| Commit message (Collapse) | Author | Age |
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The newly added ON CONFLICT clause allows to specify an alternative to
raising a unique or exclusion constraint violation error when inserting.
ON CONFLICT refers to constraints that can either be specified using a
inference clause (by specifying the columns of a unique constraint) or
by naming a unique or exclusion constraint. DO NOTHING avoids the
constraint violation, without touching the pre-existing row. DO UPDATE
SET ... [WHERE ...] updates the pre-existing tuple, and has access to
both the tuple proposed for insertion and the existing tuple; the
optional WHERE clause can be used to prevent an update from being
executed. The UPDATE SET and WHERE clauses have access to the tuple
proposed for insertion using the "magic" EXCLUDED alias, and to the
pre-existing tuple using the table name or its alias.
This feature is often referred to as upsert.
This is implemented using a new infrastructure called "speculative
insertion". It is an optimistic variant of regular insertion that first
does a pre-check for existing tuples and then attempts an insert. If a
violating tuple was inserted concurrently, the speculatively inserted
tuple is deleted and a new attempt is made. If the pre-check finds a
matching tuple the alternative DO NOTHING or DO UPDATE action is taken.
If the insertion succeeds without detecting a conflict, the tuple is
deemed inserted.
To handle the possible ambiguity between the excluded alias and a table
named excluded, and for convenience with long relation names, INSERT
INTO now can alias its target table.
Bumps catversion as stored rules change.
Author: Peter Geoghegan, with significant contributions from Heikki
Linnakangas and Andres Freund. Testing infrastructure by Jeff Janes.
Reviewed-By: Heikki Linnakangas, Andres Freund, Robert Haas, Simon Riggs,
Dean Rasheed, Stephen Frost and many others.
|
|
|
|
|
|
|
|
|
| |
We can't handle this in the general case due to limitations of the
planner's data representations; but we can allow it in many useful cases,
by being careful to flatten only when we are pulling a single-row subquery
up into a FROM (or, equivalently, inner JOIN) node that will still have at
least one remaining relation child. Per discussion of an example from
Kyotaro Horiguchi.
|
|
|
|
| |
Backpatch certain files through 9.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
As of commit a87c72915 (which later got backpatched as far as 9.1),
we're explicitly supporting the notion that append relations can be
nested; this can occur when UNION ALL constructs are nested, or when
a UNION ALL contains a table with inheritance children.
Bug #11457 from Nelson Page, as well as an earlier report from Elvis
Pranskevichus, showed that there were still nasty bugs associated with such
cases: in particular the EquivalenceClass mechanism could try to generate
"join" clauses connecting an appendrel child to some grandparent appendrel,
which would result in assertion failures or bogus plans.
Upon investigation I concluded that all current callers of
find_childrel_appendrelinfo() need to be fixed to explicitly consider
multiple levels of parent appendrels. The most complex fix was in
processing of "broken" EquivalenceClasses, which are ECs for which we have
been unable to generate all the derived equality clauses we would like to
because of missing cross-type equality operators in the underlying btree
operator family. That code path is more or less entirely untested by
the regression tests to date, because no standard opfamilies have such
holes in them. So I wrote a new regression test script to try to exercise
it a bit, which turned out to be quite a worthwhile activity as it exposed
existing bugs in all supported branches.
The present patch is essentially the same as far back as 9.2, which is
where parameterized paths were introduced. In 9.0 and 9.1, we only need
to back-patch a small fragment of commit 5b7b5518d, which fixes failure to
propagate out the original WHERE clauses when a broken EC contains constant
members. (The regression test case results show that these older branches
are noticeably stupider than 9.2+ in terms of the quality of the plans
generated; but we don't really care about plan quality in such cases,
only that the plan not be outright wrong. A more invasive fix in the
older branches would not be a good idea anyway from a plan-stability
standpoint.)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Views which are marked as security_barrier must have their quals
applied before any user-defined quals are called, to prevent
user-defined functions from being able to see rows which the
security barrier view is intended to prevent them from seeing.
Remove the restriction on security barrier views being automatically
updatable by adding a new securityQuals list to the RTE structure
which keeps track of the quals from security barrier views at each
level, independently of the user-supplied quals. When RTEs are
later discovered which have securityQuals populated, they are turned
into subquery RTEs which are marked as security_barrier to prevent
any user-supplied quals being pushed down (modulo LEAKPROOF quals).
Dean Rasheed, reviewed by Craig Ringer, Simon Riggs, KaiGai Kohei
|
|
|
|
|
| |
Update all files in head, and files COPYRIGHT and legal.sgml in all back
branches.
|
|
|
|
|
| |
Fully update git head, and update back branches in ./COPYRIGHT and
legal.sgml files.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Re-allow subquery pullup for LATERAL subqueries, except when the subquery
is below an outer join and contains lateral references to relations outside
that outer join. If we pull up in such a case, we risk introducing lateral
cross-references into outer joins' ON quals, which is something the code is
entirely unprepared to cope with right now; and I'm not sure it'll ever be
worth coping with.
Support lateral refs in VALUES (this seems to be the only additional path
type that needs such support as a consequence of re-allowing subquery
pullup).
Put in a slightly hacky fix for joinpath.c's refusal to consider
parameterized join paths even when there cannot be any unparameterized
ones. This was causing "could not devise a query plan for the given query"
failures in queries involving more than two FROM items.
Put in an even more hacky fix for distribute_qual_to_rels() being unhappy
with join quals that contain references to rels outside their syntactic
scope; which is to say, disable that test altogether. Need to think about
how to preserve some sort of debugging cross-check here, while not
expending more cycles than befits a debugging cross-check.
|
|
|
|
| |
commit-fest.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The hstore and json datatypes both have record-conversion functions that
pay attention to column names in the composite values they're handed.
We used to not worry about inserting correct field names into tuple
descriptors generated at runtime, but given these examples it seems
useful to do so. Observe the nicer-looking results in the regression
tests whose results changed.
catversion bump because there is a subtle change in requirements for stored
rule parsetrees: RowExprs from ROW() constructs now have to include field
names.
Andrew Dunstan and Tom Lane
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Formerly, we could convert a UNION ALL structure inside a subquery-in-FROM
into an appendrel, as a side effect of pulling up the subquery into its
parent; but top-level UNION ALL always caused use of plan_set_operations().
That didn't matter too much because you got an Append-based plan either
way. However, now that the appendrel code can do things with MergeAppend,
it's worthwhile to hack up the top-level case so it also uses appendrels.
This is a bit of a stopgap; but going much further than this will require
a major rewrite of the planner's set-operations support, which I'm not
prepared to undertake now. For the moment let's grab the low-hanging fruit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch merges the responsibility for NOT-flattening into
eval_const_expressions' processing. It wasn't done that way originally
because prepqual.c is far older than eval_const_expressions. But putting
this work into eval_const_expressions saves one pass over the qual trees,
and in fact saves even more than that because we can exploit the knowledge
that the subexpressions have already been recursively simplified. Doing it
this way also lets us do it uniformly over all expressions, whereas
prepqual.c formerly just did it at top level to save cycles. That should
improve the planner's ability to recognize logically-equivalent constructs.
While at it, also add the ability to fold a NOT into BooleanTest and
NullTest constructs (the latter only for the scalar-datatype case).
Per discussion of bug #5702.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a lot of strange behaviors that occurred in join cases. We now identify the
"current" row for every joined relation in UPDATE, DELETE, and SELECT FOR
UPDATE/SHARE queries. If an EvalPlanQual recheck is necessary, we jam the
appropriate row into each scan node in the rechecking plan, forcing it to emit
only that one row. The former behavior could rescan the whole of each joined
relation for each recheck, which was terrible for performance, and what's much
worse could result in duplicated output tuples.
Also, the original implementation of EvalPlanQual could not re-use the recheck
execution tree --- it had to go through a full executor init and shutdown for
every row to be tested. To avoid this overhead, I've associated a special
runtime Param with each LockRows or ModifyTable plan node, and arranged to
make every scan node below such a node depend on that Param. Thus, by
signaling a change in that Param, the EPQ machinery can just rescan the
already-built test plan.
This patch also adds a prohibition on set-returning functions in the
targetlist of SELECT FOR UPDATE/SHARE. This is needed to avoid the
duplicate-output-tuple problem. It seems fairly reasonable since the
other restrictions on SELECT FOR UPDATE are meant to ensure that there
is a unique correspondence between source tuples and result tuples,
which an output SRF destroys as much as anything else does.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
find_inheritance_children() and find_all_inheritors(). I got annoyed that
these are buried inside the planner but mostly used elsewhere. So, create
a new file catalog/pg_inherits.c and put them there, along with a couple
of other functions that search pg_inherits.
The code that modifies pg_inherits is (still) in tablecmds.c --- it's
kind of entangled with unrelated code that modifies pg_depend and other
stuff, so pulling it out seemed like a bigger change than I wanted to make
right now. But this file provides a natural home for it if anyone ever
gets around to that.
This commit just moves code around; it doesn't change anything, except
I succumbed to the temptation to make a couple of trivial optimizations
in typeInheritsFrom().
|
|
|
|
|
|
|
| |
PlaceHolderVar nodes in join quals appearing in or below the lowest
outer join that could null the subquery being pulled up. This improves
the planner's ability to recognize constant join quals, and probably
helps with detection of common sort keys (equivalence classes) as well.
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
we extended the appendrel mechanism to support UNION ALL optimization. The
reason nobody noticed was that we are not actually using attr_needed data for
appendrel children; hence it seems more reasonable to rip it out than fix it.
Back-patch to 8.2 because an Assert failure is possible in corner cases.
Per examination of an example from Jim Nasby.
In HEAD, also get rid of AppendRelInfo.col_mappings, which is quite inadequate
to represent UNION ALL situations; depend entirely on translated_vars instead.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
level of a JOIN/ON clause, not only at top level of WHERE. (However, we
can't do this in an outer join's ON clause, unless the ANY/EXISTS refers
only to the nullable side of the outer join, so that it can effectively
be pushed down into the nullable side.) Per request from Kevin Grittner.
In passing, fix a bug in the initial implementation of EXISTS pullup:
it would Assert if the EXIST's WHERE clause used a join alias variable.
Since we haven't yet flattened join aliases when this transformation
happens, it's necessary to include join relids in the computed set of
RHS relids.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the old JOIN_IN code, but antijoins are new functionality.) Teach the planner
to convert appropriate EXISTS and NOT EXISTS subqueries into semi and anti
joins respectively. Also, LEFT JOINs with suitable upper-level IS NULL
filters are recognized as being anti joins. Unify the InClauseInfo and
OuterJoinInfo infrastructure into "SpecialJoinInfo". With that change,
it becomes possible to associate a SpecialJoinInfo with every join attempt,
which permits some cleanup of join selectivity estimation. That needs to be
taken much further than this patch does, but the next step is to change the
API for oprjoin selectivity functions, which seems like material for a
separate patch. So for the moment the output size estimates for semi and
especially anti joins are quite bogus.
|
|
|
|
|
|
|
| |
are declared to return set, and consist of just a single SELECT. We
can replace the FROM-item with a sub-SELECT and then optimize much as
if we were dealing with a view. Patch from Richard Rowell, cleaned up
by me.
|
| |
|
|
|
|
| |
back-stamped for this.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
thereby sharing code with the inheritance case. This puts the UNION-ALL-view
approach to partitioned tables on par with inheritance, so far as constraint
exclusion is concerned: it works either way. (Still need to update the docs
to say so.) The definition of "simple UNION ALL" is a little simpler than
I would like --- basically the union arms can only be SELECT * FROM foo
--- but it's good enough for partitioned-table cases.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
inheritance trees on-the-fly, which pretty well constrained us to considering
only one way of planning inheritance, expand inheritance sets during the
planner prep phase, and build a side data structure that can be consulted
later to find which RTEs are members of which inheritance sets. As proof of
concept, use the data structure to plan joins against inheritance sets more
efficiently: we can now use indexes on the set members in inner-indexscan
joins. (The generated plans could be improved further, but it'll take some
executor changes.) This data structure will also support handling UNION ALL
subqueries in the same way as inheritance sets, but that aspect of it isn't
finished yet.
|
|
|
|
|
|
| |
Per my recent proposal. I ended up basing the implementation on the
existing mechanism for enforcing valid join orders of IN joins --- the
rules for valid outer-join orders are somewhat similar.
|
| |
|
|
|
|
|
|
|
| |
if the limit were directly applied to it. This does not actually
add a LIMIT plan node to the generated subqueries --- that would be
useless overhead --- but it does cause the planner to prefer fast-
start plans when the limit is small. After an idea from Phil Endecott.
|
|
|
|
|
|
|
|
| |
a new PlannerInfo struct, which is passed around instead of the bare
Query in all the planning code. This commit is essentially just a
code-beautification exercise, but it does open the door to making
larger changes to the planner data structures without having to muck
with the widely-known Query struct.
|
|
|
|
|
|
|
|
|
|
| |
really ought to run before canonicalize_qual, because it can now produce
forms that canonicalize_qual knows how to improve (eg, NOT clauses).
Also, because eval_const_expressions already knows about flattening
nested ANDs and ORs into N-argument form, the initial flatten_andors
pass in canonicalize_qual is now completely redundant and can be
removed. This doesn't save a whole lot of code, but the time and
palloc traffic eliminated is a useful gain on large expression trees.
|
|
|
|
|
|
| |
grouping_planner() to preprocess_targetlist(), according to a comment
in grouping_planner(). I think the refactoring makes sense, and moves
some extraneous details out of grouping_planner().
|
|
|
|
|
|
|
|
| |
Also performed an initial run through of upgrading our Copyright date to
extend to 2005 ... first run here was very simple ... change everything
where: grep 1996-2004 && the word 'Copyright' ... scanned through the
generated list with 'less' first, and after, to make sure that I only
picked up the right entries ...
|
|
|
|
|
|
|
| |
from Sebastian Böck. The fix involves being more consistent about
when rangetable entries are copied or modified. Someday we really
need to fix this stuff to not scribble on its input data structures
in the first place...
|
| |
|
|
|
|
|
|
| |
by the set operation, so that redundant sorts at higher levels can be
avoided. This was foreseen a good while back, but not done. Per request
from Karel Zak.
|
|
|
|
|
|
|
|
|
| |
about whether it is applied before or after eval_const_expressions().
I believe there were some corner cases where the system would fail to
recognize that a partial index is applicable because of the previous
inconsistency. Store normal rather than 'implicit AND' representations
of constraints and index predicates in the catalogs.
initdb forced due to representation change of constraints/predicates.
|
| |
|
| |
|
| |
|
|
|
|
|
|
| |
into a UNION that has some type coercions applied to the component
queries, so long as the qual itself does not reference any columns that
have such coercions. Per example from Jonathan Bartlett 24-Apr-03.
|
|
|
|
|
| |
DELETE with inherited target table. Fix it; add a regression test.
Also, correct ancient misspelling of 'inherited'.
|
|
|
|
|
| |
because there are WHERE clauses that will reject the null-extended rows.
Per suggestion from Brandon Craig Rhodes, 19-Nov-02.
|
|
|
|
|
| |
Instead of Lists of integers, we now store variable-length bitmap sets.
This should be faster as well as less error-prone.
|
|
|
|
|
|
|
|
|
| |
necessarily following the JOIN syntax to develop the query plan. The old
behavior is still available by setting GUC variable JOIN_COLLAPSE_LIMIT
to 1. Also create a GUC variable FROM_COLLAPSE_LIMIT to control the
similar decision about when to collapse sub-SELECT lists into their parent
lists. (This behavior existed already, but the limit was always
GEQO_THRESHOLD/2; now it's separately adjustable.)
|