aboutsummaryrefslogtreecommitdiff
path: root/src/include/parser/parse_utilcmd.h
Commit message (Collapse)AuthorAge
* Fix handling of CREATE TABLE LIKE with inheritance.Tom Lane2020-08-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | If a CREATE TABLE command uses both LIKE and traditional inheritance, Vars in CHECK constraints and expression indexes that are absorbed from a LIKE parent table tended to get mis-numbered, resulting in wrong answers and/or bizarre error messages (though probably not any actual crashes, thanks to validation occurring in the executor). In v12 and up, the same could happen to Vars in GENERATED expressions, even in cases with no LIKE clause but multiple traditional-inheritance parents. The cause of the problem for LIKE is that parse_utilcmd.c supposed it could renumber such Vars correctly during transformCreateStmt(), which it cannot since we have not yet accounted for columns added via inheritance. Fix that by postponing processing of LIKE INCLUDING CONSTRAINTS, DEFAULTS, GENERATED, INDEXES till after we've performed DefineRelation(). The error with GENERATED and multiple inheritance is a simple oversight in MergeAttributes(); it knows it has to renumber Vars in inherited CHECK constraints, but forgot to apply the same processing to inherited GENERATED expressions (a/k/a defaults). Per bug #16272 from Tom Gottfried. The non-GENERATED variants of the issue are ancient, presumably dating right back to the addition of CREATE TABLE LIKE; hence back-patch to all supported branches. Discussion: https://postgr.es/m/16272-6e32da020e9a9381@postgresql.org
* Restructure ALTER TABLE execution to fix assorted bugs.Tom Lane2020-01-15
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | We've had numerous bug reports about how (1) IF NOT EXISTS clauses in ALTER TABLE don't behave as-expected, and (2) combining certain actions into one ALTER TABLE doesn't work, though executing the same actions as separate statements does. This patch cleans up all of the cases so far reported from the field, though there are still some oddities associated with identity columns. The core problem behind all of these bugs is that we do parse analysis of ALTER TABLE subcommands too soon, before starting execution of the statement. The root of the bugs in group (1) is that parse analysis schedules derived commands (such as a CREATE SEQUENCE for a serial column) before it's known whether the IF NOT EXISTS clause should cause a subcommand to be skipped. The root of the bugs in group (2) is that earlier subcommands may change the catalog state that later subcommands need to be parsed against. Hence, postpone parse analysis of ALTER TABLE's subcommands, and do that one subcommand at a time, during "phase 2" of ALTER TABLE which is the phase that does catalog rewrites. Thus the catalog effects of earlier subcommands are already visible when we analyze later ones. (The sole exception is that we do parse analysis for ALTER COLUMN TYPE subcommands during phase 1, so that their USING expressions can be parsed against the table's original state, which is what we need. Arguably, these bugs stem from falsely concluding that because ALTER COLUMN TYPE must do early parse analysis, every other command subtype can too.) This means that ALTER TABLE itself must deal with execution of any non-ALTER-TABLE derived statements that are generated by parse analysis. Add a suitable entry point to utility.c to accept those recursive calls, and create a struct to pass through the information needed by the recursive call, rather than making the argument lists of AlterTable() and friends even longer. Getting this to work correctly required a little bit of fiddling with the subcommand pass structure, in particular breaking up AT_PASS_ADD_CONSTR into multiple passes. But otherwise it's mostly a pretty straightforward application of the above ideas. Fixing the residual issues for identity columns requires refactoring of where the dependency link from an identity column to its sequence gets set up. So that seems like suitable material for a separate patch, especially since this one is pretty big already. Discussion: https://postgr.es/m/10365.1558909428@sss.pgh.pa.us
* Update copyrights for 2020Bruce Momjian2020-01-01
| | | | Backpatch-through: update all files in master, backpatch legal files through 9.4
* Minimal portability fix for commit e1551f96e.Tom Lane2019-12-18
| | | | | | | | | Older gcc versions are not happy with having multiple declarations for the same typedef name (not struct name). I'm a bit dubious as to how well-thought-out that patch was at all, but for the moment just fix it enough so I can get some work done today. Discussion: https://postgr.es/m/20191218101338.GB325369@paquier.xyz
* Refactor attribute mappings used in logical tuple conversionMichael Paquier2019-12-18
| | | | | | | | | | | | | | | | | | | | | | | | | | | Tuple conversion support in tupconvert.c is able to convert rowtypes between two relations, inner and outer, which are logically equivalent but have a different ordering or even dropped columns (used mainly for inheritance tree and partitions). This makes use of attribute mappings, which are simple arrays made of AttrNumber elements with a length matching the number of attributes of the outer relation. The length of the attribute mapping has been treated as completely independent of the mapping itself until now, making it easy to pass down an incorrect mapping length. This commit refactors the code related to attribute mappings and moves it into an independent facility called attmap.c, extracted from tupconvert.c. This merges the attribute mapping with its length, avoiding to try to guess what is the length of a mapping to use as this is computed once, when the map is built. This will avoid mistakes like what has been fixed in dc816e58, which has used an incorrect mapping length by matching it with the number of attributes of an inner relation (a child partition) instead of an outer relation (a partitioned table). Author: Michael Paquier Reviewed-by: Amit Langote Discussion: https://postgr.es/m/20191121042556.GD153437@paquier.xyz
* Phase 2 pgindent run for v12.Tom Lane2019-05-22
| | | | | | | | | Switch to 2.1 version of pg_bsd_indent. This formats multiline function declarations "correctly", that is with additional lines of parameter declarations indented to match where the first line's left parenthesis is. Discussion: https://postgr.es/m/CAEepm=0P3FeTXRcU5B2W3jv3PgRVZ-kGUXLGfd42FFhUROO3ug@mail.gmail.com
* Avoid order-of-execution problems with ALTER TABLE ADD PRIMARY KEY.Tom Lane2019-04-23
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Up to now, DefineIndex() was responsible for adding attnotnull constraints to the columns of a primary key, in any case where it hadn't been convenient for transformIndexConstraint() to mark those columns as is_not_null. It (or rather its minion index_check_primary_key) did this by executing an ALTER TABLE SET NOT NULL command for the target table. The trouble with this solution is that if we're creating the index due to ALTER TABLE ADD PRIMARY KEY, and the outer ALTER TABLE has additional sub-commands, the inner ALTER TABLE's operations executed at the wrong time with respect to the outer ALTER TABLE's operations. In particular, the inner ALTER would perform a validation scan at a point where the table's storage might be inconsistent with its catalog entries. (This is on the hairy edge of being a security problem, but AFAICS it isn't one because the inner scan would only be interested in the tuples' null bitmaps.) This can result in unexpected failures, such as the one seen in bug #15580 from Allison Kaptur. To fix, let's remove the attempt to do SET NOT NULL from DefineIndex(), reducing index_check_primary_key's role to verifying that the columns are already not null. (It shouldn't ever see such a case, but it seems wise to keep the check for safety.) Instead, make transformIndexConstraint() generate ALTER TABLE SET NOT NULL subcommands to be executed ahead of the ADD PRIMARY KEY operation in every case where it can't force the column to be created already-not-null. This requires only minor surgery in parse_utilcmd.c, and it makes for a much more satisfying spec for transformIndexConstraint(): it's no longer having to take it on faith that someone else will handle addition of NOT NULL constraints. To make that work, we have to move the execution of AT_SetNotNull into an ALTER pass that executes ahead of AT_PASS_ADD_INDEX. I moved it to AT_PASS_COL_ATTRS, and put that after AT_PASS_ADD_COL to avoid failure when the column is being added in the same command. This incidentally fixes a bug in the only previous usage of AT_PASS_COL_ATTRS, for AT_SetIdentity: it didn't work either for a newly-added column. Playing around with this exposed a separate bug in ALTER TABLE ONLY ... ADD PRIMARY KEY for partitioned tables. The intent of the ONLY modifier in that context is to prevent doing anything that would require holding lock for a long time --- but the implied SET NOT NULL would recurse to the child partitions, and do an expensive validation scan for any child where the column(s) were not already NOT NULL. To fix that, invent a new ALTER subcommand AT_CheckNotNull that just insists that a child column be already NOT NULL, and apply that, not AT_SetNotNull, when recursing to children in this scenario. This results in a slightly laxer definition of ALTER TABLE ONLY ... SET NOT NULL for partitioned tables, too: that command will now work as long as all children are already NOT NULL, whereas before it just threw up its hands if there were any partitions. In passing, clean up the API of generateClonedIndexStmt(): remove a useless argument, ensure that the output argument is not left undefined, update the header comment. A small side effect of this change is that no-such-column errors in ALTER TABLE ADD PRIMARY KEY now produce a different message that includes the table name, because they are now detected by the SET NOT NULL step which has historically worded its error that way. That seems fine to me, so I didn't make any effort to avoid the wording change. The basic bug #15580 is of very long standing, and these other bugs aren't new in v12 either. However, this is a pretty significant change in the way ALTER TABLE ADD PRIMARY KEY works. On balance it seems best not to back-patch, at least not till we get some more confidence that this patch has no new bugs. Patch by me, but thanks to Jie Zhang for a preliminary version. Discussion: https://postgr.es/m/15580-d1a6de5a3d65da51@postgresql.org Discussion: https://postgr.es/m/1396E95157071C4EBBA51892C5368521017F2E6E63@G08CNEXMBPEKD02.g08.fujitsu.local
* Update copyright for 2019Bruce Momjian2019-01-02
| | | | Backpatch-through: certain files through 9.4
* Allow UNIQUE indexes on partitioned tablesAlvaro Herrera2018-02-19
| | | | | | | | | | | | | | | If we restrict unique constraints on partitioned tables so that they must always include the partition key, then our standard approach to unique indexes already works --- each unique key is forced to exist within a single partition, so enforcing the unique restriction in each index individually is enough to have it enforced globally. Therefore we can implement unique indexes on partitions by simply removing a few restrictions (and adding others.) Discussion: https://postgr.es/m/20171222212921.hi6hg6pem2w2t36z@alvherre.pgsql Discussion: https://postgr.es/m/20171229230607.3iib6b62fn3uaf47@alvherre.pgsql Reviewed-by: Simon Riggs, Jesper Pedersen, Peter Eisentraut, Jaime Casanova, Amit Langote
* Local partitioned indexesAlvaro Herrera2018-01-19
| | | | | | | | | | | | | | | | | | | | | | | | | | | When CREATE INDEX is run on a partitioned table, create catalog entries for an index on the partitioned table (which is just a placeholder since the table proper has no data of its own), and recurse to create actual indexes on the existing partitions; create them in future partitions also. As a convenience gadget, if the new index definition matches some existing index in partitions, these are picked up and used instead of creating new ones. Whichever way these indexes come about, they become attached to the index on the parent table and are dropped alongside it, and cannot be dropped on isolation unless they are detached first. To support pg_dump'ing these indexes, add commands CREATE INDEX ON ONLY <table> (which creates the index on the parent partitioned table, without recursing) and ALTER INDEX ATTACH PARTITION (which is used after the indexes have been created individually on each partition, to attach them to the parent index). These reconstruct prior database state exactly. Reviewed-by: (in alphabetical order) Peter Eisentraut, Robert Haas, Amit Langote, Jesper Pedersen, Simon Riggs, David Rowley Discussion: https://postgr.es/m/20171113170646.gzweigyrgg6pwsg4@alvherre.pgsql
* Update copyright for 2018Bruce Momjian2018-01-02
| | | | Backpatch-through: certain files through 9.3
* Phase 2 of pgindent updates.Tom Lane2017-06-21
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Change pg_bsd_indent to follow upstream rules for placement of comments to the right of code, and remove pgindent hack that caused comments following #endif to not obey the general rule. Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using the published version of pg_bsd_indent, but a hacked-up version that tried to minimize the amount of movement of comments to the right of code. The situation of interest is where such a comment has to be moved to the right of its default placement at column 33 because there's code there. BSD indent has always moved right in units of tab stops in such cases --- but in the previous incarnation, indent was working in 8-space tab stops, while now it knows we use 4-space tabs. So the net result is that in about half the cases, such comments are placed one tab stop left of before. This is better all around: it leaves more room on the line for comment text, and it means that in such cases the comment uniformly starts at the next 4-space tab stop after the code, rather than sometimes one and sometimes two tabs after. Also, ensure that comments following #endif are indented the same as comments following other preprocessor commands such as #else. That inconsistency turns out to have been self-inflicted damage from a poorly-thought-through post-indent "fixup" in pgindent. This patch is much less interesting than the first round of indent changes, but also bulkier, so I thought it best to separate the effects. Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
* Code review focused on new node types added by partitioning support.Tom Lane2017-05-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Fix failure to check that we got a plain Const from const-simplification of a coercion request. This is the cause of bug #14666 from Tian Bing: there is an int4 to money cast, but it's only stable not immutable (because of dependence on lc_monetary), resulting in a FuncExpr that the code was miserably unequipped to deal with, or indeed even to notice that it was failing to deal with. Add test cases around this coercion behavior. In view of the above, sprinkle the code liberally with castNode() macros, in hope of catching the next such bug a bit sooner. Also, change some functions that were randomly declared to take Node* to take more specific pointer types. And change some struct fields that were declared Node* but could be given more specific types, allowing removal of assorted explicit casts. Place PARTITION_MAX_KEYS check a bit closer to the code it's protecting. Likewise check only-one-key-for-list-partitioning restriction in a less random place. Avoid not-per-project-style usages like !strcmp(...). Fix assorted failures to avoid scribbling on the input of parse transformation. I'm not sure how necessary this is, but it's entirely silly for these functions to be expending cycles to avoid that and not getting it right. Add guards against partitioning on system columns. Put backend/nodes/ support code into an order that matches handling of these node types elsewhere. Annotate the fact that somebody added location fields to PartitionBoundSpec and PartitionRangeDatum but forgot to handle them in outfuncs.c/readfuncs.c. This is fairly harmless for production purposes (since readfuncs.c would just substitute -1 anyway) but it's still bogus. It's not worth forcing a post-beta1 initdb just to fix this, but if we have another reason to force initdb before 10.0, we should go back and clean this up. Contrariwise, somebody added location fields to PartitionElem and PartitionSpec but forgot to teach exprLocation() about them. Consolidate duplicative code in transformPartitionBound(). Improve a couple of error messages. Improve assorted commentary. Re-pgindent the files touched by this patch; this affects a few comment blocks that must have been added quite recently. Report: https://postgr.es/m/20170524024550.29935.14396@wrigleys.postgresql.org
* Update copyright via script for 2017Bruce Momjian2017-01-03
|
* Implement table partitioning.Robert Haas2016-12-07
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | Table partitioning is like table inheritance and reuses much of the existing infrastructure, but there are some important differences. The parent is called a partitioned table and is always empty; it may not have indexes or non-inherited constraints, since those make no sense for a relation with no data of its own. The children are called partitions and contain all of the actual data. Each partition has an implicit partitioning constraint. Multiple inheritance is not allowed, and partitioning and inheritance can't be mixed. Partitions can't have extra columns and may not allow nulls unless the parent does. Tuples inserted into the parent are automatically routed to the correct partition, so tuple-routing ON INSERT triggers are not needed. Tuple routing isn't yet supported for partitions which are foreign tables, and it doesn't handle updates that cross partition boundaries. Currently, tables can be range-partitioned or list-partitioned. List partitioning is limited to a single column, but range partitioning can involve multiple columns. A partitioning "column" can be an expression. Because table partitioning is less general than table inheritance, it is hoped that it will be easier to reason about properties of partitions, and therefore that this will serve as a better foundation for a variety of possible optimizations, including query planner optimizations. The tuple routing based which this patch does based on the implicit partitioning constraints is an example of this, but it seems likely that many other useful optimizations are also possible. Amit Langote, reviewed and tested by Robert Haas, Ashutosh Bapat, Amit Kapila, Rajkumar Raghuwanshi, Corey Huinker, Jaime Casanova, Rushabh Lathia, Erik Rijkers, among others. Minor revisions by me.
* Update copyright for 2016Bruce Momjian2016-01-02
| | | | Backpatch certain files through 9.1
* Update copyright for 2015Bruce Momjian2015-01-06
| | | | Backpatch certain files through 9.0
* Avoid repeated name lookups during table and index DDL.Robert Haas2014-02-17
| | | | | | | | | | | | | | | | | | | | | | If the name lookups come to different conclusions due to concurrent activity, we might perform some parts of the DDL on a different table than other parts. At least in the case of CREATE INDEX, this can be used to cause the permissions checks to be performed against a different table than the index creation, allowing for a privilege escalation attack. This changes the calling convention for DefineIndex, CreateTrigger, transformIndexStmt, transformAlterTableStmt, CheckIndexCompatible (in 9.2 and newer), and AlterTable (in 9.1 and older). In addition, CheckRelationOwnership is removed in 9.2 and newer and the calling convention is changed in older branches. A field has also been added to the Constraint node (FkConstraint in 8.4). Third-party code calling these functions or using the Constraint node will require updating. Report by Andres Freund. Patch by Robert Haas and Andres Freund, reviewed by Tom Lane. Security: CVE-2014-0062
* Update copyright for 2014Bruce Momjian2014-01-07
| | | | | Update all files in head, and files COPYRIGHT and legal.sgml in all back branches.
* Update copyrights for 2013Bruce Momjian2013-01-01
| | | | | Fully update git head, and update back branches in ./COPYRIGHT and legal.sgml files.
* Update copyright notices for year 2012.Bruce Momjian2012-01-01
|
* Stamp copyrights for year 2011.Bruce Momjian2011-01-01
|
* Remove cvs keywords from all files.Magnus Hagander2010-09-20
|
* Update copyright for the year 2010.Bruce Momjian2010-01-02
|
* Update copyright for 2009.Bruce Momjian2009-01-01
|
* Update copyrights in source tree to 2008.Bruce Momjian2008-01-01
|
* pgindent run for 8.3.Bruce Momjian2007-11-15
|
* Separate parse-analysis for utility commands out of parser/analyze.cTom Lane2007-06-23
(which now deals only in optimizable statements), and put that code into a new file parser/parse_utilcmd.c. This helps clarify and enforce the design rule that utility statements shouldn't be processed during the regular parse analysis phase; all interpretation of their meaning should happen after they are given to ProcessUtility to execute. (We need this because we don't retain any locks for a utility statement that's in a plan cache, nor have any way to detect that it's stale.) We are also able to simplify the API for parse_analyze() and related routines, because they will now always return exactly one Query structure. In passing, fix bug #3403 concerning trying to add a serial column to an existing temp table (this is largely Heikki's work, but we needed all that restructuring to make it safe).