Mathematical Functions and Operators Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections. shows the mathematical operators that are available for the standard numeric types. Unless otherwise noted, operators shown as accepting numeric_type are available for all the types smallint, integer, bigint, numeric, real, and double precision. Operators shown as accepting integral_type are available for the types smallint, integer, and bigint. Except where noted, each form of an operator returns the same data type as its argument(s). Calls involving multiple argument data types, such as integer + numeric, are resolved by using the type appearing later in these lists. Mathematical Operators Operator Description Example(s) numeric_type + numeric_type numeric_type Addition 2 + 3 5 + numeric_type numeric_type Unary plus (no operation) + 3.5 3.5 numeric_type - numeric_type numeric_type Subtraction 2 - 3 -1 - numeric_type numeric_type Negation - (-4) 4 numeric_type * numeric_type numeric_type Multiplication 2 * 3 6 numeric_type / numeric_type numeric_type Division (for integral types, division truncates the result towards zero) 5.0 / 2 2.5000000000000000 5 / 2 2 (-5) / 2 -2 numeric_type % numeric_type numeric_type Modulo (remainder); available for smallint, integer, bigint, and numeric 5 % 4 1 numeric ^ numeric numeric double precision ^ double precision double precision Exponentiation 2 ^ 3 8 Unlike typical mathematical practice, multiple uses of ^ will associate left to right by default: 2 ^ 3 ^ 3 512 2 ^ (3 ^ 3) 134217728 |/ double precision double precision Square root |/ 25.0 5 ||/ double precision double precision Cube root ||/ 64.0 4 @ numeric_type numeric_type Absolute value @ -5.0 5.0 integral_type & integral_type integral_type Bitwise AND 91 & 15 11 integral_type | integral_type integral_type Bitwise OR 32 | 3 35 integral_type # integral_type integral_type Bitwise exclusive OR 17 # 5 20 ~ integral_type integral_type Bitwise NOT ~1 -2 integral_type << integer integral_type Bitwise shift left 1 << 4 16 integral_type >> integer integral_type Bitwise shift right 8 >> 2 2
shows the available mathematical functions. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument(s); cross-type cases are resolved in the same way as explained above for operators. The functions working with double precision data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system. Mathematical Functions Function Description Example(s) abs abs ( numeric_type ) numeric_type Absolute value abs(-17.4) 17.4 cbrt cbrt ( double precision ) double precision Cube root cbrt(64.0) 4 ceil ceil ( numeric ) numeric ceil ( double precision ) double precision Nearest integer greater than or equal to argument ceil(42.2) 43 ceil(-42.8) -42 ceiling ceiling ( numeric ) numeric ceiling ( double precision ) double precision Nearest integer greater than or equal to argument (same as ceil) ceiling(95.3) 96 degrees degrees ( double precision ) double precision Converts radians to degrees degrees(0.5) 28.64788975654116 div div ( y numeric, x numeric ) numeric Integer quotient of y/x (truncates towards zero) div(9, 4) 2 erf erf ( double precision ) double precision Error function erf(1.0) 0.8427007929497149 erfc erfc ( double precision ) double precision Complementary error function (1 - erf(x), without loss of precision for large inputs) erfc(1.0) 0.15729920705028513 exp exp ( numeric ) numeric exp ( double precision ) double precision Exponential (e raised to the given power) exp(1.0) 2.7182818284590452 factorial factorial ( bigint ) numeric Factorial factorial(5) 120 floor floor ( numeric ) numeric floor ( double precision ) double precision Nearest integer less than or equal to argument floor(42.8) 42 floor(-42.8) -43 gamma gamma ( double precision ) double precision Gamma function gamma(0.5) 1.772453850905516 gamma(6) 120 gcd gcd ( numeric_type, numeric_type ) numeric_type Greatest common divisor (the largest positive number that divides both inputs with no remainder); returns 0 if both inputs are zero; available for integer, bigint, and numeric gcd(1071, 462) 21 lcm lcm ( numeric_type, numeric_type ) numeric_type Least common multiple (the smallest strictly positive number that is an integral multiple of both inputs); returns 0 if either input is zero; available for integer, bigint, and numeric lcm(1071, 462) 23562 lgamma lgamma ( double precision ) double precision Natural logarithm of the absolute value of the gamma function lgamma(1000) 5905.220423209181 ln ln ( numeric ) numeric ln ( double precision ) double precision Natural logarithm ln(2.0) 0.6931471805599453 log log ( numeric ) numeric log ( double precision ) double precision Base 10 logarithm log(100) 2 log10 log10 ( numeric ) numeric log10 ( double precision ) double precision Base 10 logarithm (same as log) log10(1000) 3 log ( b numeric, x numeric ) numeric Logarithm of x to base b log(2.0, 64.0) 6.0000000000000000 min_scale min_scale ( numeric ) integer Minimum scale (number of fractional decimal digits) needed to represent the supplied value precisely min_scale(8.4100) 2 mod mod ( y numeric_type, x numeric_type ) numeric_type Remainder of y/x; available for smallint, integer, bigint, and numeric mod(9, 4) 1 pi pi ( ) double precision Approximate value of π pi() 3.141592653589793 power power ( a numeric, b numeric ) numeric power ( a double precision, b double precision ) double precision a raised to the power of b power(9, 3) 729 radians radians ( double precision ) double precision Converts degrees to radians radians(45.0) 0.7853981633974483 round round ( numeric ) numeric round ( double precision ) double precision Rounds to nearest integer. For numeric, ties are broken by rounding away from zero. For double precision, the tie-breaking behavior is platform dependent, but round to nearest even is the most common rule. round(42.4) 42 round ( v numeric, s integer ) numeric Rounds v to s decimal places. Ties are broken by rounding away from zero. round(42.4382, 2) 42.44 round(1234.56, -1) 1230 scale scale ( numeric ) integer Scale of the argument (the number of decimal digits in the fractional part) scale(8.4100) 4 sign sign ( numeric ) numeric sign ( double precision ) double precision Sign of the argument (-1, 0, or +1) sign(-8.4) -1 sqrt sqrt ( numeric ) numeric sqrt ( double precision ) double precision Square root sqrt(2) 1.4142135623730951 trim_scale trim_scale ( numeric ) numeric Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes trim_scale(8.4100) 8.41 trunc trunc ( numeric ) numeric trunc ( double precision ) double precision Truncates to integer (towards zero) trunc(42.8) 42 trunc(-42.8) -42 trunc ( v numeric, s integer ) numeric Truncates v to s decimal places trunc(42.4382, 2) 42.43 width_bucket width_bucket ( operand numeric, low numeric, high numeric, count integer ) integer width_bucket ( operand double precision, low double precision, high double precision, count integer ) integer Returns the number of the bucket in which operand falls in a histogram having count equal-width buckets spanning the range low to high. The buckets have inclusive lower bounds and exclusive upper bounds. Returns 0 for an input less than low, or count+1 for an input greater than or equal to high. If low > high, the behavior is mirror-reversed, with bucket 1 now being the one just below low, and the inclusive bounds now being on the upper side. width_bucket(5.35, 0.024, 10.06, 5) 3 width_bucket(9, 10, 0, 10) 2 width_bucket ( operand anycompatible, thresholds anycompatiblearray ) integer Returns the number of the bucket in which operand falls given an array listing the inclusive lower bounds of the buckets. Returns 0 for an input less than the first lower bound. operand and the array elements can be of any type having standard comparison operators. The thresholds array must be sorted, smallest first, or unexpected results will be obtained. width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[]) 2
shows functions for generating random numbers. Random Functions Function Description Example(s) random random ( ) double precision Returns a random value in the range 0.0 <= x < 1.0 random() 0.897124072839091 random random ( min integer, max integer ) integer random ( min bigint, max bigint ) bigint random ( min numeric, max numeric ) numeric Returns a random value in the range min <= x <= max. For type numeric, the result will have the same number of fractional decimal digits as min or max, whichever has more. random(1, 10) 7 random(-0.499, 0.499) 0.347 random_normal random_normal ( mean double precision , stddev double precision ) double precision Returns a random value from the normal distribution with the given parameters; mean defaults to 0.0 and stddev defaults to 1.0 random_normal(0.0, 1.0) 0.051285419 setseed setseed ( double precision ) void Sets the seed for subsequent random() and random_normal() calls; argument must be between -1.0 and 1.0, inclusive setseed(0.12345)
The random() and random_normal() functions listed in use a deterministic pseudo-random number generator. It is fast but not suitable for cryptographic applications; see the module for a more secure alternative. If setseed() is called, the series of results of subsequent calls to these functions in the current session can be repeated by re-issuing setseed() with the same argument. Without any prior setseed() call in the same session, the first call to any of these functions obtains a seed from a platform-dependent source of random bits. shows the available trigonometric functions. Each of these functions comes in two variants, one that measures angles in radians and one that measures angles in degrees. Trigonometric Functions Function Description Example(s) acos acos ( double precision ) double precision Inverse cosine, result in radians acos(1) 0 acosd acosd ( double precision ) double precision Inverse cosine, result in degrees acosd(0.5) 60 asin asin ( double precision ) double precision Inverse sine, result in radians asin(1) 1.5707963267948966 asind asind ( double precision ) double precision Inverse sine, result in degrees asind(0.5) 30 atan atan ( double precision ) double precision Inverse tangent, result in radians atan(1) 0.7853981633974483 atand atand ( double precision ) double precision Inverse tangent, result in degrees atand(1) 45 atan2 atan2 ( y double precision, x double precision ) double precision Inverse tangent of y/x, result in radians atan2(1, 0) 1.5707963267948966 atan2d atan2d ( y double precision, x double precision ) double precision Inverse tangent of y/x, result in degrees atan2d(1, 0) 90 cos cos ( double precision ) double precision Cosine, argument in radians cos(0) 1 cosd cosd ( double precision ) double precision Cosine, argument in degrees cosd(60) 0.5 cot cot ( double precision ) double precision Cotangent, argument in radians cot(0.5) 1.830487721712452 cotd cotd ( double precision ) double precision Cotangent, argument in degrees cotd(45) 1 sin sin ( double precision ) double precision Sine, argument in radians sin(1) 0.8414709848078965 sind sind ( double precision ) double precision Sine, argument in degrees sind(30) 0.5 tan tan ( double precision ) double precision Tangent, argument in radians tan(1) 1.5574077246549023 tand tand ( double precision ) double precision Tangent, argument in degrees tand(45) 1
Another way to work with angles measured in degrees is to use the unit transformation functions radians() and degrees() shown earlier. However, using the degree-based trigonometric functions is preferred, as that way avoids round-off error for special cases such as sind(30). shows the available hyperbolic functions. Hyperbolic Functions Function Description Example(s) sinh sinh ( double precision ) double precision Hyperbolic sine sinh(1) 1.1752011936438014 cosh cosh ( double precision ) double precision Hyperbolic cosine cosh(0) 1 tanh tanh ( double precision ) double precision Hyperbolic tangent tanh(1) 0.7615941559557649 asinh asinh ( double precision ) double precision Inverse hyperbolic sine asinh(1) 0.881373587019543 acosh acosh ( double precision ) double precision Inverse hyperbolic cosine acosh(1) 0 atanh atanh ( double precision ) double precision Inverse hyperbolic tangent atanh(0.5) 0.5493061443340548