aboutsummaryrefslogtreecommitdiff
path: root/src/include/nodes/execnodes.h
Commit message (Collapse)AuthorAge
* Ensure we allocate NAMEDATALEN bytes for names in Index Only ScansDavid Rowley2024-05-01
| | | | | | | | | | | | | | | As an optimization, we store "name" columns as cstrings in btree indexes. Here we modify it so that Index Only Scans convert these cstrings back to names with NAMEDATALEN bytes rather than storing the cstring in the tuple slot, as was happening previously. Bug: #17855 Reported-by: Alexander Lakhin Reviewed-by: Alexander Lakhin, Tom Lane Discussion: https://postgr.es/m/17855-5f523e0f9769a566@postgresql.org Backpatch-through: 12, all supported versions
* Fix index-only scan plans, take 2.Tom Lane2022-01-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 4ace45677 failed to fix the problem fully, because the same issue of attempting to fetch a non-returnable index column can occur when rechecking the indexqual after using a lossy index operator. Moreover, it broke EXPLAIN for such indexquals (which indicates a gap in our test cases :-(). Revert the code changes of 4ace45677 in favor of adding a new field to struct IndexOnlyScan, containing a version of the indexqual that can be executed against the index-returned tuple without using any non-returnable columns. (The restrictions imposed by check_index_only guarantee this is possible, although we may have to recompute indexed expressions.) Support construction of that during setrefs.c processing by marking IndexOnlyScan.indextlist entries as resjunk if they can't be returned, rather than removing them entirely. (We could alternatively require setrefs.c to look up the IndexOptInfo again, but abusing resjunk this way seems like a reasonably safe way to avoid needing to do that.) This solution isn't great from an API-stability standpoint: if there are any extensions out there that build IndexOnlyScan structs directly, they'll be broken in the next minor releases. However, only a very invasive extension would be likely to do such a thing. There's no change in the Path representation, so typical planner extensions shouldn't have a problem. As before, back-patch to all supported branches. Discussion: https://postgr.es/m/3179992.1641150853@sss.pgh.pa.us Discussion: https://postgr.es/m/17350-b5bdcf476e5badbb@postgresql.org
* Make ExecGetInsertedCols() and friends more robust and improve comments.Heikki Linnakangas2021-02-15
| | | | | | | | | | | | | | | | | | If ExecGetInsertedCols(), ExecGetUpdatedCols() or ExecGetExtraUpdatedCols() were called with a ResultRelInfo that's not in the range table and isn't a partition routing target, the functions would dereference a NULL pointer, relinfo->ri_RootResultRelInfo. Such ResultRelInfos are created when firing RI triggers in tables that are not modified directly. None of the current callers of these functions pass such relations, so this isn't a live bug, but let's make them more robust. Also update comment in ResultRelInfo; after commit 6214e2b228, ri_RangeTableIndex is zero for ResultRelInfos created for partition tuple routing. Noted by Coverity. Backpatch down to v11, like commit 6214e2b228. Reviewed-by: Tom Lane, Amit Langote
* Fix permission checks on constraint violation errors on partitions.Heikki Linnakangas2021-02-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a cross-partition UPDATE violates a constraint on the target partition, and the columns in the new partition are in different physical order than in the parent, the error message can reveal columns that the user does not have SELECT permission on. A similar bug was fixed earlier in commit 804b6b6db4. The cause of the bug is that the callers of the ExecBuildSlotValueDescription() function got confused when constructing the list of modified columns. If the tuple was routed from a parent, we converted the tuple to the parent's format, but the list of modified columns was grabbed directly from the child's RTE entry. ExecUpdateLockMode() had a similar issue. That lead to confusion on which columns are key columns, leading to wrong tuple lock being taken on tables referenced by foreign keys, when a row is updated with INSERT ON CONFLICT UPDATE. A new isolation test is added for that corner case. With this patch, the ri_RangeTableIndex field is no longer set for partitions that don't have an entry in the range table. Previously, it was set to the RTE entry of the parent relation, but that was confusing. NOTE: This modifies the ResultRelInfo struct, replacing the ri_PartitionRoot field with ri_RootResultRelInfo. That's a bit risky to backpatch, because it breaks any extensions accessing the field. The change that ri_RangeTableIndex is not set for partitions could potentially break extensions, too. The ResultRelInfos are visible to FDWs at least, and this patch required small changes to postgres_fdw. Nevertheless, this seem like the least bad option. I don't think these fields widely used in extensions; I don't think there are FDWs out there that uses the FDW "direct update" API, other than postgres_fdw. If there is, you will get a compilation error, so hopefully it is caught quickly. Backpatch to 11, where support for both cross-partition UPDATEs, and unique indexes on partitioned tables, were added. Reviewed-by: Amit Langote Security: CVE-2021-3393
* Be more careful about the shape of hashable subplan clauses.Tom Lane2020-08-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | nodeSubplan.c expects that the testexpr for a hashable ANY SubPlan has the form of one or more OpExprs whose LHS is an expression of the outer query's, while the RHS is an expression over Params representing output columns of the subquery. However, the planner only went as far as verifying that the clauses were all binary OpExprs. This works 99.99% of the time, because the clauses have the right shape when emitted by the parser --- but it's possible for function inlining to break that, as reported by PegoraroF10. To fix, teach the planner to check that the LHS and RHS contain the right things, or more accurately don't contain the wrong things. Given that this has been broken for years without anyone noticing, it seems sufficient to just give up hashing when it happens, rather than go to the trouble of commuting the clauses back again (which wouldn't necessarily work anyway). While poking at that, I also noticed that nodeSubplan.c had a baked-in assumption that the number of hash clauses is identical to the number of subquery output columns. Again, that's fine as far as parser output goes, but it's not hard to break it via function inlining. There seems little reason for that assumption though --- AFAICS, the only thing it's buying us is not having to store the number of hash clauses explicitly. Adding code to the planner to reject such cases would take more code than getting nodeSubplan.c to cope, so I fixed it that way. This has been broken for as long as we've had hashable SubPlans, so back-patch to all supported branches. Discussion: https://postgr.es/m/1549209182255-0.post@n3.nabble.com
* Repair more failures with SubPlans in multi-row VALUES lists.Tom Lane2020-01-17
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 9b63c13f0 turns out to have been fundamentally misguided: the parent node's subPlan list is by no means the only way in which a child SubPlan node can be hooked into the outer execution state. As shown in bug #16213 from Matt Jibson, we can also get short-lived tuple table slots added to the outer es_tupleTable list. At this point I have little faith that there aren't other possible connections as well; the long time it took to notice this problem shows that this isn't a heavily-exercised situation. Therefore, revert that fix, returning to the coding that passed a NULL parent plan pointer down to the transiently-built subexpressions. That gives us a pretty good guarantee that they won't hook into the outer executor state in any way. But then we need some other solution to make SubPlans work. Adopt the solution speculated about in the previous commit's log message: do expression initialization at plan startup for just those VALUES rows containing SubPlans, abandoning the goal of reclaiming memory intra-query for those rows. In practice it seems unlikely that queries containing a vast number of VALUES rows would be using SubPlans in them, so this should not give up much. (BTW, this test case also refutes my claim in connection with the prior commit that the issue only arises with use of LATERAL. That was just wrong: some variants of SubLink always produce SubPlans.) As with previous patch, back-patch to all supported branches. Discussion: https://postgr.es/m/16213-871ac3bc208ecf23@postgresql.org
* Reorder EPQ work, to fix rowmark related bugs and improve efficiency.Andres Freund2019-09-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In ad0bda5d24ea I changed the EvalPlanQual machinery to store substitution tuples in slot, instead of using plain HeapTuples. The main motivation for that was that using HeapTuples will be inefficient for future tableams. But it turns out that that conversion was buggy for non-locking rowmarks - the wrong tuple descriptor was used to create the slot. As a secondary issue 5db6df0c0 changed ExecLockRows() to begin EPQ earlier, to allow to fetch the locked rows directly into the EPQ slots, instead of having to copy tuples around. Unfortunately, as Tom complained, that forces some expensive initialization to happen earlier. As a third issue, the test coverage for EPQ was clearly insufficient. Fixing the first issue is unfortunately not trivial: Non-locked row marks were fetched at the start of EPQ, and we don't have the type information for the rowmarks available at that point. While we could change that, it's not easy. It might be worthwhile to change that at some point, but to fix this bug, it seems better to delay fetching non-locking rowmarks when they're actually needed, rather than eagerly. They're referenced at most once, and in cases where EPQ fails, might never be referenced. Fetching them when needed also increases locality a bit. To be able to fetch rowmarks during execution, rather than initialization, we need to be able to access the active EPQState, as that contains necessary data. To do so move EPQ related data from EState to EPQState, and, only for EStates creates as part of EPQ, reference the associated EPQState from EState. To fix the second issue, change EPQ initialization to allow use of EvalPlanQualSlot() to be used before EvalPlanQualBegin() (but obviously still requiring EvalPlanQualInit() to have been done). As these changes made struct EState harder to understand, e.g. by adding multiple EStates, significantly reorder the members, and add a lot more comments. Also add a few more EPQ tests, including one that fails for the first issue above. More is needed. Reported-By: yi huang Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/CAHU7rYZo_C4ULsAx_LAj8az9zqgrD8WDd4hTegDTMM1LMqrBsg@mail.gmail.com https://postgr.es/m/24530.1562686693@sss.pgh.pa.us Backpatch: 12-, where the EPQ changes were introduced
* Fix representation of hash keys in Hash/HashJoin nodes.Andres Freund2019-08-02
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In 5f32b29c1819 I changed the creation of HashState.hashkeys to actually use HashState as the parent (instead of HashJoinState, which was incorrect, as they were executed below HashState), to fix the problem of hashkeys expressions otherwise relying on slot types appropriate for HashJoinState, rather than HashState as would be correct. That reliance was only introduced in 12, which is why it previously worked to use HashJoinState as the parent (although I'd be unsurprised if there were problematic cases). Unfortunately that's not a sufficient solution, because before this commit, the to-be-hashed expressions referenced inner/outer as appropriate for the HashJoin, not Hash. That didn't have obvious bad consequences, because the slots containing the tuples were put into ecxt_innertuple when hashing a tuple for HashState (even though Hash doesn't have an inner plan). There are less common cases where this can cause visible problems however (rather than just confusion when inspecting such executor trees). E.g. "ERROR: bogus varno: 65000", when explaining queries containing a HashJoin where the subsidiary Hash node's hash keys reference a subplan. While normally hashkeys aren't displayed by EXPLAIN, if one of those expressions references a subplan, that subplan may be printed as part of the Hash node - which then failed because an inner plan was referenced, and Hash doesn't have that. It seems quite possible that there's other broken cases, too. Fix the problem by properly splitting the expression for the HashJoin and Hash nodes at plan time, and have them reference the proper subsidiary node. While other workarounds are possible, fixing this correctly seems easy enough. It was a pretty ugly hack to have ExecInitHashJoin put the expression into the already initialized HashState, in the first place. I decided to not just split inner/outer hashkeys inside make_hashjoin(), but also to separate out hashoperators and hashcollations at plan time. Otherwise we would have ended up having two very similar loops, one at plan time and the other during executor startup. The work seems to more appropriately belong to plan time, anyway. Reported-By: Nikita Glukhov, Alexander Korotkov Author: Andres Freund Reviewed-By: Tom Lane, in an earlier version Discussion: https://postgr.es/m/CAPpHfdvGVegF_TKKRiBrSmatJL2dR9uwFCuR+teQ_8tEXU8mxg@mail.gmail.com Backpatch: 12-
* Fix confusion on different kinds of slots in IndexOnlyScans.Heikki Linnakangas2019-06-06
| | | | | | | | | | We used the same slot to store a tuple from the index, and to store a tuple from the table. That's not OK. It worked with the heap, because heapam_getnextslot() stores a HeapTuple to the slot, and doesn't care how large the tts_values/nulls arrays are. But when I played with a toy table AM implementation that used a virtual tuple, it caused memory overruns. In the passing, tidy up comments on the ioss_PscanLen fields.
* Fix typos in various placesMichael Paquier2019-06-03
| | | | | | Author: Andrea Gelmini Reviewed-by: Michael Paquier, Justin Pryzby Discussion: https://postgr.es/m/20190528181718.GA39034@glet
* Initial pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | This is still using the 2.0 version of pg_bsd_indent. I thought it would be good to commit this separately, so as to document the differences between 2.0 and 2.1 behavior. Discussion: https://postgr.es/m/16296.1558103386@sss.pgh.pa.us
* Fix duplicated words in commentsMichael Paquier2019-05-14
| | | | | Author: Stephen Amell Discussion: https://postgr.es/m/539fa271-21b3-777e-a468-d96cffe9c768@gmail.com
* Fix slot type issue for fuzzy distance index scan over out-of-core table AM.Andres Freund2019-04-19
| | | | | | | | | | | | | | | | | | | | | For amcanreorderby scans the nodeIndexscan.c's reorder queue holds heap tuples, but the underlying table likely does not. Before this fix we'd return different types of slots, depending on whether the tuple came from the reorder queue, or from the index + table. While that could be fixed by signalling that the node doesn't return a fixed type of slot, it seems better to instead remove the separate slot for the reorder queue, and use ExecForceStoreHeapTuple() to store tuples from the queue. It's not particularly common to need reordering, after all. This reverts most of the iss_ReorderQueueSlot related changes to nodeIndexscan.c made in 1a0586de3657cd3, except that now ExecForceStoreHeapTuple() is used instead of ExecStoreHeapTuple(). Noticed when testing zheap against the in-core version of tableam. Author: Andres Freund
* tableam: Add table_multi_insert() and revamp/speed-up COPY FROM buffering.Andres Freund2019-04-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | This adds table_multi_insert(), and converts COPY FROM, the only user of heap_multi_insert, to it. A simple conversion of COPY FROM use slots would have yielded a slowdown when inserting into a partitioned table for some workloads. Different partitions might need different slots (both slot types and their descriptors), and dropping / creating slots when there's constant partition changes is measurable. Thus instead revamp the COPY FROM buffering for partitioned tables to allow to buffer inserts into multiple tables, flushing only when limits are reached across all partition buffers. By only dropping slots when there've been inserts into too many different partitions, the aforementioned overhead is gone. By allowing larger batches, even when there are frequent partition changes, we actuall speed such cases up significantly. By using slots COPY of very narrow rows into unlogged / temporary might slow down very slightly (due to the indirect function calls). Author: David Rowley, Andres Freund, Haribabu Kommi Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20190327054923.t3epfuewxfqdt22e@alap3.anarazel.de
* tableam: bitmap table scan.Andres Freund2019-03-31
| | | | | | | | | | | | | | | | | | | | | | | | | | | This moves bitmap heap scan support to below an optional tableam callback. It's optional as the whole concept of bitmap heapscans is fairly block specific. This basically moves the work previously done in bitgetpage() into the new scan_bitmap_next_block callback, and the direct poking into the buffer done in BitmapHeapNext() into the new scan_bitmap_next_tuple() callback. The abstraction is currently somewhat leaky because nodeBitmapHeapscan.c's prefetching and visibilitymap based logic remains - it's likely that we'll later have to move more into the AM. But it's not trivial to do so without introducing a significant amount of code duplication between the AMs, so that's a project for later. Note that now nodeBitmapHeapscan.c and the associated node types are a bit misnamed. But it's not clear whether renaming wouldn't be a cure worse than the disease. Either way, that'd be best done in a separate commit. Author: Andres Freund Reviewed-By: Robert Haas (in an older version) Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* tableam: sample scan.Andres Freund2019-03-31
| | | | | | | | | | | | | | | | | | | | This moves sample scan support to below tableam. It's not optional as there is, in contrast to e.g. bitmap heap scans, no alternative way to perform tablesample queries. If an AM can't deal with the block based API, it will have to throw an ERROR. The tableam callbacks for this are block based, but given the current TsmRoutine interface, that seems to be required. The new interface doesn't require TsmRoutines to perform visibility checks anymore - that requires the TsmRoutine to know details about the AM, which we want to avoid. To continue to allow taking the returned number of tuples account SampleScanState now has a donetuples field (which previously e.g. existed in SystemRowsSamplerData), which is only incremented after the visibility check succeeds. Author: Andres Freund Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Generated columnsPeter Eisentraut2019-03-30
| | | | | | | | | | | | | | This is an SQL-standard feature that allows creating columns that are computed from expressions rather than assigned, similar to a view or materialized view but on a column basis. This implements one kind of generated column: stored (computed on write). Another kind, virtual (computed on read), is planned for the future, and some room is left for it. Reviewed-by: Michael Paquier <michael@paquier.xyz> Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com> Discussion: https://www.postgresql.org/message-id/flat/b151f851-4019-bdb1-699e-ebab07d2f40a@2ndquadrant.com
* Collations with nondeterministic comparisonPeter Eisentraut2019-03-22
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This adds a flag "deterministic" to collations. If that is false, such a collation disables various optimizations that assume that strings are equal only if they are byte-wise equal. That then allows use cases such as case-insensitive or accent-insensitive comparisons or handling of strings with different Unicode normal forms. This functionality is only supported with the ICU provider. At least glibc doesn't appear to have any locales that work in a nondeterministic way, so it's not worth supporting this for the libc provider. The term "deterministic comparison" in this context is from Unicode Technical Standard #10 (https://unicode.org/reports/tr10/#Deterministic_Comparison). This patch makes changes in three areas: - CREATE COLLATION DDL changes and system catalog changes to support this new flag. - Many executor nodes and auxiliary code are extended to track collations. Previously, this code would just throw away collation information, because the eventually-called user-defined functions didn't use it since they only cared about equality, which didn't need collation information. - String data type functions that do equality comparisons and hashing are changed to take the (non-)deterministic flag into account. For comparison, this just means skipping various shortcuts and tie breakers that use byte-wise comparison. For hashing, we first need to convert the input string to a canonical "sort key" using the ICU analogue of strxfrm(). Reviewed-by: Daniel Verite <daniel@manitou-mail.org> Reviewed-by: Peter Geoghegan <pg@bowt.ie> Discussion: https://www.postgresql.org/message-id/flat/1ccc668f-4cbc-0bef-af67-450b47cdfee7@2ndquadrant.com
* tableam: Add and use scan APIs.Andres Freund2019-03-11
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Too allow table accesses to be not directly dependent on heap, several new abstractions are needed. Specifically: 1) Heap scans need to be generalized into table scans. Do this by introducing TableScanDesc, which will be the "base class" for individual AMs. This contains the AM independent fields from HeapScanDesc. The previous heap_{beginscan,rescan,endscan} et al. have been replaced with a table_ version. There's no direct replacement for heap_getnext(), as that returned a HeapTuple, which is undesirable for a other AMs. Instead there's table_scan_getnextslot(). But note that heap_getnext() lives on, it's still used widely to access catalog tables. This is achieved by new scan_begin, scan_end, scan_rescan, scan_getnextslot callbacks. 2) The portion of parallel scans that's shared between backends need to be able to do so without the user doing per-AM work. To achieve that new parallelscan_{estimate, initialize, reinitialize} callbacks are introduced, which operate on a new ParallelTableScanDesc, which again can be subclassed by AMs. As it is likely that several AMs are going to be block oriented, block oriented callbacks that can be shared between such AMs are provided and used by heap. table_block_parallelscan_{estimate, intiialize, reinitialize} as callbacks, and table_block_parallelscan_{nextpage, init} for use in AMs. These operate on a ParallelBlockTableScanDesc. 3) Index scans need to be able to access tables to return a tuple, and there needs to be state across individual accesses to the heap to store state like buffers. That's now handled by introducing a sort-of-scan IndexFetchTable, which again is intended to be subclassed by individual AMs (for heap IndexFetchHeap). The relevant callbacks for an AM are index_fetch_{end, begin, reset} to create the necessary state, and index_fetch_tuple to retrieve an indexed tuple. Note that index_fetch_tuple implementations need to be smarter than just blindly fetching the tuples for AMs that have optimizations similar to heap's HOT - the currently alive tuple in the update chain needs to be fetched if appropriate. Similar to table_scan_getnextslot(), it's undesirable to continue to return HeapTuples. Thus index_fetch_heap (might want to rename that later) now accepts a slot as an argument. Core code doesn't have a lot of call sites performing index scans without going through the systable_* API (in contrast to loads of heap_getnext calls and working directly with HeapTuples). Index scans now store the result of a search in IndexScanDesc->xs_heaptid, rather than xs_ctup->t_self. As the target is not generally a HeapTuple anymore that seems cleaner. To be able to sensible adapt code to use the above, two further callbacks have been introduced: a) slot_callbacks returns a TupleTableSlotOps* suitable for creating slots capable of holding a tuple of the AMs type. table_slot_callbacks() and table_slot_create() are based upon that, but have additional logic to deal with views, foreign tables, etc. While this change could have been done separately, nearly all the call sites that needed to be adapted for the rest of this commit also would have been needed to be adapted for table_slot_callbacks(), making separation not worthwhile. b) tuple_satisfies_snapshot checks whether the tuple in a slot is currently visible according to a snapshot. That's required as a few places now don't have a buffer + HeapTuple around, but a slot (which in heap's case internally has that information). Additionally a few infrastructure changes were needed: I) SysScanDesc, as used by systable_{beginscan, getnext} et al. now internally uses a slot to keep track of tuples. While systable_getnext() still returns HeapTuples, and will so for the foreseeable future, the index API (see 1) above) now only deals with slots. The remainder, and largest part, of this commit is then adjusting all scans in postgres to use the new APIs. Author: Andres Freund, Haribabu Kommi, Alvaro Herrera Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de https://postgr.es/m/20160812231527.GA690404@alvherre.pgsql
* Allow ATTACH PARTITION with only ShareUpdateExclusiveLock.Robert Haas2019-03-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We still require AccessExclusiveLock on the partition itself, because otherwise an insert that violates the newly-imposed partition constraint could be in progress at the same time that we're changing that constraint; only the lock level on the parent relation is weakened. To make this safe, we have to cope with (at least) three separate problems. First, relevant DDL might commit while we're in the process of building a PartitionDesc. If so, find_inheritance_children() might see a new partition while the RELOID system cache still has the old partition bound cached, and even before invalidation messages have been queued. To fix that, if we see that the pg_class tuple seems to be missing or to have a null relpartbound, refetch the value directly from the table. We can't get the wrong value, because DETACH PARTITION still requires AccessExclusiveLock throughout; if we ever want to change that, this will need more thought. In testing, I found it quite difficult to hit even the null-relpartbound case; the race condition is extremely tight, but the theoretical risk is there. Second, successive calls to RelationGetPartitionDesc might not return the same answer. The query planner will get confused if lookup up the PartitionDesc for a particular relation does not return a consistent answer for the entire duration of query planning. Likewise, query execution will get confused if the same relation seems to have a different PartitionDesc at different times. Invent a new PartitionDirectory concept and use it to ensure consistency. This ensures that a single invocation of either the planner or the executor sees the same view of the PartitionDesc from beginning to end, but it does not guarantee that the planner and the executor see the same view. Since this allows pointers to old PartitionDesc entries to survive even after a relcache rebuild, also postpone removing the old PartitionDesc entry until we're certain no one is using it. For the most part, it seems to be OK for the planner and executor to have different views of the PartitionDesc, because the executor will just ignore any concurrently added partitions which were unknown at plan time; those partitions won't be part of the inheritance expansion, but invalidation messages will trigger replanning at some point. Normally, this happens by the time the very next command is executed, but if the next command acquires no locks and executes a prepared query, it can manage not to notice until a new transaction is started. We might want to tighten that up, but it's material for a separate patch. There would still be a small window where a query that started just after an ATTACH PARTITION command committed might fail to notice its results -- but only if the command starts before the commit has been acknowledged to the user. All in all, the warts here around serializability seem small enough to be worth accepting for the considerable advantage of being able to add partitions without a full table lock. Although in general the consequences of new partitions showing up between planning and execution are limited to the query not noticing the new partitions, run-time partition pruning will get confused in that case, so that's the third problem that this patch fixes. Run-time partition pruning assumes that indexes into the PartitionDesc are stable between planning and execution. So, add code so that if new partitions are added between plan time and execution time, the indexes stored in the subplan_map[] and subpart_map[] arrays within the plan's PartitionedRelPruneInfo get adjusted accordingly. There does not seem to be a simple way to generalize this scheme to cope with partitions that are removed, mostly because they could then get added back again with different bounds, but it works OK for added partitions. This code does not try to ensure that every backend participating in a parallel query sees the same view of the PartitionDesc. That currently doesn't matter, because we never pass PartitionDesc indexes between backends. Each backend will ignore the concurrently added partitions which it notices, and it doesn't matter if different backends are ignoring different sets of concurrently added partitions. If in the future that matters, for example because we allow writes in parallel query and want all participants to do tuple routing to the same set of partitions, the PartitionDirectory concept could be improved to share PartitionDescs across backends. There is a draft patch to serialize and restore PartitionDescs on the thread where this patch was discussed, which may be a useful place to start. Patch by me. Thanks to Alvaro Herrera, David Rowley, Simon Riggs, Amit Langote, and Michael Paquier for discussion, and to Alvaro Herrera for some review. Discussion: http://postgr.es/m/CA+Tgmobt2upbSocvvDej3yzokd7AkiT+PvgFH+a9-5VV1oJNSQ@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoZE0r9-cyA-aY6f8WFEROaDLLL7Vf81kZ8MtFCkxpeQSw@mail.gmail.com Discussion: http://postgr.es/m/CA+TgmoY13KQZF-=HNTrt9UYWYx3_oYOQpu9ioNT49jGgiDpUEA@mail.gmail.com
* Don't reuse slots between root and partition in ON CONFLICT ... UPDATE.Andres Freund2019-03-06
| | | | | | | | | | | | | | | | | | | | | Until now the the slot to store the conflicting tuple, and the result of the ON CONFLICT SET, where reused between partitions. That necessitated changing slots descriptor when switching partitions. Besides the overhead of switching descriptors on a slot (which requires memory allocations and prevents JITing), that's importantly also problematic for tableam. There individual partitions might belong to different tableams, needing different kinds of slots. In passing also fix ExecOnConflictUpdate to clear the existing slot at exit. Otherwise that slot could continue to hold a pin till the query ends, which could be far too long if the input data set is large, and there's no further conflicts. While previously also problematic, it's now more important as there will be more such slots when partitioned. Author: Andres Freund Reviewed-By: Robert Haas, David Rowley Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Store tuples for EvalPlanQual in slots, rather than as HeapTuples.Andres Freund2019-03-01
| | | | | | | | | | | | | | | | | | | | | | | | | | For the upcoming pluggable table access methods it's quite inconvenient to store tuples as HeapTuples, as that'd require converting tuples from a their native format into HeapTuples. Instead use slots to manage epq tuples. To fit into that scheme, change the foreign data wrapper callback RefetchForeignRow, to store the tuple in a slot. Insist on using the caller provided slot, so it conveniently can be stored in the corresponding EPQ slot. As there is no in core user of RefetchForeignRow, that change was done blindly, but we plan to test that soon. To avoid duplicating that work for row locks, move row locks to just directly use the EPQ slots - it previously temporarily stored tuples in LockRowsState.lr_curtuples, but that doesn't seem beneficial, given we'd possibly end up with a significant number of additional slots. The behaviour of es_epqTupleSet[rti -1] is now checked by es_epqTupleSlot[rti -1] != NULL, as that is distinguishable from a slot containing an empty tuple. Author: Andres Freund, Haribabu Kommi, Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Use slots in trigger infrastructure, except for the actual invocation.Andres Freund2019-02-26
| | | | | | | | | | | | | | | | | | | | | In preparation for abstracting table storage, convert trigger.c to track tuples in slots. Which also happens to make code calling triggers simpler. As the calling interface for triggers themselves is not changed in this patch, HeapTuples still are extracted from the slot at that time. But that's handled solely inside trigger.c, not visible to callers. It's quite likely that we'll want to revise the external trigger interface, but that's a separate large project. As part of this work the slots used for old/new/return tuples are moved from EState into ResultRelInfo, as different updated tables might need different slots. The slots are now also now created on-demand, which is good both from an efficiency POV, but also makes the modifying code simpler. Author: Andres Freund, Amit Khandekar and Ashutosh Bapat Discussion: https://postgr.es/m/20180703070645.wchpu5muyto5n647@alap3.anarazel.de
* Change function call information to be variable length.Andres Freund2019-01-26
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Before this change FunctionCallInfoData, the struct arguments etc for V1 function calls are stored in, always had space for FUNC_MAX_ARGS/100 arguments, storing datums and their nullness in two arrays. For nearly every function call 100 arguments is far more than needed, therefore wasting memory. Arg and argnull being two separate arrays also guarantees that to access a single argument, two cachelines have to be touched. Change the layout so there's a single variable-length array with pairs of value / isnull. That drastically reduces memory consumption for most function calls (on x86-64 a two argument function now uses 64bytes, previously 936 bytes), and makes it very likely that argument value and its nullness are on the same cacheline. Arguments are stored in a new NullableDatum struct, which, due to padding, needs more memory per argument than before. But as usually far fewer arguments are stored, and individual arguments are cheaper to access, that's still a clear win. It's likely that there's other places where conversion to NullableDatum arrays would make sense, e.g. TupleTableSlots, but that's for another commit. Because the function call information is now variable-length allocations have to take the number of arguments into account. For heap allocations that can be done with SizeForFunctionCallInfoData(), for on-stack allocations there's a new LOCAL_FCINFO(name, nargs) macro that helps to allocate an appropriately sized and aligned variable. Some places with stack allocation function call information don't know the number of arguments at compile time, and currently variably sized stack allocations aren't allowed in postgres. Therefore allow for FUNC_MAX_ARGS space in these cases. They're not that common, so for now that seems acceptable. Because of the need to allocate FunctionCallInfo of the appropriate size, older extensions may need to update their code. To avoid subtle breakages, the FunctionCallInfoData struct has been renamed to FunctionCallInfoBaseData. Most code only references FunctionCallInfo, so that shouldn't cause much collateral damage. This change is also a prerequisite for more efficient expression JIT compilation (by allocating the function call information on the stack, allowing LLVM to optimize it away); previously the size of the call information caused problems inside LLVM's optimizer. Author: Andres Freund Reviewed-By: Tom Lane Discussion: https://postgr.es/m/20180605172952.x34m5uz6ju6enaem@alap3.anarazel.de
* Fix misc typos in comments.Heikki Linnakangas2019-01-23
| | | | | | Spotted mostly by Fabien Coelho. Discussion: https://www.postgresql.org/message-id/alpine.DEB.2.21.1901230947050.16643@lancre
* Don't include genam.h from execnodes.h and relscan.h anymore.Andres Freund2019-01-14
| | | | | | | | | | | | | | | | | | | This is the genam.h equivalent of 4c850ecec649c (which removed heapam.h from a lot of other headers). There's still a few header includes of genam.h, but not from central headers anymore. As a few headers are not indirectly included anymore, execnodes.h and relscan.h need a few additional includes. Some of the depended on types were replacable by using the underlying structs, but e.g. for Snapshot in execnodes.h that'd have gotten more invasive than reasonable in this commit. Like the aforementioned commit 4c850ecec649c, this requires adding new genam.h includes to a number of backend files, which likely is also required in a few external projects. Author: Andres Freund Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
* Don't include heapam.h from others headers.Andres Freund2019-01-14
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | heapam.h previously was included in a number of widely used headers (e.g. execnodes.h, indirectly in executor.h, ...). That's problematic on its own, as heapam.h contains a lot of low-level details that don't need to be exposed that widely, but becomes more problematic with the upcoming introduction of pluggable table storage - it seems inappropriate for heapam.h to be included that widely afterwards. heapam.h was largely only included in other headers to get the HeapScanDesc typedef (which was defined in heapam.h, even though HeapScanDescData is defined in relscan.h). The better solution here seems to be to just use the underlying struct (forward declared where necessary). Similar for BulkInsertState. Another problem was that LockTupleMode was used in executor.h - parts of the file tried to cope without heapam.h, but due to the fact that it indirectly included it, several subsequent violations of that goal were not not noticed. We could just reuse the approach of declaring parameters as int, but it seems nicer to move LockTupleMode to lockoptions.h - that's not a perfect location, but also doesn't seem bad. As a number of files relied on implicitly included heapam.h, a significant number of files grew an explicit include. It's quite probably that a few external projects will need to do the same. Author: Andres Freund Reviewed-By: Alvaro Herrera Discussion: https://postgr.es/m/20190114000701.y4ttcb74jpskkcfb@alap3.anarazel.de
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Remove WITH OIDS support, change oid catalog column visibility.Andres Freund2018-11-20
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously tables declared WITH OIDS, including a significant fraction of the catalog tables, stored the oid column not as a normal column, but as part of the tuple header. This special column was not shown by default, which was somewhat odd, as it's often (consider e.g. pg_class.oid) one of the more important parts of a row. Neither pg_dump nor COPY included the contents of the oid column by default. The fact that the oid column was not an ordinary column necessitated a significant amount of special case code to support oid columns. That already was painful for the existing, but upcoming work aiming to make table storage pluggable, would have required expanding and duplicating that "specialness" significantly. WITH OIDS has been deprecated since 2005 (commit ff02d0a05280e0). Remove it. Removing includes: - CREATE TABLE and ALTER TABLE syntax for declaring the table to be WITH OIDS has been removed (WITH (oids[ = true]) will error out) - pg_dump does not support dumping tables declared WITH OIDS and will issue a warning when dumping one (and ignore the oid column). - restoring an pg_dump archive with pg_restore will warn when restoring a table with oid contents (and ignore the oid column) - COPY will refuse to load binary dump that includes oids. - pg_upgrade will error out when encountering tables declared WITH OIDS, they have to be altered to remove the oid column first. - Functionality to access the oid of the last inserted row (like plpgsql's RESULT_OID, spi's SPI_lastoid, ...) has been removed. The syntax for declaring a table WITHOUT OIDS (or WITH (oids = false) for CREATE TABLE) is still supported. While that requires a bit of support code, it seems unnecessary to break applications / dumps that do not use oids, and are explicit about not using them. The biggest user of WITH OID columns was postgres' catalog. This commit changes all 'magic' oid columns to be columns that are normally declared and stored. To reduce unnecessary query breakage all the newly added columns are still named 'oid', even if a table's column naming scheme would indicate 'reloid' or such. This obviously requires adapting a lot code, mostly replacing oid access via HeapTupleGetOid() with access to the underlying Form_pg_*->oid column. The bootstrap process now assigns oids for all oid columns in genbki.pl that do not have an explicit value (starting at the largest oid previously used), only oids assigned later by oids will be above FirstBootstrapObjectId. As the oid column now is a normal column the special bootstrap syntax for oids has been removed. Oids are not automatically assigned during insertion anymore, all backend code explicitly assigns oids with GetNewOidWithIndex(). For the rare case that insertions into the catalog via SQL are called for the new pg_nextoid() function can be used (which only works on catalog tables). The fact that oid columns on system tables are now normal columns means that they will be included in the set of columns expanded by * (i.e. SELECT * FROM pg_class will now include the table's oid, previously it did not). It'd not technically be hard to hide oid column by default, but that'd mean confusing behavior would either have to be carried forward forever, or it'd cause breakage down the line. While it's not unlikely that further adjustments are needed, the scope/invasiveness of the patch makes it worthwhile to get merge this now. It's painful to maintain externally, too complicated to commit after the code code freeze, and a dependency of a number of other patches. Catversion bump, for obvious reasons. Author: Andres Freund, with contributions by John Naylor Discussion: https://postgr.es/m/20180930034810.ywp2c7awz7opzcfr@alap3.anarazel.de
* Redesign initialization of partition routing structuresAlvaro Herrera2018-11-16
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This speeds up write operations (INSERT, UPDATE, DELETE, COPY, as well as the future MERGE) on partitioned tables. This changes the setup for tuple routing so that it does far less work during the initial setup and pushes more work out to when partitions receive tuples. PartitionDispatchData structs for sub-partitioned tables are only created when a tuple gets routed through it. The possibly large arrays in the PartitionTupleRouting struct have largely been removed. The partitions[] array remains but now never contains any NULL gaps. Previously the NULLs had to be skipped during ExecCleanupTupleRouting(), which could add a large overhead to the cleanup when the number of partitions was large. The partitions[] array is allocated small to start with and only enlarged when we route tuples to enough partitions that it runs out of space. This allows us to keep simple single-row partition INSERTs running quickly. Redesign The arrays in PartitionTupleRouting which stored the tuple translation maps have now been removed. These have been moved out into a PartitionRoutingInfo struct which is an additional field in ResultRelInfo. The find_all_inheritors() call still remains by far the slowest part of ExecSetupPartitionTupleRouting(). This commit just removes the other slow parts. In passing also rename the tuple translation maps from being ParentToChild and ChildToParent to being RootToPartition and PartitionToRoot. The old names mislead you into thinking that a partition of some sub-partitioned table would translate to the rowtype of the sub-partitioned table rather than the root partitioned table. Authors: David Rowley and Amit Langote, heavily revised by Álvaro Herrera Testing help from Jesper Pedersen and Kato Sho. Discussion: https://postgr.es/m/CAKJS1f_1RJyFquuCKRFHTdcXqoPX-PYqAd7nz=GVBwvGh4a6xA@mail.gmail.com
* Introduce notion of different types of slots (without implementing them).Andres Freund2018-11-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Upcoming work intends to allow pluggable ways to introduce new ways of storing table data. Accessing those table access methods from the executor requires TupleTableSlots to be carry tuples in the native format of such storage methods; otherwise there'll be a significant conversion overhead. Different access methods will require different data to store tuples efficiently (just like virtual, minimal, heap already require fields in TupleTableSlot). To allow that without requiring additional pointer indirections, we want to have different structs (embedding TupleTableSlot) for different types of slots. Thus different types of slots are needed, which requires adapting creators of slots. The slot that most efficiently can represent a type of tuple in an executor node will often depend on the type of slot a child node uses. Therefore we need to track the type of slot is returned by nodes, so parent slots can create slots based on that. Relatedly, JIT compilation of tuple deforming needs to know which type of slot a certain expression refers to, so it can create an appropriate deforming function for the type of tuple in the slot. But not all nodes will only return one type of slot, e.g. an append node will potentially return different types of slots for each of its subplans. Therefore add function that allows to query the type of a node's result slot, and whether it'll always be the same type (whether it's fixed). This can be queried using ExecGetResultSlotOps(). The scan, result, inner, outer type of slots are automatically inferred from ExecInitScanTupleSlot(), ExecInitResultSlot(), left/right subtrees respectively. If that's not correct for a node, that can be overwritten using new fields in PlanState. This commit does not introduce the actually abstracted implementation of different kind of TupleTableSlots, that will be left for a followup commit. The different types of slots introduced will, for now, still use the same backing implementation. While this already partially invalidates the big comment in tuptable.h, it seems to make more sense to update it later, when the different TupleTableSlot implementations actually exist. Author: Ashutosh Bapat and Andres Freund, with changes by Amit Khandekar Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Don't require return slots for nodes without projection.Andres Freund2018-11-09
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In a lot of nodes the return slot is not required. That can either be because the node doesn't do any projection (say an Append node), or because the node does perform projections but the projection is optimized away because the projection would yield an identical row. Slots aren't that small, especially for wide rows, so it's worthwhile to avoid creating them. It's not possible to just skip creating the slot - it's currently used to determine the tuple descriptor returned by ExecGetResultType(). So separate the determination of the result type from the slot creation. The work previously done internally ExecInitResultTupleSlotTL() can now also be done separately with ExecInitResultTypeTL() and ExecInitResultSlot(). That way nodes that aren't guaranteed to need a result slot, can use ExecInitResultTypeTL() to determine the result type of the node, and ExecAssignScanProjectionInfo() (via ExecConditionalAssignProjectionInfo()) determines that a result slot is needed, it is created with ExecInitResultSlot(). Besides the advantage of avoiding to create slots that then are unused, this is necessary preparation for later patches around tuple table slot abstraction. In particular separating the return descriptor and slot is a prerequisite to allow JITing of tuple deforming with knowledge of the underlying tuple format, and to avoid unnecessarily creating JITed tuple deforming for virtual slots. This commit removes a redundant argument from ExecInitResultTupleSlotTL(). While this commit touches a lot of the relevant lines anyway, it'd normally still not worthwhile to cause breakage, except that aforementioned later commits will touch *all* ExecInitResultTupleSlotTL() callers anyway (but fits worse thematically). Author: Andres Freund Discussion: https://postgr.es/m/20181105210039.hh4vvi4vwoq5ba2q@alap3.anarazel.de
* Improve some comments related to executor result relations.Tom Lane2018-10-17
| | | | | | | | es_leaf_result_relations doesn't exist; perhaps this was an old name for es_tuple_routing_result_relations, or maybe this comment has gone unmaintained through multiple rounds of whacking the code around. Related comment in execnodes.h was both obsolete and ungrammatical.
* Avoid O(N^2) cost in ExecFindRowMark().Tom Lane2018-10-08
| | | | | | | | | | | | | | | | | | | | If there are many ExecRowMark structs, we spent O(N^2) time in ExecFindRowMark during executor startup. Once upon a time this was not of great concern, but the addition of native partitioning has squeezed out enough other costs that this can become the dominant overhead in some use-cases for tables with many partitions. To fix, simply replace that List data structure with an array. This adds a little bit of cost to execCurrentOf(), but not much, and anyway that code path is neither of large importance nor very efficient now. If we ever decide it is a bottleneck, constructing a hash table for lookup-by-tableoid would likely be the thing to do. Per complaint from Amit Langote, though this is different from his fix proposal. Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* In the executor, use an array of pointers to access the rangetable.Tom Lane2018-10-04
| | | | | | | | | | | | | | Instead of doing a lot of list_nth() accesses to es_range_table, create a flattened pointer array during executor startup and index into that to get at individual RangeTblEntrys. This eliminates one source of O(N^2) behavior with lots of partitions. (I'm not exactly convinced that it's the most important source, but it's an easy one to fix.) Amit Langote and David Rowley Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Centralize executor's opening/closing of Relations for rangetable entries.Tom Lane2018-10-04
| | | | | | | | | | | | | | | | | | | | | | | | | | | Create an array estate->es_relations[] paralleling the es_range_table, and store references to Relations (relcache entries) there, so that any given RT entry is opened and closed just once per executor run. Scan nodes typically still call ExecOpenScanRelation, but ExecCloseScanRelation is no more; relation closing is now done centrally in ExecEndPlan. This is slightly more complex than one would expect because of the interactions with relcache references held in ResultRelInfo nodes. The general convention is now that ResultRelInfo->ri_RelationDesc does not represent a separate relcache reference and so does not need to be explicitly closed; but there is an exception for ResultRelInfos in the es_trig_target_relations list, which are manufactured by ExecGetTriggerResultRel and have to be cleaned up by ExecCleanUpTriggerState. (That much was true all along, but these ResultRelInfos are now more different from others than they used to be.) To allow the partition pruning logic to make use of es_relations[] rather than having its own relcache references, adjust PartitionedRelPruneInfo to store an RT index rather than a relation OID. Amit Langote, reviewed by David Rowley and Jesper Pedersen, some mods by me Discussion: https://postgr.es/m/468c85d9-540e-66a2-1dde-fec2b741e688@lab.ntt.co.jp
* Fix issues around EXPLAIN with JIT.Andres Freund2018-10-03
| | | | | | | | | | | | | | | | | I (Andres) was more than a bit hasty in committing 33001fd7a7072d48327 after last minute changes, leading to a number of problems (jit output was only shown for JIT in parallel workers, and just EXPLAIN without ANALYZE didn't work). Lukas luckily found these issues quickly. Instead of combining instrumentation in in standard_ExecutorEnd(), do so on demand in the new ExplainPrintJITSummary(). Also update a documentation example of the JIT output, changed in 52050ad8ebec8d831. Author: Lukas Fittl, with minor changes by me Discussion: https://postgr.es/m/CAP53PkxmgJht69pabxBXJBM+0oc6kf3KHMborLP7H2ouJ0CCtQ@mail.gmail.com Backpatch: 11, where JIT compilation was introduced
* Collect JIT instrumentation from workers.Andres Freund2018-09-25
| | | | | | | | | | | | | | | | Previously, when using parallel query, EXPLAIN (ANALYZE)'s JIT compilation timings did not include the overhead from doing so on the workers. Fix that. We do so by simply aggregating the cost of doing JIT compilation on workers and the leader together. Arguably that's not quite accurate, because the total time spend doing so is spent in parallel - but it's hard to do much better. For additional detail, when VERBOSE is specified, the stats for workers are displayed separately. Author: Amit Khandekar and Andres Freund Discussion: https://postgr.es/m/CAJ3gD9eLrz51RK_gTkod+71iDcjpB_N8eC6vU2AW-VicsAERpQ@mail.gmail.com Backpatch: 11-
* Fix parsetree representation of XMLTABLE(XMLNAMESPACES(DEFAULT ...)).Tom Lane2018-09-17
| | | | | | | | | | | | | | | | | | | | | | | The original coding for XMLTABLE thought it could represent a default namespace by a T_String Value node with a null string pointer. That's not okay, though; in particular outfuncs.c/readfuncs.c are not on board with such a representation, meaning you'll get a null pointer crash if you try to store a view or rule containing this construct. To fix, change the parsetree representation so that we have a NULL list element, instead of a bogus Value node. This isn't really a functional limitation since default XML namespaces aren't yet implemented in the executor; you'd just get "DEFAULT namespace is not supported" anyway. But crashes are not nice, so back-patch to v10 where this syntax was added. Ordinarily we'd consider a parsetree representation change to be un-backpatchable; but since existing releases would crash on the way to storing such constructs, there can't be any existing views/rules to be incompatible with. Per report from Andrey Lepikhov. Discussion: https://postgr.es/m/3690074f-abd2-56a9-144a-aa5545d7a291@postgrespro.ru
* Fix IndexInfo comments.Heikki Linnakangas2018-08-30
| | | | | | | | Recently, ii_KeyAttrNumbers was renamed to ii_IndexAttrNumbers, and ii_Am field was added, but the comments were not updated. Author: Yugo Nagata Discussion: https://www.postgresql.org/message-id/20180830134831.e35a91b8b978b248c16c8f7b@sraoss.co.jp
* Avoid query-lifetime memory leaks in XMLTABLE (bug #15321)Andrew Gierth2018-08-13
| | | | | | | | | | | | | | | | | | | Multiple calls to XMLTABLE in a query (e.g. laterally applying it to a table with an xml column, an important use-case) were leaking large amounts of memory into the per-query context, blowing up memory usage. Repair by reorganizing memory context usage in nodeTableFuncscan; use the usual per-tuple context for row-by-row evaluations instead of perValueCxt, and use the explicitly created context -- renamed from perValueCxt to perTableCxt -- for arguments and state for each individual table-generation operation. Backpatch to PG10 where this code was introduced. Original report by IRC user begriffs; analysis and patch by me. Reviewed by Tom Lane and Pavel Stehule. Discussion: https://postgr.es/m/153394403528.10284.7530399040974170549@wrigleys.postgresql.org
* Expand run-time partition pruning to work with MergeAppendHeikki Linnakangas2018-07-19
| | | | | | | | | This expands the support for the run-time partition pruning which was added for Append in 499be013de to also allow unneeded subnodes of a MergeAppend to be removed. Author: David Rowley Discussion: https://www.postgresql.org/message-id/CAKJS1f_F_V8D7Wu-HVdnH7zCUxhoGK8XhLLtd%3DCu85qDZzXrgg%40mail.gmail.com
* Fix misc typos, mostly in comments.Heikki Linnakangas2018-07-18
| | | | | | | | A collection of typos I happened to spot while reading code, as well as grepping for common mistakes. Backpatch to all supported versions, as applicable, to avoid conflicts when backporting other commits in the future.
* Post-feature-freeze pgindent run.Tom Lane2018-04-26
| | | | Discussion: https://postgr.es/m/15719.1523984266@sss.pgh.pa.us
* Update Append's idea of first_partial_planAlvaro Herrera2018-04-17
| | | | | | | | | | | | It turns out that after runtime partition pruning, Append's first_partial_plan does not accurately represent partial plans to run, if any of those got pruned. This could limit participation of workers in some partial subplans, if other subplans got pruned. Fix it by keeping an index of the first valid partial subplan in the state node, determined at execnode Init time. Author: David Rowley, with cosmetic changes by me. Discussion: https://postgr.es/m/CAKJS1f8o2Yd=rOP=Et3A0FWgF+gSAOkFSU6eNhnGzTPV7nN8sQ@mail.gmail.com
* Revert MERGE patchSimon Riggs2018-04-12
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | This reverts commits d204ef63776b8a00ca220adec23979091564e465, 83454e3c2b28141c0db01c7d2027e01040df5249 and a few more commits thereafter (complete list at the end) related to MERGE feature. While the feature was fully functional, with sufficient test coverage and necessary documentation, it was felt that some parts of the executor and parse-analyzer can use a different design and it wasn't possible to do that in the available time. So it was decided to revert the patch for PG11 and retry again in the future. Thanks again to all reviewers and bug reporters. List of commits reverted, in reverse chronological order: f1464c5380 Improve parse representation for MERGE ddb4158579 MERGE syntax diagram correction 530e69e59b Allow cpluspluscheck to pass by renaming variable 01b88b4df5 MERGE minor errata 3af7b2b0d4 MERGE fix variable warning in non-assert builds a5d86181ec MERGE INSERT allows only one VALUES clause 4b2d44031f MERGE post-commit review 4923550c20 Tab completion for MERGE aa3faa3c7a WITH support in MERGE 83454e3c2b New files for MERGE d204ef6377 MERGE SQL Command following SQL:2016 Author: Pavan Deolasee Reviewed-by: Michael Paquier
* Rename IndexInfo.ii_KeyAttrNumbers arrayTeodor Sigaev2018-04-12
| | | | | | | | Rename ii_KeyAttrNumbers to ii_IndexAttrNumbers to prevent confusion with ii_NumIndexAttrs/ii_NumIndexKeyAttrs. ii_IndexAttrNumbers contains all attributes including "including" columns, not only key attribute. Discussion: https://www.postgresql.org/message-id/13123421-1d52-d0e4-c95c-6d69011e0595%40sigaev.ru
* Fix IndexOnlyScan counter for heap fetches in parallel modeAlvaro Herrera2018-04-10
| | | | | | | | | | | | The HeapFetches counter was using a simple value in IndexOnlyScanState, which fails to propagate values from parallel workers; so the counts are wrong when IndexOnlyScan runs in parallel. Move it to Instrumentation, like all the other counters. While at it, change INSERT ON CONFLICT conflicting tuple counter to use the new ntuples2 instead of nfiltered2, which is a blatant misuse. Discussion: https://postgr.es/m/20180409215851.idwc75ct2bzi6tea@alvherre.pgsql
* Support partition pruning at execution timeAlvaro Herrera2018-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Existing partition pruning is only able to work at plan time, for query quals that appear in the parsed query. This is good but limiting, as there can be parameters that appear later that can be usefully used to further prune partitions. This commit adds support for pruning subnodes of Append which cannot possibly contain any matching tuples, during execution, by evaluating Params to determine the minimum set of subnodes that can possibly match. We support more than just simple Params in WHERE clauses. Support additionally includes: 1. Parameterized Nested Loop Joins: The parameter from the outer side of the join can be used to determine the minimum set of inner side partitions to scan. 2. Initplans: Once an initplan has been executed we can then determine which partitions match the value from the initplan. Partition pruning is performed in two ways. When Params external to the plan are found to match the partition key we attempt to prune away unneeded Append subplans during the initialization of the executor. This allows us to bypass the initialization of non-matching subplans meaning they won't appear in the EXPLAIN or EXPLAIN ANALYZE output. For parameters whose value is only known during the actual execution then the pruning of these subplans must wait. Subplans which are eliminated during this stage of pruning are still visible in the EXPLAIN output. In order to determine if pruning has actually taken place, the EXPLAIN ANALYZE must be viewed. If a certain Append subplan was never executed due to the elimination of the partition then the execution timing area will state "(never executed)". Whereas, if, for example in the case of parameterized nested loops, the number of loops stated in the EXPLAIN ANALYZE output for certain subplans may appear lower than others due to the subplan having been scanned fewer times. This is due to the list of matching subnodes having to be evaluated whenever a parameter which was found to match the partition key changes. This commit required some additional infrastructure that permits the building of a data structure which is able to perform the translation of the matching partition IDs, as returned by get_matching_partitions, into the list index of a subpaths list, as exist in node types such as Append, MergeAppend and ModifyTable. This allows us to translate a list of clauses into a Bitmapset of all the subpath indexes which must be included to satisfy the clause list. Author: David Rowley, based on an earlier effort by Beena Emerson Reviewers: Amit Langote, Robert Haas, Amul Sul, Rajkumar Raghuwanshi, Jesper Pedersen Discussion: https://postgr.es/m/CAOG9ApE16ac-_VVZVvv0gePSgkg_BwYEV1NBqZFqDR2bBE0X0A@mail.gmail.com
* Indexes with INCLUDE columns and their support in B-treeTeodor Sigaev2018-04-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | This patch introduces INCLUDE clause to index definition. This clause specifies a list of columns which will be included as a non-key part in the index. The INCLUDE columns exist solely to allow more queries to benefit from index-only scans. Also, such columns don't need to have appropriate operator classes. Expressions are not supported as INCLUDE columns since they cannot be used in index-only scans. Index access methods supporting INCLUDE are indicated by amcaninclude flag in IndexAmRoutine. For now, only B-tree indexes support INCLUDE clause. In B-tree indexes INCLUDE columns are truncated from pivot index tuples (tuples located in non-leaf pages and high keys). Therefore, B-tree indexes now might have variable number of attributes. This patch also provides generic facility to support that: pivot tuples contain number of their attributes in t_tid.ip_posid. Free 13th bit of t_info is used for indicating that. This facility will simplify further support of index suffix truncation. The changes of above are backward-compatible, pg_upgrade doesn't need special handling of B-tree indexes for that. Bump catalog version Author: Anastasia Lubennikova with contribition by Alexander Korotkov and me Reviewed by: Peter Geoghegan, Tomas Vondra, Antonin Houska, Jeff Janes, David Rowley, Alexander Korotkov Discussion: https://www.postgresql.org/message-id/flat/56168952.4010101@postgrespro.ru