+ej0Kw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change all the auxiliary error-reporting routines to return void,
now that we no longer need to pretend they are passing something
useful to errfinish(). While this probably doesn't save anything
significant at the machine-code level, it allows detection of some
additional types of mistakes.
Pass the error location details (__FILE__, __LINE__, PG_FUNCNAME_MACRO)
to errfinish not errstart. This shaves a few cycles off the case where
errstart decides we're not going to emit anything.
Re-implement elog() as a trivial wrapper around ereport(), removing
the separate support infrastructure it used to have. Aside from
getting rid of some now-surplus code, this means that elog() now
really does have exactly the same semantics as ereport(), in particular
that it can skip evaluation work if the message is not to be emitted.
Andres Freund and Tom Lane
Discussion: https://postgr.es/m/CA+fd4k6N8EjNvZpM8nme+y+05mz-SM8Z_BgkixzkA34R+ej0Kw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
While performing hash aggregation, track memory usage when adding new
groups to a hash table. If the memory usage exceeds work_mem, enter
"spill mode".
In spill mode, new groups are not created in the hash table(s), but
existing groups continue to be advanced if input tuples match. Tuples
that would cause a new group to be created are instead spilled to a
logical tape to be processed later.
The tuples are spilled in a partitioned fashion. When all tuples from
the outer plan are processed (either by advancing the group or
spilling the tuple), finalize and emit the groups from the hash
table. Then, create new batches of work from the spilled partitions,
and select one of the saved batches and process it (possibly spilling
recursively).
Author: Jeff Davis
Reviewed-by: Tomas Vondra, Adam Lee, Justin Pryzby, Taylor Vesely, Melanie Plageman
Discussion: https://postgr.es/m/507ac540ec7c20136364b5272acbcd4574aa76ef.camel@j-davis.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Optionally push a step to check for a NULL pointer to the pergroup
state.
This will be important for disk-based hash aggregation in combination
with grouping sets. When memory limits are reached, a given tuple may
find its per-group state for some grouping sets but not others. For
the former, it advances the per-group state as normal; for the latter,
it skips evaluation and the calling code will have to spill the tuple
and reprocess it in a later batch.
Add the NULL check as a separate expression step because in some
common cases it's not needed.
Discussion: https://postgr.es/m/20200221202212.ssb2qpmdgrnx52sj%40alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Do so by combining the various steps that are part of aggregate
transition function invocation into one larger step. As some of the
current steps are only necessary for some aggregates, have one variant
of the aggregate transition step for each possible combination.
To avoid further manual copies of code in the different transition
step implementations, move most of the code into helper functions
marked as "always inline".
The benefit of this change is an increase in performance when
aggregating lots of rows. This comes in part due to the reduced number
of indirect jumps due to the reduced number of steps, and in part by
reducing redundant setup code across steps. This mainly benefits
interpreted execution, but the code generated by JIT is also improved
a bit.
As a nice side-effect it also ends up making the code a bit simpler.
A small additional optimization is removing the need to set
aggstate->curaggcontext before calling ExecAggInitGroup, choosing to
instead passign curaggcontext as an argument. It was, in contrast to
other aggregate related functions, only needed to fetch a memory
context to copy the transition value into.
Author: Andres Freund
Discussion:
https://postgr.es/m/20191023163849.sosqbfs5yenocez3@alap3.anarazel.de
https://postgr.es/m/5c371df7cee903e8cd4c685f90c6c72086d3a2dc.camel@j-davis.com
|
|
|
|
|
|
|
|
|
|
|
| |
When updating a table row with generated columns, only recompute those
generated columns whose base columns have changed in this update and
keep the rest unchanged. This can result in a significant performance
benefit. The required information was already kept in
RangeTblEntry.extraUpdatedCols; we just have to make use of it.
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/b05e781a-fa16-6b52-6738-761181204567@2ndquadrant.com
|
|
|
|
|
|
|
|
| |
Commit 4eaea3db introduced TupleHashTableHash(), but the signature
didn't match the other exposed functions. Separate it into internal
and external versions. The external version hides the details behind
an API more consistent with the other external functions, and the
internal version is still suitable for simplehash.
|
|
|
|
|
|
|
|
|
|
| |
Expose two new entry points: one for only calculating the hash value
of a tuple, and another for looking up a hash entry when the hash
value is already known. This will be useful for disk-based Hash
Aggregation to avoid recomputing the hash value for the same tuple
after saving and restoring it from disk.
Discussion: https://postgr.es/m/37091115219dd522fd9ed67333ee8ed1b7e09443.camel%40j-davis.com
|
|
|
|
|
|
|
|
|
|
| |
It's already tracked via ExprState->parent, so we don't need to also
include it in ExprEvalStep. When that code originally was written
ExprState->parent didn't exist, but it since has been introduced in
6719b238e8f.
Author: Andres Freund
Discussion: https://postgr.es/m/20191023163849.sosqbfs5yenocez3@alap3.anarazel.de
|
|
|
|
|
|
| |
Consolidate the calculations for hash table size estimation. This will
help with upcoming Hash Aggregation work that will add additional call
sites.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Use the parser's standard type coercion machinery to convert the
output column(s) of a SQL function's final SELECT or RETURNING
to the type(s) they should have according to the function's declared
result type. We'll allow any case where an assignment-level
coercion is available. Previously, we failed unless the required
coercion was a binary-compatible one (and the documentation ignored
this, falsely claiming that the types must match exactly).
Notably, the coercion now accounts for typmods, so that cases where
a SQL function is declared to return a composite type whose columns
are typmod-constrained now behave as one would expect. Arguably
this aspect is a bug fix, but the overall behavioral change here
seems too large to consider back-patching.
A nice side-effect is that functions can now be inlined in a
few cases where we previously failed to do so because of type
mismatches.
Discussion: https://postgr.es/m/18929.1574895430@sss.pgh.pa.us
|
|
|
|
| |
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
|
|
|
|
|
|
| |
This follows multiple complains from Peter Geoghegan, Andres Freund and
Alvaro Herrera that this issue ought to be dug more before actually
happening, if it happens.
Discussion: https://postgr.es/m/20191226144606.GA5659@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The following renaming is done so as source files related to index
access methods are more consistent with table access methods (the
original names used for index AMs ware too generic, and could be
confused as including features related to table AMs):
- amapi.h -> indexam.h.
- amapi.c -> indexamapi.c. Here we have an equivalent with
backend/access/table/tableamapi.c.
- amvalidate.c -> indexamvalidate.c.
- amvalidate.h -> indexamvalidate.h.
- genam.c -> indexgenam.c.
- genam.h -> indexgenam.h.
This has been discussed during the development of v12 when table AM was
worked on, but the renaming never happened.
Author: Michael Paquier
Reviewed-by: Fabien Coelho, Julien Rouhaud
Discussion: https://postgr.es/m/20191223053434.GF34339@paquier.xyz
|
|
|
|
|
|
|
|
| |
Remove a duplicated word. Add "of" or "# of" in a couple places
for clarity and consistency. Start comments with a lower case
letter as we do elsewhere in this file.
Rafia Sabih
|
|
|
|
|
|
|
|
|
| |
Similar to commits 14aec03502, 7e735035f2 and dddf4cdc33, this commit
makes the order of header file inclusion consistent in more places.
Author: Vignesh C
Reviewed-by: Amit Kapila
Discussion: https://postgr.es/m/CALDaNm2Sznv8RR6Ex-iJO6xAdsxgWhCoETkaYX=+9DW3q0QCfA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Avoid creating transiently-inconsistent slot states where possible,
by not setting TTS_FLAG_SHOULDFREE until after the slot actually has
a free'able tuple pointer, and by making sure that we reset tts_nvalid
and related derived state before we replace the tuple contents. This
would only matter if something were to examine the slot after we'd
suffered some kind of error (e.g. out of memory) while manipulating
the slot. We typically don't do that, so these changes might just be
cosmetic --- but even if so, it seems like good future-proofing.
Also remove some redundant Asserts, and add a couple for consistency.
Back-patch to v12 where all this code was rewritten.
Discussion: https://postgr.es/m/16095-c3ff2e5283b8dba5@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When ExecBRUpdateTriggers()'s GetTupleForTrigger() follows an EPQ
chain the former needs to run the result tuple through the junkfilter
again, and update the slot containing the new version of the tuple to
contain that new version. The input tuple may already be in the
junkfilter's output slot, which used to be OK - we don't need the
previous version anymore. Unfortunately ff11e7f4b9ae started to use
ExecCopySlot() to update newslot, and ExecCopySlot() doesn't support
copying a slot into itself, leading to a slot in a corrupt
state, which then can cause crashes or other symptoms.
Fix this by skipping the ExecCopySlot() when copying into itself.
While we could have easily made ExecCopySlot() handle that case, it
seems better to add an assert forbidding doing so instead. As the goal
of copying might be to make the contents of one slot independent from
another, it seems failure prone to handle doing so silently.
A follow-up commit will add tests for the obviously under-covered
combination of EPQ and triggers. Done as a separate commit as it might
make sense to backpatch them further than this bug.
Also remove confusion with confusing variable names for slots in
ExecBRDeleteTriggers() and ExecBRUpdateTriggers().
Bug: #16036
Reported-By: Антон Власов
Author: Andres Freund
Discussion: https://postgr.es/m/16036-28184c90d952fb7f@postgresql.org
Backpatch: 12-, where ff11e7f4b9ae was merged
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In ad0bda5d24ea I changed the EvalPlanQual machinery to store
substitution tuples in slot, instead of using plain HeapTuples. The
main motivation for that was that using HeapTuples will be inefficient
for future tableams. But it turns out that that conversion was buggy
for non-locking rowmarks - the wrong tuple descriptor was used to
create the slot.
As a secondary issue 5db6df0c0 changed ExecLockRows() to begin EPQ
earlier, to allow to fetch the locked rows directly into the EPQ
slots, instead of having to copy tuples around. Unfortunately, as Tom
complained, that forces some expensive initialization to happen
earlier.
As a third issue, the test coverage for EPQ was clearly insufficient.
Fixing the first issue is unfortunately not trivial: Non-locked row
marks were fetched at the start of EPQ, and we don't have the type
information for the rowmarks available at that point. While we could
change that, it's not easy. It might be worthwhile to change that at
some point, but to fix this bug, it seems better to delay fetching
non-locking rowmarks when they're actually needed, rather than
eagerly. They're referenced at most once, and in cases where EPQ
fails, might never be referenced. Fetching them when needed also
increases locality a bit.
To be able to fetch rowmarks during execution, rather than
initialization, we need to be able to access the active EPQState, as
that contains necessary data. To do so move EPQ related data from
EState to EPQState, and, only for EStates creates as part of EPQ,
reference the associated EPQState from EState.
To fix the second issue, change EPQ initialization to allow use of
EvalPlanQualSlot() to be used before EvalPlanQualBegin() (but
obviously still requiring EvalPlanQualInit() to have been done).
As these changes made struct EState harder to understand, e.g. by
adding multiple EStates, significantly reorder the members, and add a
lot more comments.
Also add a few more EPQ tests, including one that fails for the first
issue above. More is needed.
Reported-By: yi huang
Author: Andres Freund
Reviewed-By: Tom Lane
Discussion:
https://postgr.es/m/CAHU7rYZo_C4ULsAx_LAj8az9zqgrD8WDd4hTegDTMM1LMqrBsg@mail.gmail.com
https://postgr.es/m/24530.1562686693@sss.pgh.pa.us
Backpatch: 12-, where the EPQ changes were introduced
|
|
|
|
|
|
|
|
|
| |
Most of the fmgr.h includes were obsoleted by 352a24a1f9d6f7d4abb1. A
few others can be obsoleted using the underlying struct type in an
implementation detail.
Author: Andres Freund
Discussion: https://postgr.es/m/20190803193733.g3l3x3o42uv4qj7l@alap3.anarazel.de
|
|
|
|
|
|
|
|
| |
These aren't needed after 352a24a1f9d6. The remaining prototypes are
not defined on the SQL level.
Author: Andres Freund
Discussion: https://postgr.es/m/20190803193733.g3l3x3o42uv4qj7l@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
| |
Now that list_nth is O(1), there's no good reason to maintain a
separate array of RTE pointers rather than indexing into
estate->es_range_table. Deleting the array doesn't save all that
much either; but just on cleanliness grounds, it's better not to
have duplicate representations of the identical information.
Discussion: https://postgr.es/m/14960.1565384592@sss.pgh.pa.us
|
|
|
|
|
|
|
|
| |
This addresses more issues with code comments, variable names and
unreferenced variables.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/7ab243e0-116d-3e44-d120-76b3df7abefd@gmail.com
|
|
|
|
|
|
|
|
| |
This is numbered take 7, and addresses a set of issues with code
comments, variable names and unreferenced variables.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/dff75442-2468-f74f-568c-6006e141062f@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that commit fec0778c8 drew a clear line between public and private
fields in SPITupleTable, it seems pretty silly that the count of valid
tuples isn't on the public side of that line. The reason why not was
that there wasn't such a count. For reasons lost in the mists of time,
spi.c preferred to keep a count of remaining free entries in the array.
But that seems pretty pointless: it's unlike the way we handle similar
code everywhere else, and it involves extra subtractions that surely
outweigh having to do a comparison rather than test-for-zero to check
for array-full.
Hence, rearrange so that this code does the expansible array logic
the same as everywhere else, with a count of valid entries alongside
the allocated array length. And document the count as public.
I looked for core-code callers where it would make sense to start
relying on tuptable->numvals rather than the separate SPI_processed
variable. Right now there don't seem to be places where it'd be
a win to do so without more code restructuring than I care to
undertake today. In principle, though, having SPITupleTables be
fully self-contained should be helpful down the line.
Discussion: https://postgr.es/m/16852.1563395722@sss.pgh.pa.us
|