aboutsummaryrefslogtreecommitdiff
path: root/src/include/optimizer/optimizer.h
Commit message (Collapse)AuthorAge
* Rename force_parallel_mode to debug_parallel_queryDavid Rowley2023-02-15
| | | | | | | | | | | | | | | | | | | | force_parallel_mode is meant to be used to allow us to exercise the parallel query infrastructure to ensure that it's working as we expect. It seems some users think this GUC is for forcing the query planner into picking a parallel plan regardless of the costs. A quick look at the documentation would have made them realize that they were wrong, but the GUC is likely too conveniently named which, evidently, seems to often result in users expecting that it forces the planner into usefully parallelizing queries. Here we rename the GUC to something which casual users are less likely to mistakenly think is what they need to make their query run more quickly. For now, the old name can still be used. We'll revisit if the old name mapping can be removed once the buildfarm configs are all updated. Reviewed-by: John Naylor Discussion: https://postgr.es/m/CAApHDvrsOi92_uA7PEaHZMH-S4Xv+MGhQWA+GrP8b1kjpS1HjQ@mail.gmail.com
* Make Vars be outer-join-aware.Tom Lane2023-01-30
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Traditionally we used the same Var struct to represent the value of a table column everywhere in parse and plan trees. This choice predates our support for SQL outer joins, and it's really a pretty bad idea with outer joins, because the Var's value can depend on where it is in the tree: it might go to NULL above an outer join. So expression nodes that are equal() per equalfuncs.c might not represent the same value, which is a huge correctness hazard for the planner. To improve this, decorate Var nodes with a bitmapset showing which outer joins (identified by RTE indexes) may have nulled them at the point in the parse tree where the Var appears. This allows us to trust that equal() Vars represent the same value. A certain amount of klugery is still needed to cope with cases where we re-order two outer joins, but it's possible to make it work without sacrificing that core principle. PlaceHolderVars receive similar decoration for the same reason. In the planner, we include these outer join bitmapsets into the relids that an expression is considered to depend on, and in consequence also add outer-join relids to the relids of join RelOptInfos. This allows us to correctly perceive whether an expression can be calculated above or below a particular outer join. This change affects FDWs that want to plan foreign joins. They *must* follow suit when labeling foreign joins in order to match with the core planner, but for many purposes (if postgres_fdw is any guide) they'd prefer to consider only base relations within the join. To support both requirements, redefine ForeignScan.fs_relids as base+OJ relids, and add a new field fs_base_relids that's set up by the core planner. Large though it is, this commit just does the minimum necessary to install the new mechanisms and get check-world passing again. Follow-up patches will perform some cleanup. (The README additions and comments mention some stuff that will appear in the follow-up.) Patch by me; thanks to Richard Guo for review. Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
* Update copyright for 2023Bruce Momjian2023-01-02
| | | | Backpatch-through: 11
* Fix incorrect tests for SRFs in relation_can_be_sorted_early().Tom Lane2022-08-03
| | | | | | | | | | | | | | | | | | | | | | | | | Commit fac1b470a thought we could check for set-returning functions by testing only the top-level node in an expression tree. This is wrong in itself, and to make matters worse it encouraged others to make the same mistake, by exporting tlist.c's special-purpose IS_SRF_CALL() as a widely-visible macro. I can't find any evidence that anyone's taken the bait, but it was only a matter of time. Use expression_returns_set() instead, and stuff the IS_SRF_CALL() genie back in its bottle, this time with a warning label. I also added a couple of cross-reference comments. After a fair amount of fooling around, I've despaired of making a robust test case that exposes the bug reliably, so no test case here. (Note that the test case added by fac1b470a is itself broken, in that it doesn't notice if you remove the code change. The repro given by the bug submitter currently doesn't fail either in v15 or HEAD, though I suspect that may indicate an unrelated bug.) Per bug #17564 from Martijn van Oosterhout. Back-patch to v13, as the faulty patch was. Discussion: https://postgr.es/m/17564-c7472c2f90ef2da3@postgresql.org
* Avoid overflow hazard when clamping group counts to "long int".Tom Lane2022-05-21
| | | | | | | | | | | | | | | | | | | | | | | | Several places in the planner tried to clamp a double value to fit in a "long" by doing (long) Min(x, (double) LONG_MAX); This is subtly incorrect, because it casts LONG_MAX to double and potentially back again. If long is 64 bits then the double value is inexact, and the platform might round it up to LONG_MAX+1 resulting in an overflow and an undesirably negative output. While it's not hard to rewrite the expression into a safe form, let's put it into a common function to reduce the risk of someone doing it wrong in future. In principle this is a bug fix, but since the problem could only manifest with group count estimates exceeding 2^63, it seems unlikely that anyone has actually hit this or will do so anytime soon. We're fixing it mainly to satisfy fuzzer-type tools. That being the case, a HEAD-only fix seems sufficient. Andrey Lepikhov Discussion: https://postgr.es/m/ebbc2efb-7ef9-bf2f-1ada-d6ec48f70e58@postgrespro.ru
* Apply PGDLLIMPORT markings broadly.Robert Haas2022-04-08
| | | | | | | | | | | Up until now, we've had a policy of only marking certain variables in the PostgreSQL header files with PGDLLIMPORT, but now we've decided to mark them all. This means that extensions running on Windows should no longer operate at a disadvantage as compared to extensions running on Linux: if the variable is present in a header file, it should be accessible. Discussion: http://postgr.es/m/CA+TgmoYanc1_FSfimhgiWSqVyP5KKmh5NP2BWNwDhO8Pg2vGYQ@mail.gmail.com
* Invent recursive_worktable_factor GUC to replace hard-wired constant.Tom Lane2022-03-24
| | | | | | | | | | | | Up to now, the planner estimated the size of a recursive query's worktable as 10 times the size of the non-recursive term. It's hard to see how to do significantly better than that automatically, but we can give users control over the multiplier to allow tuning for specific use-cases. The default behavior remains the same. Simon Riggs Discussion: https://postgr.es/m/CANbhV-EuaLm4H3g0+BSTYHEGxJj3Kht0R+rJ8vT57Dejnh=_nA@mail.gmail.com
* Update copyright for 2022Bruce Momjian2022-01-07
| | | | Backpatch-through: 10
* Reconsider the handling of procedure OUT parameters.Tom Lane2021-06-10
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Commit 2453ea142 redefined pg_proc.proargtypes to include the types of OUT parameters, for procedures only. While that had some advantages for implementing the SQL-spec behavior of DROP PROCEDURE, it was pretty disastrous from a number of other perspectives. Notably, since the primary key of pg_proc is name + proargtypes, this made it possible to have multiple procedures with identical names + input arguments and differing output argument types. That would make it impossible to call any one of the procedures by writing just NULL (or "?", or any other data-type-free notation) for the output argument(s). The change also seems likely to cause grave confusion for client applications that examine pg_proc and expect the traditional definition of proargtypes. Hence, revert the definition of proargtypes to what it was, and undo a number of complications that had been added to support that. To support the SQL-spec behavior of DROP PROCEDURE, when there are no argmode markers in the command's parameter list, we perform the lookup both ways (that is, matching against both proargtypes and proallargtypes), succeeding if we get just one unique match. In principle this could result in ambiguous-function failures that would not happen when using only one of the two rules. However, overloading of procedure names is thought to be a pretty rare usage, so this shouldn't cause many problems in practice. Postgres-specific code such as pg_dump can defend against any possibility of such failures by being careful to specify argmodes for all procedure arguments. This also fixes a few other bugs in the area of CALL statements with named parameters, and improves the documentation a little. catversion bump forced because the representation of procedures with OUT arguments changes. Discussion: https://postgr.es/m/3742981.1621533210@sss.pgh.pa.us
* Speedup ScalarArrayOpExpr evaluationDavid Rowley2021-04-08
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | ScalarArrayOpExprs with "useOr=true" and a set of Consts on the righthand side have traditionally been evaluated by using a linear search over the array. When these arrays contain large numbers of elements then this linear search could become a significant part of execution time. Here we add a new method of evaluating ScalarArrayOpExpr expressions to allow them to be evaluated by first building a hash table containing each element, then on subsequent evaluations, we just probe that hash table to determine if there is a match. The planner is in charge of determining when this optimization is possible and it enables it by setting hashfuncid in the ScalarArrayOpExpr. The executor will only perform the hash table evaluation when the hashfuncid is set. This means that not all cases are optimized. For example CHECK constraints containing an IN clause won't go through the planner, so won't get the hashfuncid set. We could maybe do something about that at some later date. The reason we're not doing it now is from fear that we may slow down cases where the expression is evaluated only once. Those cases can be common, for example, a single row INSERT to a table with a CHECK constraint containing an IN clause. In the planner, we enable this when there are suitable hash functions for the ScalarArrayOpExpr's operator and only when there is at least MIN_ARRAY_SIZE_FOR_HASHED_SAOP elements in the array. The threshold is currently set to 9. Author: James Coleman, David Rowley Reviewed-by: David Rowley, Tomas Vondra, Heikki Linnakangas Discussion: https://postgr.es/m/CAAaqYe8x62+=wn0zvNKCj55tPpg-JBHzhZFFc6ANovdqFw7-dA@mail.gmail.com
* Fix pull_varnos' miscomputation of relids set for a PlaceHolderVar.Tom Lane2021-01-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Previously, pull_varnos() took the relids of a PlaceHolderVar as being equal to the relids in its contents, but that fails to account for the possibility that we have to postpone evaluation of the PHV due to outer joins. This could result in a malformed plan. The known cases end up triggering the "failed to assign all NestLoopParams to plan nodes" sanity check in createplan.c, but other symptoms may be possible. The right value to use is the join level we actually intend to evaluate the PHV at. We can get that from the ph_eval_at field of the associated PlaceHolderInfo. However, there are some places that call pull_varnos() before the PlaceHolderInfos have been created; in that case, fall back to the conservative assumption that the PHV will be evaluated at its syntactic level. (In principle this might result in missing some legal optimization, but I'm not aware of any cases where it's an issue in practice.) Things are also a bit ticklish for calls occurring during deconstruct_jointree(), but AFAICS the ph_eval_at fields should have reached their final values by the time we need them. The main problem in making this work is that pull_varnos() has no way to get at the PlaceHolderInfos. We can fix that easily, if a bit tediously, in HEAD by passing it the planner "root" pointer. In the back branches that'd cause an unacceptable API/ABI break for extensions, so leave the existing entry points alone and add new ones with the additional parameter. (If an old entry point is called and encounters a PHV, it'll fall back to using the syntactic level, again possibly missing some valid optimization.) Back-patch to v12. The computation is surely also wrong before that, but it appears that we cannot reach a bad plan thanks to join order restrictions imposed on the subquery that the PlaceHolderVar came from. The error only became reachable when commit 4be058fe9 allowed trivial subqueries to be collapsed out completely, eliminating their join order restrictions. Per report from Stephan Springl. Discussion: https://postgr.es/m/171041.1610849523@sss.pgh.pa.us
* Update copyright for 2021Bruce Momjian2021-01-02
| | | | Backpatch-through: 9.5
* Disallow SRFs when considering sorts below Gather MergeTomas Vondra2020-12-21
| | | | | | | | | | | | | | | | | While we do allow SRFs in ORDER BY, scan/join processing should not consider such cases - such sorts should only happen via final Sort atop a ProjectSet. So make sure we don't try adding such sorts below Gather Merge, just like we do for expressions that are volatile and/or not parallel safe. Backpatch to PostgreSQL 13, where this code was introduced as part of the Incremental Sort patch. Author: James Coleman Reviewed-by: Tomas Vondra Backpatch-through: 13 Discussion: https://postgr.es/m/CAAaqYe8cK3g5CfLC4w7bs=hC0mSksZC=H5M8LSchj5e5OxpTAg@mail.gmail.com Discussion: https://postgr.es/m/295524.1606246314%40sss.pgh.pa.us
* Improve estimation of OR clauses using extended statistics.Dean Rasheed2020-12-03
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Formerly we only applied extended statistics to an OR clause as part of the clauselist_selectivity() code path for an OR clause appearing in an implicitly-ANDed list of clauses. This meant that it could only use extended statistics if all sub-clauses of the OR clause were covered by a single extended statistics object. Instead, teach clause_selectivity() how to apply extended statistics to an OR clause by handling its ORed list of sub-clauses in a similar manner to an implicitly-ANDed list of sub-clauses, but with different combination rules. This allows one or more extended statistics objects to be used to estimate all or part of the list of sub-clauses. Any remaining sub-clauses are then treated as if they are independent. Additionally, to avoid double-application of extended statistics, this introduces "extended" versions of clause_selectivity() and clauselist_selectivity(), which include an option to ignore extended statistics. This replaces the old clauselist_selectivity_simple() function which failed to completely ignore extended statistics when called from the extended statistics code. A known limitation of the current infrastructure is that an AND clause under an OR clause is not treated as compatible with extended statistics (because we don't build RestrictInfos for such sub-AND clauses). Thus, for example, "(a=1 AND b=1) OR (a=2 AND b=2)" will currently be treated as two independent AND clauses (each of which may be estimated using extended statistics), but extended statistics will not currently be used to account for any possible overlap between those clauses. Improving that is left as a task for the future. Original patch by Tomas Vondra, with additional improvements by me. Discussion: https://postgr.es/m/20200113230008.g67iyk4cs3xbnjju@development
* Allow the planner-related functions and hook to accept the query string.Fujii Masao2020-03-30
| | | | | | | | | | | | | | | | | | This commit adds query_string argument into the planner-related functions and hook and allows us to pass the query string to them. Currently there is no user of the query string passed. But the upcoming patch for the planning counters will add the planning hook function into pg_stat_statements and the function will need the query string. So this change will be necessary for that patch. Also this change is useful for some extensions that want to use the query string in their planner hook function. Author: Pascal Legrand, Julien Rouhaud Reviewed-by: Yoshikazu Imai, Tom Lane, Fujii Masao Discussion: https://postgr.es/m/CAOBaU_bU1m3_XF5qKYtSj1ua4dxd=FWDyh2SH4rSJAUUfsGmAQ@mail.gmail.com Discussion: https://postgr.es/m/1583789487074-0.post@n3.nabble.com
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* Add support for multivariate MCV listsTomas Vondra2019-03-27
| | | | | | | | | | | | | | | | Introduce a third extended statistic type, supported by the CREATE STATISTICS command - MCV lists, a generalization of the statistic already built and used for individual columns. Compared to the already supported types (n-distinct coefficients and functional dependencies), MCV lists are more complex, include column values and allow estimation of much wider range of common clauses (equality and inequality conditions, IS NULL, IS NOT NULL etc.). Similarly to the other types, a new pseudo-type (pg_mcv_list) is used. Author: Tomas Vondra Reviewed-by: Dean Rasheed, David Rowley, Mark Dilger, Alvaro Herrera Discussion: https://postgr.es/m/dfdac334-9cf2-2597-fb27-f0fb3753f435@2ndquadrant.com
* Allow extensions to generate lossy index conditions.Tom Lane2019-02-11
| | | | | | | | | | | | | | | | | | | | | | | | For a long time, indxpath.c has had the ability to extract derived (lossy) index conditions from certain operators such as LIKE. For just as long, it's been obvious that we really ought to make that capability available to extensions. This commit finally accomplishes that, by adding another API for planner support functions that lets them create derived index conditions for their functions. As proof of concept, the hardwired "special index operator" code formerly present in indxpath.c is pushed out to planner support functions attached to LIKE and other relevant operators. A weak spot in this design is that an extension needs to know OIDs for the operators, datatypes, and opfamilies involved in the transformation it wants to make. The core-code prototypes use hard-wired OID references but extensions don't have that option for their own operators etc. It's usually possible to look up the required info, but that may be slow and inconvenient. However, improving that situation is a separate task. I want to do some additional refactorization around selfuncs.c, but that also seems like a separate task. Discussion: https://postgr.es/m/15193.1548028093@sss.pgh.pa.us
* Rename nodes/relation.h to nodes/pathnodes.h.Tom Lane2019-01-29
| | | | | | | | | | | | | The old name of this file was never a very good indication of what it was for. Now that there's also access/relation.h, we have a potential confusion hazard as well, so let's rename it to something more apropos. Per discussion, "pathnodes.h" is reasonable, since a good fraction of the file is Path node definitions. While at it, tweak a couple of other headers that were gratuitously importing relation.h into modules that don't need it. Discussion: https://postgr.es/m/7719.1548688728@sss.pgh.pa.us
* Refactor planner's header files.Tom Lane2019-01-29
Create a new header optimizer/optimizer.h, which exposes just the planner functions that can be used "at arm's length", without need to access Paths or the other planner-internal data structures defined in nodes/relation.h. This is intended to provide the whole planner API seen by most of the rest of the system; although FDWs still need to use additional stuff, and more thought is also needed about just what selfuncs.c should rely on. The main point of doing this now is to limit the amount of new #include baggage that will be needed by "planner support functions", which I expect to introduce later, and which will be in relevant datatype modules rather than anywhere near the planner. This commit just moves relevant declarations into optimizer.h from other header files (a couple of which go away because everything got moved), and adjusts #include lists to match. There's further cleanup that could be done if we want to decide that some stuff being exposed by optimizer.h doesn't belong in the planner at all, but I'll leave that for another day. Discussion: https://postgr.es/m/11460.1548706639@sss.pgh.pa.us