| Commit message (Collapse) | Author | Age |
... | |
|
|
|
| |
Backpatch-through: 9.5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reverts 27838981be9d (some comments are kept). Per discussion, it does
not seem safe to relax the lock level used for this; in order for it to
be safe, there would have to be memory barriers between the point we set
the flag and the point we set the trasaction Xid, which perhaps would
not be so bad; but there would also have to be barriers at the readers'
side, which from a performance perspective might be bad.
Now maybe this analysis is wrong and it *is* safe for some reason, but
proof of that is not trivial.
Discussion: https://postgr.es/m/20201118190928.vnztes7c2sldu43a@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
In the various waiting phases of CREATE INDEX CONCURRENTLY (CIC) and
REINDEX CONCURRENTLY (RC), we wait for other processes to release their
snapshots; this is necessary in general for correctness. However,
processes doing CIC in other tables cannot possibly affect CIC or RC
done in "this" table, so we don't need to wait for those. This commit
adds a flag in MyProc->statusFlags to indicate that the current process
is doing CIC, so that other processes doing CIC or RC can ignore it when
waiting.
Note that this logic is only valid if the index does not access other
tables. For simplicity we avoid setting the flag if the index has a
column that's an expression, or has a WHERE predicate. (It is possible
to have expressional or partial indexes that do not access other tables,
but figuring that out would require more work.)
This flag can potentially also be used by processes doing REINDEX
CONCURRENTLY to be skipped; and by VACUUM to ignore processes in CIC or
RC for the purposes of computing an Xmin. That's left for future
commits.
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Dimitry Dolgov <9erthalion6@gmail.com>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://postgr.es/m/20200810233815.GA18970@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
We don't actually need a lock to set PGPROC->statusFlags itself; what we
do need is a shared lock on either XidGenLock or ProcArrayLock in order to
ensure MyProc->pgxactoff keeps still while we modify the mirror array in
ProcGlobal->statusFlags. Some places were using an exclusive lock for
that, which is excessive. Relax those to use shared lock only.
procarray.c has a couple of places with somewhat brittle assumptions
about PGPROC changes: ProcArrayEndTransaction uses only shared lock, so
it's permissible to change MyProc only. On the other hand,
ProcArrayEndTransactionInternal also changes other procs, so it must
hold exclusive lock. Add asserts to ensure those assumptions continue
to hold.
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Michael Paquier <michael@paquier.xyz>
Discussion: https://postgr.es/m/20201117155501.GA13805@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
With more flags associated to a PGPROC entry that are not related to
vacuum (currently existing or planned), the name "statusFlags" describes
its purpose better.
(The same is done to the mirroring PROC_HDR->vacuumFlags.)
No functional changes in this commit.
This was suggested first by Hari Babu Kommi in [1] and then by Michael
Paquier at [2].
[1] https://postgr.es/m/CAJrrPGcsDC-oy1AhqH0JkXYa0Z2AgbuXzHPpByLoBGMxfOZMEQ@mail.gmail.com
[2] https://postgr.es/m/20200820060929.GB3730@paquier.xyz
Author: Dmitry Dolgov <9erthalion6@gmail.com>
Reviewed-by: Álvaro Herrera <alvherre@alvh.no-ip.org>
Discussion: https://postgr.es/m/20201116182446.qcg3o6szo2zookyr@localhost
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to the previous changes this increases the chance that data
frequently needed by GetSnapshotData() stays in l2 cache. In many
workloads subtransactions are very rare, and this makes the check for
that considerably cheaper.
As this removes the last member of PGXACT, there is no need to keep it
around anymore.
On a larger 2 socket machine this and the two preceding commits result
in a ~1.07x performance increase in read-only pgbench. For read-heavy
mixed r/w workloads without row level contention, I see about 1.1x.
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Similar to the previous commit this increases the chance that data
frequently needed by GetSnapshotData() stays in l2 cache. As we now
take care to not unnecessarily write to ProcGlobal->vacuumFlags, there
should be very few modifications to the ProcGlobal->vacuumFlags array.
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The new array contains the xids for all connected backends / in-use
PGPROC entries in a dense manner (in contrast to the PGPROC/PGXACT
arrays which can have unused entries interspersed).
This improves performance because GetSnapshotData() always needs to
scan the xids of all live procarray entries and now there's no need to
go through the procArray->pgprocnos indirection anymore.
As the set of running top-level xids changes rarely, compared to the
number of snapshots taken, this substantially increases the likelihood
of most data required for a snapshot being in l2 cache. In
read-mostly workloads scanning the xids[] array will sufficient to
build a snapshot, as most backends will not have an xid assigned.
To keep the xid array dense ProcArrayRemove() needs to move entries
behind the to-be-removed proc's one further up in the array. Obviously
moving array entries cannot happen while a backend sets it
xid. I.e. locking needs to prevent that array entries are moved while
a backend modifies its xid.
To avoid locking ProcArrayLock in GetNewTransactionId() - a fairly hot
spot already - ProcArrayAdd() / ProcArrayRemove() now needs to hold
XidGenLock in addition to ProcArrayLock. Adding / Removing a procarray
entry is not a very frequent operation, even taking 2PC into account.
Due to the above, the dense array entries can only be read or modified
while holding ProcArrayLock and/or XidGenLock. This prevents a
concurrent ProcArrayRemove() from shifting the dense array while it is
accessed concurrently.
While the new dense array is very good when needing to look at all
xids it is less suitable when accessing a single backend's xid. In
particular it would be problematic to have to acquire a lock to access
a backend's own xid. Therefore a backend's xid is not just stored in
the dense array, but also in PGPROC. This also allows a backend to
only access the shared xid value when the backend had acquired an
xid.
The infrastructure added in this commit will be used for the remaining
PGXACT fields in subsequent commits. They are kept separate to make
review easier.
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Now that xmin isn't needed for GetSnapshotData() anymore, it leads to
unnecessary cacheline ping-pong to have it in PGXACT, as it is updated
considerably more frequently than the other PGXACT members.
After the changes in dc7420c2c92, this is a very straight-forward change.
For highly concurrent, snapshot acquisition heavy, workloads this change alone
can significantly increase scalability. E.g. plain pgbench on a smaller 2
socket machine gains 1.07x for read-only pgbench, 1.22x for read-only pgbench
when submitting queries in batches of 100, and 2.85x for batches of 100
'SELECT';. The latter numbers are obviously not to be expected in the
real-world, but micro-benchmark the snapshot computation
scalability (previously spending ~80% of the time in GetSnapshotData()).
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
To make GetSnapshotData() more scalable, it cannot not look at at each proc's
xmin: While snapshot contents do not need to change whenever a read-only
transaction commits or a snapshot is released, a proc's xmin is modified in
those cases. The frequency of xmin modifications leads to, particularly on
higher core count systems, many cache misses inside GetSnapshotData(), despite
the data underlying a snapshot not changing. That is the most
significant source of GetSnapshotData() scaling poorly on larger systems.
Without accessing xmins, GetSnapshotData() cannot calculate accurate horizons /
thresholds as it has so far. But we don't really have to: The horizons don't
actually change that much between GetSnapshotData() calls. Nor are the horizons
actually used every time a snapshot is built.
The trick this commit introduces is to delay computation of accurate horizons
until there use and using horizon boundaries to determine whether accurate
horizons need to be computed.
The use of RecentGlobal[Data]Xmin to decide whether a row version could be
removed has been replaces with new GlobalVisTest* functions. These use two
thresholds to determine whether a row can be pruned:
1) definitely_needed, indicating that rows deleted by XIDs >= definitely_needed
are definitely still visible.
2) maybe_needed, indicating that rows deleted by XIDs < maybe_needed can
definitely be removed
GetSnapshotData() updates definitely_needed to be the xmin of the computed
snapshot.
When testing whether a row can be removed (with GlobalVisTestIsRemovableXid())
and the tested XID falls in between the two (i.e. XID >= maybe_needed && XID <
definitely_needed) the boundaries can be recomputed to be more accurate. As it
is not cheap to compute accurate boundaries, we limit the number of times that
happens in short succession. As the boundaries used by
GlobalVisTestIsRemovableXid() are never reset (with maybe_needed updated by
GetSnapshotData()), it is likely that further test can benefit from an earlier
computation of accurate horizons.
To avoid regressing performance when old_snapshot_threshold is set (as that
requires an accurate horizon to be computed), heap_page_prune_opt() doesn't
unconditionally call TransactionIdLimitedForOldSnapshots() anymore. Both the
computation of the limited horizon, and the triggering of errors (with
SetOldSnapshotThresholdTimestamp()) is now only done when necessary to remove
tuples.
This commit just removes the accesses to PGXACT->xmin from
GetSnapshotData(), but other members of PGXACT residing in the same
cache line are accessed. Therefore this in itself does not result in a
significant improvement. Subsequent commits will take advantage of the
fact that GetSnapshotData() now does not need to access xmins anymore.
Note: This contains a workaround in heap_page_prune_opt() to keep the
snapshot_too_old tests working. While that workaround is ugly, the tests
currently are not meaningful, and it seems best to address them separately.
Author: Andres Freund <andres@anarazel.de>
Reviewed-By: Robert Haas <robertmhaas@gmail.com>
Reviewed-By: Thomas Munro <thomas.munro@gmail.com>
Reviewed-By: David Rowley <dgrowleyml@gmail.com>
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
| |
These flags are unused and always have been.
Discussion: https://postgr.es/m/20200805235549.GA8118@alvherre.pgsql
|
|
|
|
|
|
|
| |
Add a separate enum for use in the locking APIs, which were the only
user.
Discussion: https://www.postgresql.org/message-id/flat/a6f91ead-0ce4-2a34-062b-7ab9813ea308%402ndquadrant.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Choose names that fit into the conventions for wait event names
(particularly, that multi-word names are in the style MultiWordName)
and hopefully convey more information to non-hacker users than the
previous names did.
Also rename SerializablePredicateLockListLock to
SerializablePredicateListLock; the old name was long enough to cause
table formatting problems, plus the double occurrence of "Lock" seems
confusing/error-prone.
Also change a couple of particularly opaque LWLock field names.
Discussion: https://postgr.es/m/28683.1589405363@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The goal of separating hotly accessed per-backend data from PGPROC
into PGXACT is to make accesses fast (GetSnapshotData() in
particular). But delayChkpt is not actually accessed frequently; only
when starting a checkpoint. As it is frequently modified (multiple
times in the course of a single transaction), storing it in the same
cacheline as hotly accessed data unnecessarily dirties a contended
cacheline.
Therefore move delayChkpt to PGPROC.
This is part of a larger series of patches intending to improve
GetSnapshotData() scalability. It is committed and pushed separately,
as it is independently beneficial (small but measurable win, limited
by the other frequent modifications of PGXACT).
Author: Andres Freund
Reviewed-By: Robert Haas, Thomas Munro, David Rowley
Discussion: https://postgr.es/m/20200301083601.ews6hz5dduc3w2se@alap3.anarazel.de
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This helps integration of extensions with Windows. The following
parameters are changed:
- idle_in_transaction_session_timeout (9.6 and newer versions)
- lock_timeout
- statement_timeout
- track_activities
- track_counts
- track_functions
Author: Pascal Legrand
Reviewed-by: Amit Kamila, Julien Rouhaud, Michael Paquier
Discussion: https://postgr.es/m/1579298868581-0.post@n3.nabble.com
Backpatch-through: 9.4
|
|
|
|
| |
Backpatch-through: update all files in master, backpatch legal files through 9.4
|
|
|
|
|
|
|
|
| |
This addresses more issues with code comments, variable names and
unreferenced variables.
Author: Alexander Lakhin
Discussion: https://postgr.es/m/7ab243e0-116d-3e44-d120-76b3df7abefd@gmail.com
|
|
|
|
|
| |
Author: Alexander Lakhin
Discussion: https://postgr.es/m/af27d1b3-a128-9d62-46e0-88f424397f44@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since its introduction, max_wal_senders is counted as part of
max_connections when it comes to define how many connection slots can be
used for replication connections with a WAL sender context. This can
lead to confusion for some users, as it could be possible to block a
base backup or replication from happening because other backend sessions
are already taken for other purposes by an application, and
superuser-only connection slots are not a correct solution to handle
that case.
This commit makes max_wal_senders independent of max_connections for its
handling of PGPROC entries in ProcGlobal, meaning that connection slots
for WAL senders are handled using their own free queue, like autovacuum
workers and bgworkers.
One compatibility issue that this change creates is that a standby now
requires to have a value of max_wal_senders at least equal to its
primary. So, if a standby created enforces the value of
max_wal_senders to be lower than that, then this could break failovers.
Normally this should not be an issue though, as any settings of a
standby are inherited from its primary as postgresql.conf gets normally
copied as part of a base backup, so parameters would be consistent.
Author: Alexander Kukushkin
Reviewed-by: Kyotaro Horiguchi, Petr Jelínek, Masahiko Sawada, Oleksii
Kliukin
Discussion: https://postgr.es/m/CAFh8B=nBzHQeYAu0b8fjK-AF1X4+_p6GRtwG+cCgs6Vci2uRuQ@mail.gmail.com
|
|
|
|
| |
Backpatch-through: certain files through 9.4
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit dafa084, added in 10, made the removal of temporary orphaned
tables more aggressive. This commit makes an extra step into the
aggressiveness by adding a flag in each backend's MyProc which tracks
down any temporary namespace currently in use. The flag is set when the
namespace gets created and can be reset if the temporary namespace has
been created in a transaction or sub-transaction which is aborted. The
flag value assignment is assumed to be atomic, so this can be done in a
lock-less fashion like other flags already present in PGPROC like
databaseId or backendId, still the fact that the temporary namespace and
table created are still locked until the transaction creating those
commits acts as a barrier for other backends.
This new flag gets used by autovacuum to discard more aggressively
orphaned tables by additionally checking for the database a backend is
connected to as well as its temporary namespace in-use, removing
orphaned temporary relations even if a backend reuses the same slot as
one which created temporary relations in a past session.
The base idea of this patch comes from Robert Haas, has been written in
its first version by Tsunakawa Takayuki, then heavily reviewed by me.
Author: Tsunakawa Takayuki
Reviewed-by: Michael Paquier, Kyotaro Horiguchi, Andres Freund
Discussion: https://postgr.es/m/0A3221C70F24FB45833433255569204D1F8A4DC6@G01JPEXMBYT05
Backpatch: 11-, as PGPROC gains a new flag and we don't want silent ABI
breakages on already released versions.
|
|
|
|
| |
Backpatch-through: certain files through 9.3
|
|
|
|
|
|
|
|
|
| |
This makes life easier for extension authors who wish to support
Windows.
Brian Cloutier, slightly amended by me.
Discussion: http://postgr.es/m/CAJCy68fscdNhmzFPS4kyO00CADkvXvEa-28H-OtENk-pa2OTWw@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0e141c0fbb211bdd23783afa731e3eef95c9ad7a introduced a mechanism
to reduce contention on ProcArrayLock by having a single process clear
XIDs in the procArray on behalf of multiple processes, reducing the
need to hand the lock around. A previous attempt to introduce a similar
mechanism for CLogControlLock in ccce90b398673d55b0387b3de66639b1b30d451b
crashed and burned, but the design problem which resulted in those
failures is believed to have been corrected in this version.
Amit Kapila, with some cosmetic changes by me. See the previous commit
message for additional credits.
Discussion: http://postgr.es/m/CAA4eK1KudxzgWhuywY_X=yeSAhJMT4DwCjroV5Ay60xaeB2Eew@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Change pg_bsd_indent to follow upstream rules for placement of comments
to the right of code, and remove pgindent hack that caused comments
following #endif to not obey the general rule.
Commit e3860ffa4dd0dad0dd9eea4be9cc1412373a8c89 wasn't actually using
the published version of pg_bsd_indent, but a hacked-up version that
tried to minimize the amount of movement of comments to the right of
code. The situation of interest is where such a comment has to be
moved to the right of its default placement at column 33 because there's
code there. BSD indent has always moved right in units of tab stops
in such cases --- but in the previous incarnation, indent was working
in 8-space tab stops, while now it knows we use 4-space tabs. So the
net result is that in about half the cases, such comments are placed
one tab stop left of before. This is better all around: it leaves
more room on the line for comment text, and it means that in such
cases the comment uniformly starts at the next 4-space tab stop after
the code, rather than sometimes one and sometimes two tabs after.
Also, ensure that comments following #endif are indented the same
as comments following other preprocessor commands such as #else.
That inconsistency turns out to have been self-inflicted damage
from a poorly-thought-through post-indent "fixup" in pgindent.
This patch is much less interesting than the first round of indent
changes, but also bulkier, so I thought it best to separate the effects.
Discussion: https://postgr.es/m/E1dAmxK-0006EE-1r@gemulon.postgresql.org
Discussion: https://postgr.es/m/30527.1495162840@sss.pgh.pa.us
|
|
|
|
| |
perltidy run not included.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, auxiliary processes and background workers not connected
to a database (such as the logical replication launcher) weren't
shown. Include them, so that we can see the associated wait state
information. Add a new column to identify the processes type, so that
people can filter them out easily using SQL if they wish.
Before this patch was written, there was discussion about whether we
should expose this information in a separate view, so as to avoid
contaminating pg_stat_activity with things people might not want to
see. But putting everything in pg_stat_activity was a more popular
choice, so that's what the patch does.
Kuntal Ghosh, reviewed by Amit Langote and Michael Paquier. Some
revisions and bug fixes by me.
Discussion: http://postgr.es/m/CA+TgmoYES5nhkEGw9nZXU8_FhA8XEm8NTm3-SO+3ML1B81Hkww@mail.gmail.com
|
|
|
|
|
|
|
|
|
| |
If the upstream walsender is using a physical replication slot, store the
catalog_xmin in the slot's catalog_xmin field. If the upstream doesn't use a
slot and has only a PGPROC entry behaviour doesn't change, as we store the
combined xmin and catalog_xmin in the PGPROC entry.
Author: Craig Ringer
|
|
|
|
|
|
|
| |
Replace ignoreVacuum parameter with more flexible flags.
Author: Eiji Seki
Review: Haribabu Kommi
|
|
|
|
|
|
|
|
| |
This reverts commit ccce90b398673d55b0387b3de66639b1b30d451b. This
optimization is unsafe, at least, of rollbacks and rollbacks to
savepoints, but I'm concerned there may be other problematic cases as
well. Therefore, I've decided to revert this pending further
investigation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0e141c0fbb211bdd23783afa731e3eef95c9ad7a introduced a mechanism
to reduce contention on ProcArrayLock by having a single process clear
XIDs in the procArray on behalf of multiple processes, reducing the
need to hand the lock around. Use a similar mechanism to reduce
contention on CLogControlLock. Testing shows that this very
significantly reduces the amount of time waiting for CLogControlLock
on high-concurrency pgbench tests run on a large multi-socket
machines; whether that translates into a TPS improvement depends on
how much of that contention is simply shifted to some other lock,
particularly WALWriteLock.
Amit Kapila, with some cosmetic changes by me. Extensively reviewed,
tested, and benchmarked over a period of about 15 months by Simon
Riggs, Robert Haas, Andres Freund, Jesper Pedersen, and especially by
Tomas Vondra and Dilip Kumar.
Discussion: http://postgr.es/m/CAA4eK1L_snxM_JcrzEstNq9P66++F4kKFce=1r5+D1vzPofdtg@mail.gmail.com
Discussion: http://postgr.es/m/CAA4eK1LyR2A+m=RBSZ6rcPEwJ=rVi1ADPSndXHZdjn56yqO6Vg@mail.gmail.com
Discussion: http://postgr.es/m/91d57161-d3ea-0cc2-6066-80713e4f90d7@2ndquadrant.com
|
|
|
|
|
|
|
|
|
|
| |
Doing so doesn't seem to be within the purpose of the per user
connection limits, and has particularly unfortunate effects in
conjunction with parallel queries.
Backpatch to 9.6 where parallel queries were introduced.
David Rowley, reviewed by Robert Haas and Albe Laurenz.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, the "sem" field of PGPROC varied in size depending on which
kernel semaphore API we were using. That was okay as long as there was
only one likely choice per platform, but in the wake of commit ecb0d20a9,
that assumption seems rather shaky. It doesn't seem out of the question
anymore that an extension compiled against one API choice might be loaded
into a postmaster built with another choice. Moreover, this prevents any
possibility of selecting the semaphore API at postmaster startup, which
might be something we want to do in future.
Hence, change PGPROC.sem to be PGSemaphore (i.e. a pointer) for all Unix
semaphore APIs, and turn the pointed-to data into an opaque struct whose
contents are only known within the responsible modules.
For the SysV and unnamed-POSIX APIs, the pointed-to data has to be
allocated elsewhere in shared memory, which takes a little bit of
rejiggering of the InitShmemAllocation code sequence. (I invented a
ShmemAllocUnlocked() function to make that a little cleaner than it used
to be. That function is not meant for any uses other than the ones it
has now, but it beats having InitShmemAllocation() know explicitly about
allocation of space for semaphores and spinlocks.) This change means an
extra indirection to access the semaphore data, but since we only touch
that when blocking or awakening a process, there shouldn't be any
meaningful performance penalty. Moreover, at least for the unnamed-POSIX
case on Linux, the sem_t type is quite a bit wider than a pointer, so this
reduces sizeof(PGPROC) which seems like a good thing.
For the named-POSIX API, there's effectively no change: the PGPROC.sem
field was and still is a pointer to something returned by sem_open() in
the postmaster's memory space. Document and check the pre-existing
limitation that this case can't work in EXEC_BACKEND mode.
It did not seem worth unifying the Windows semaphore ABI with the Unix
cases, since there's no likelihood of needing ABI compatibility much less
runtime switching across those cases. However, we can simplify the Windows
code a bit if we define PGSemaphore as being directly a HANDLE, rather than
pointer to HANDLE, so let's do that while we're here. (This also ends up
being no change in what's physically stored in PGPROC.sem. We're just
moving the HANDLE fetch from callees to callers.)
It would take a bunch of additional code shuffling to get to the point of
actually choosing a semaphore API at postmaster start, but the effects
of that would now be localized in the port/XXX_sema.c files, so it seems
like fit material for a separate patch. The need for it is unproven as
yet, anyhow, whereas the ABI risk to extensions seems real enough.
Discussion: https://postgr.es/m/4029.1481413370@sss.pgh.pa.us
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Condition variables provide a flexible way to sleep until a
cooperating process causes an arbitrary condition to become true. In
simple cases, this can be accomplished with a WaitLatch/ResetLatch
loop; the cooperating process can call SetLatch after performing work
that might cause the condition to be satisfied, and the waiting
process can recheck the condition each time. However, if the process
performing the work doesn't have an easy way to identify which
processes might be waiting, this doesn't work, because it can't
identify which latches to set. Condition variables solve that problem
by internally maintaining a list of waiters; a process that may have
caused some waiter's condition to be satisfied must "signal" or
"broadcast" on the condition variable.
Robert Haas and Thomas Munro
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
WaitLatch, WaitLatchOrSocket, and WaitEventSetWait now taken an
additional wait_event_info parameter; legal values are defined in
pgstat.h. This makes it possible to uniquely identify every point in
the core code where we are waiting for a latch; extensions can pass
WAIT_EXTENSION.
Because latches were the major wait primitive not previously covered
by this patch, it is now possible to see information in
pg_stat_activity on a large number of important wait events not
previously addressed, such as ClientRead, ClientWrite, and SyncRep.
Unfortunately, many of the wait events added by this patch will fail
to appear in pg_stat_activity because they're only used in background
processes which don't currently appear in pg_stat_activity. We should
fix this either by creating a separate view for such information, or
else by deciding to include them in pg_stat_activity after all.
Michael Paquier and Robert Haas, reviewed by Alexander Korotkov and
Thomas Munro.
|
|
|
|
|
|
|
|
|
|
| |
Prior to commit 7882c3b0b95640e361f1533fe0f2d02e4e5d8610, it was
possible to use LWLocks within DSM segments, but that commit broke
this use case by switching from a doubly linked list to a circular
linked list. Switch back, using a new bit of general infrastructure
for maintaining lists of PGPROCs.
Thomas Munro, reviewed by me.
|
| |
|
|
|
|
|
| |
Vik Fearing, reviewed by Stéphane Schildknecht and me, and revised
slightly by me.
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a process is waiting for a heavyweight lock, we will now indicate
the type of heavyweight lock for which it is waiting. Also, you can
now see when a process is waiting for a lightweight lock - in which
case we will indicate the individual lock name or the tranche, as
appropriate - or for a buffer pin.
Amit Kapila, Ildus Kurbangaliev, reviewed by me. Lots of helpful
discussion and suggestions by many others, including Alexander
Korotkov, Vladimir Borodin, and many others.
|
|
|
|
|
|
|
|
| |
We don't really need this field, because it's either zero or redundant with
PGPROC.pid. The use of zero to mark "not a group leader" is not necessary
since we can just as well test whether lockGroupLeader is NULL. This does
not save very much, either as to code or data, but the simplification seems
worthwhile anyway.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Reflow text in lock manager README so that it fits within 80 columns.
Correct some mistakes. Expand the README to explain not only why group
locking exists but also the data structures that support it. Improve
comments related to group locking several files. Change the name of a
macro argument for improved clarity.
Most of these problems were reported by Tom Lane, but I found a few
of them myself.
Robert Haas and Tom Lane
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 0e141c0fbb211bdd23783afa731e3eef95c9ad7a introduced a new
facility to reduce ProcArrayLock contention by clearing several XIDs
from the ProcArray under a single lock acquisition. The names
initially chosen were deemed not to be very good choices, so commit
4aec49899e5782247e134f94ce1c6ee926f88e1c renamed them. But now it
seems like we still didn't get it right. A pending patch wants to
add similar infrastructure for batching CLOG updates, so the names
need to be clear enough to allow a new set of structure members with
a related purpose.
Amit Kapila
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
For locking purposes, we now regard heavyweight locks as mutually
non-conflicting between cooperating parallel processes. There are some
possible pitfalls to this approach that are not to be taken lightly,
but it works OK for now and can be changed later if we find a better
approach. Without this, it's very easy for parallel queries to
silently self-deadlock if the user backend holds strong relation locks.
Robert Haas, with help from Amit Kapila. Thanks to Noah Misch and
Andres Freund for extensive discussion of possible issues with this
approach.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Previously, each PGPROC's backendLock was part of the main tranche,
and the PGPROC just contained a pointer. Now, the actual LWLock is
part of the PGPROC.
As with previous, similar patches, this makes it significantly easier
to identify these lwlocks in LWLOCK_STATS or Trace_lwlocks output
and improves modularity.
Author: Ildus Kurbangaliev
Reviewed-by: Amit Kapila, Robert Haas
|
|
|
|
| |
Backpatch certain files through 9.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Post-commit review by Andres Freund discovered a couple of concurrency
bugs in the original patch: specifically, if the leader cleared a
follower's XID before it reached PGSemaphoreLock, the semaphore would be
left in the wrong state; and if another process did PGSemaphoreUnlock
for some unrelated reason, we might resume execution before the fact
that our XID was cleared was globally visible.
Also, improve the wording of some comments, rename nextClearXidElem
to firstClearXidElem in PROC_HDR for clarity, and drop some volatile
qualifiers that aren't necessary.
Amit Kapila, reviewed and slightly revised by me.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
When a write transaction commits, it must clear its XID advertised via
the ProcArray, which requires that we hold ProcArrayLock in exclusive
mode in order to prevent concurrent processes running GetSnapshotData
from seeing inconsistent results. When many processes try to commit
at once, ProcArrayLock must change hands repeatedly, with each
concurrent process trying to commit waking up to acquire the lock in
turn. To make things more efficient, when more than one backend is
trying to commit a write transaction at the same time, have just one
of them acquire ProcArrayLock in exclusive mode and clear the XIDs of
all processes in the group. Benchmarking reveals that this is much
more efficient at very high client counts.
Amit Kapila, heavily revised by me, with some review also from Pavan
Deolasee.
|
|
|
|
|
|
|
|
|
| |
This code was originally written as part of parallel query effort, but
it seems to have independent value, because if we make one decision
about where to get a PGPROC when we allocate and then put it back on a
different list at backend-exit time, bad things happen. This isn't
just a theoretical risk; we fixed an actual problem of this type in
commit e280c630a87e1b8325770c6073097d109d79a00f.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Deadlock checking was performed inside signal handlers up to
now. While it's a remarkable feat to have made this work reliably,
it's quite complex to understand why that is the case. Partially it
worked due to the assumption that semaphores are signal safe - which
is not actually documented to be the case for sysv semaphores.
The reason we had to rely on performing this work inside signal
handlers is that semaphores aren't guaranteed to be interruptable by
signals on all platforms. But now that latches provide a somewhat
similar API, which actually has the guarantee of being interruptible,
we can avoid doing so.
Signalling between ProcSleep, ProcWakeup, ProcWaitForSignal and
ProcSendSignal is now done using latches. This increases the
likelihood of spurious wakeups. As spurious wakeup already were
possible and aren't likely to be frequent enough to be an actual
problem, this seems acceptable.
This change would allow for further simplification of the deadlock
checking, now that it doesn't have to run in a signal handler. But
even if I were motivated to do so right now, it would still be better
to do that separately. Such a cleanup shouldn't have to be reviewed a
the same time as the more fundamental changes in this commit.
There is one possible usability regression due to this commit. Namely
it is more likely than before that log_lock_waits messages are output
more than once.
Reviewed-By: Heikki Linnakangas
|