/*------------------------------------------------------------------------- * * nbtpage.c * BTree-specific page management code for the Postgres btree access * method. * * Portions Copyright (c) 1996-2002, PostgreSQL Global Development Group * Portions Copyright (c) 1994, Regents of the University of California * * * IDENTIFICATION * $Header: /cvsroot/pgsql/src/backend/access/nbtree/nbtpage.c,v 1.60 2003/02/22 00:45:04 tgl Exp $ * * NOTES * Postgres btree pages look like ordinary relation pages. The opaque * data at high addresses includes pointers to left and right siblings * and flag data describing page state. The first page in a btree, page * zero, is special -- it stores meta-information describing the tree. * Pages one and higher store the actual tree data. * *------------------------------------------------------------------------- */ #include "postgres.h" #include "access/nbtree.h" #include "miscadmin.h" #include "storage/lmgr.h" /* * _bt_metapinit() -- Initialize the metadata page of a new btree. * * Note: there's no real need for any locking here. Since the transaction * creating the index hasn't committed yet, no one else can even see the index * much less be trying to use it. */ void _bt_metapinit(Relation rel) { Buffer buf; Page pg; BTMetaPageData *metad; BTPageOpaque op; if (RelationGetNumberOfBlocks(rel) != 0) elog(ERROR, "Cannot initialize non-empty btree %s", RelationGetRelationName(rel)); buf = ReadBuffer(rel, P_NEW); Assert(BufferGetBlockNumber(buf) == BTREE_METAPAGE); pg = BufferGetPage(buf); /* NO ELOG(ERROR) from here till newmeta op is logged */ START_CRIT_SECTION(); _bt_pageinit(pg, BufferGetPageSize(buf)); metad = BTPageGetMeta(pg); metad->btm_magic = BTREE_MAGIC; metad->btm_version = BTREE_VERSION; metad->btm_root = P_NONE; metad->btm_level = 0; metad->btm_fastroot = P_NONE; metad->btm_fastlevel = 0; op = (BTPageOpaque) PageGetSpecialPointer(pg); op->btpo_flags = BTP_META; /* XLOG stuff */ if (!rel->rd_istemp) { xl_btree_newmeta xlrec; XLogRecPtr recptr; XLogRecData rdata[1]; xlrec.node = rel->rd_node; xlrec.meta.root = metad->btm_root; xlrec.meta.level = metad->btm_level; xlrec.meta.fastroot = metad->btm_fastroot; xlrec.meta.fastlevel = metad->btm_fastlevel; rdata[0].buffer = InvalidBuffer; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfBtreeNewmeta; rdata[0].next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWMETA, rdata); PageSetLSN(pg, recptr); PageSetSUI(pg, ThisStartUpID); } END_CRIT_SECTION(); WriteBuffer(buf); } /* * _bt_getroot() -- Get the root page of the btree. * * Since the root page can move around the btree file, we have to read * its location from the metadata page, and then read the root page * itself. If no root page exists yet, we have to create one. The * standard class of race conditions exists here; I think I covered * them all in the Hopi Indian rain dance of lock requests below. * * The access type parameter (BT_READ or BT_WRITE) controls whether * a new root page will be created or not. If access = BT_READ, * and no root page exists, we just return InvalidBuffer. For * BT_WRITE, we try to create the root page if it doesn't exist. * NOTE that the returned root page will have only a read lock set * on it even if access = BT_WRITE! * * The returned page is not necessarily the true root --- it could be * a "fast root" (a page that is alone in its level due to deletions). * Also, if the root page is split while we are "in flight" to it, * what we will return is the old root, which is now just the leftmost * page on a probably-not-very-wide level. For most purposes this is * as good as or better than the true root, so we do not bother to * insist on finding the true root. We do, however, guarantee to * return a live (not deleted or half-dead) page. * * On successful return, the root page is pinned and read-locked. * The metadata page is not locked or pinned on exit. */ Buffer _bt_getroot(Relation rel, int access) { Buffer metabuf; Page metapg; BTPageOpaque metaopaque; Buffer rootbuf; Page rootpage; BTPageOpaque rootopaque; BlockNumber rootblkno; uint32 rootlevel; BTMetaPageData *metad; metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); metapg = BufferGetPage(metabuf); metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); metad = BTPageGetMeta(metapg); /* sanity-check the metapage */ if (!(metaopaque->btpo_flags & BTP_META) || metad->btm_magic != BTREE_MAGIC) elog(ERROR, "Index %s is not a btree", RelationGetRelationName(rel)); if (metad->btm_version != BTREE_VERSION) elog(ERROR, "Version mismatch on %s: version %d file, version %d code", RelationGetRelationName(rel), metad->btm_version, BTREE_VERSION); /* if no root page initialized yet, do it */ if (metad->btm_root == P_NONE) { /* If access = BT_READ, caller doesn't want us to create root yet */ if (access == BT_READ) { _bt_relbuf(rel, metabuf); return InvalidBuffer; } /* trade in our read lock for a write lock */ LockBuffer(metabuf, BUFFER_LOCK_UNLOCK); LockBuffer(metabuf, BT_WRITE); /* * Race condition: if someone else initialized the metadata * between the time we released the read lock and acquired the * write lock, we must avoid doing it again. */ if (metad->btm_root != P_NONE) { /* * Metadata initialized by someone else. In order to * guarantee no deadlocks, we have to release the metadata * page and start all over again. (Is that really true? * But it's hardly worth trying to optimize this case.) */ _bt_relbuf(rel, metabuf); return _bt_getroot(rel, access); } /* * Get, initialize, write, and leave a lock of the appropriate * type on the new root page. Since this is the first page in * the tree, it's a leaf as well as the root. */ rootbuf = _bt_getbuf(rel, P_NEW, BT_WRITE); rootblkno = BufferGetBlockNumber(rootbuf); rootpage = BufferGetPage(rootbuf); _bt_pageinit(rootpage, BufferGetPageSize(rootbuf)); rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); rootopaque->btpo_prev = rootopaque->btpo_next = P_NONE; rootopaque->btpo_flags = (BTP_LEAF | BTP_ROOT); rootopaque->btpo.level = 0; /* NO ELOG(ERROR) till meta is updated */ START_CRIT_SECTION(); metad->btm_root = rootblkno; metad->btm_level = 0; metad->btm_fastroot = rootblkno; metad->btm_fastlevel = 0; /* XLOG stuff */ if (!rel->rd_istemp) { xl_btree_newroot xlrec; XLogRecPtr recptr; XLogRecData rdata; xlrec.node = rel->rd_node; xlrec.rootblk = rootblkno; xlrec.level = 0; rdata.buffer = InvalidBuffer; rdata.data = (char *) &xlrec; rdata.len = SizeOfBtreeNewroot; rdata.next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWROOT, &rdata); PageSetLSN(rootpage, recptr); PageSetSUI(rootpage, ThisStartUpID); PageSetLSN(metapg, recptr); PageSetSUI(metapg, ThisStartUpID); } END_CRIT_SECTION(); _bt_wrtnorelbuf(rel, rootbuf); /* * swap root write lock for read lock. There is no danger of * anyone else accessing the new root page while it's unlocked, * since no one else knows where it is yet. */ LockBuffer(rootbuf, BUFFER_LOCK_UNLOCK); LockBuffer(rootbuf, BT_READ); /* okay, metadata is correct, write and release it */ _bt_wrtbuf(rel, metabuf); } else { rootblkno = metad->btm_fastroot; Assert(rootblkno != P_NONE); rootlevel = metad->btm_fastlevel; _bt_relbuf(rel, metabuf); /* done with the meta page */ for (;;) { rootbuf = _bt_getbuf(rel, rootblkno, BT_READ); rootpage = BufferGetPage(rootbuf); rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); if (!P_IGNORE(rootopaque)) break; /* it's dead, Jim. step right one page */ if (P_RIGHTMOST(rootopaque)) elog(ERROR, "No live root page found in %s", RelationGetRelationName(rel)); rootblkno = rootopaque->btpo_next; _bt_relbuf(rel, rootbuf); } /* Note: can't check btpo.level on deleted pages */ if (rootopaque->btpo.level != rootlevel) elog(ERROR, "Root page %u of %s has level %u, expected %u", rootblkno, RelationGetRelationName(rel), rootopaque->btpo.level, rootlevel); } /* * By here, we have a pin and read lock on the root page, and no * lock set on the metadata page. Return the root page's buffer. */ return rootbuf; } /* * _bt_gettrueroot() -- Get the true root page of the btree. * * This is the same as the BT_READ case of _bt_getroot(), except * we follow the true-root link not the fast-root link. * * By the time we acquire lock on the root page, it might have been split and * not be the true root anymore. This is okay for the present uses of this * routine; we only really need to be able to move up at least one tree level * from whatever non-root page we were at. If we ever do need to lock the * one true root page, we could loop here, re-reading the metapage on each * failure. (Note that it wouldn't do to hold the lock on the metapage while * moving to the root --- that'd deadlock against any concurrent root split.) */ Buffer _bt_gettrueroot(Relation rel) { Buffer metabuf; Page metapg; BTPageOpaque metaopaque; Buffer rootbuf; Page rootpage; BTPageOpaque rootopaque; BlockNumber rootblkno; uint32 rootlevel; BTMetaPageData *metad; metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_READ); metapg = BufferGetPage(metabuf); metaopaque = (BTPageOpaque) PageGetSpecialPointer(metapg); metad = BTPageGetMeta(metapg); if (!(metaopaque->btpo_flags & BTP_META) || metad->btm_magic != BTREE_MAGIC) elog(ERROR, "Index %s is not a btree", RelationGetRelationName(rel)); if (metad->btm_version != BTREE_VERSION) elog(ERROR, "Version mismatch on %s: version %d file, version %d code", RelationGetRelationName(rel), metad->btm_version, BTREE_VERSION); /* if no root page initialized yet, fail */ if (metad->btm_root == P_NONE) { _bt_relbuf(rel, metabuf); return InvalidBuffer; } rootblkno = metad->btm_root; rootlevel = metad->btm_level; _bt_relbuf(rel, metabuf); /* done with the meta page */ for (;;) { rootbuf = _bt_getbuf(rel, rootblkno, BT_READ); rootpage = BufferGetPage(rootbuf); rootopaque = (BTPageOpaque) PageGetSpecialPointer(rootpage); if (!P_IGNORE(rootopaque)) break; /* it's dead, Jim. step right one page */ if (P_RIGHTMOST(rootopaque)) elog(ERROR, "No live root page found in %s", RelationGetRelationName(rel)); rootblkno = rootopaque->btpo_next; _bt_relbuf(rel, rootbuf); } /* Note: can't check btpo.level on deleted pages */ if (rootopaque->btpo.level != rootlevel) elog(ERROR, "Root page %u of %s has level %u, expected %u", rootblkno, RelationGetRelationName(rel), rootopaque->btpo.level, rootlevel); return rootbuf; } /* * _bt_getbuf() -- Get a buffer by block number for read or write. * * blkno == P_NEW means to get an unallocated index page. * * When this routine returns, the appropriate lock is set on the * requested buffer and its reference count has been incremented * (ie, the buffer is "locked and pinned"). */ Buffer _bt_getbuf(Relation rel, BlockNumber blkno, int access) { Buffer buf; if (blkno != P_NEW) { /* Read an existing block of the relation */ buf = ReadBuffer(rel, blkno); LockBuffer(buf, access); } else { bool needLock; Page page; /* XXX soon: ask FSM about free space */ /* * Extend the relation by one page. * * We have to use a lock to ensure no one else is extending the rel at * the same time, else we will both try to initialize the same new * page. We can skip locking for new or temp relations, however, * since no one else could be accessing them. */ needLock = !(rel->rd_isnew || rel->rd_istemp); if (needLock) LockPage(rel, 0, ExclusiveLock); buf = ReadBuffer(rel, P_NEW); /* * Release the file-extension lock; it's now OK for someone else to * extend the relation some more. */ if (needLock) UnlockPage(rel, 0, ExclusiveLock); /* Acquire appropriate buffer lock on new page */ LockBuffer(buf, access); /* Initialize the new page before returning it */ page = BufferGetPage(buf); _bt_pageinit(page, BufferGetPageSize(buf)); } /* ref count and lock type are correct */ return buf; } /* * _bt_relbuf() -- release a locked buffer. * * Lock and pin (refcount) are both dropped. Note that either read or * write lock can be dropped this way, but if we modified the buffer, * this is NOT the right way to release a write lock. */ void _bt_relbuf(Relation rel, Buffer buf) { LockBuffer(buf, BUFFER_LOCK_UNLOCK); ReleaseBuffer(buf); } /* * _bt_wrtbuf() -- write a btree page to disk. * * This routine releases the lock held on the buffer and our refcount * for it. It is an error to call _bt_wrtbuf() without a write lock * and a pin on the buffer. * * NOTE: actually, the buffer manager just marks the shared buffer page * dirty here; the real I/O happens later. This is okay since we are not * relying on write ordering anyway. The WAL mechanism is responsible for * guaranteeing correctness after a crash. */ void _bt_wrtbuf(Relation rel, Buffer buf) { LockBuffer(buf, BUFFER_LOCK_UNLOCK); WriteBuffer(buf); } /* * _bt_wrtnorelbuf() -- write a btree page to disk, but do not release * our reference or lock. * * It is an error to call _bt_wrtnorelbuf() without a write lock * and a pin on the buffer. * * See above NOTE. */ void _bt_wrtnorelbuf(Relation rel, Buffer buf) { WriteNoReleaseBuffer(buf); } /* * _bt_pageinit() -- Initialize a new page. * * On return, the page header is initialized; data space is empty; * special space is zeroed out. */ void _bt_pageinit(Page page, Size size) { PageInit(page, size, sizeof(BTPageOpaqueData)); } /* * _bt_metaproot() -- Change the root page of the btree. * * Lehman and Yao require that the root page move around in order to * guarantee deadlock-free short-term, fine-granularity locking. When * we split the root page, we record the new parent in the metadata page * for the relation. This routine does the work. * * No direct preconditions, but if you don't have the write lock on * at least the old root page when you call this, you're making a big * mistake. On exit, metapage data is correct and we no longer have * a pin or lock on the metapage. * * Actually this is not used for splitting on-the-fly anymore. It's only used * in nbtsort.c at the completion of btree building, where we know we have * sole access to the index anyway. */ void _bt_metaproot(Relation rel, BlockNumber rootbknum, uint32 level) { Buffer metabuf; Page metap; BTPageOpaque metaopaque; BTMetaPageData *metad; metabuf = _bt_getbuf(rel, BTREE_METAPAGE, BT_WRITE); metap = BufferGetPage(metabuf); metaopaque = (BTPageOpaque) PageGetSpecialPointer(metap); Assert(metaopaque->btpo_flags & BTP_META); /* NO ELOG(ERROR) from here till newmeta op is logged */ START_CRIT_SECTION(); metad = BTPageGetMeta(metap); metad->btm_root = rootbknum; metad->btm_level = level; metad->btm_fastroot = rootbknum; metad->btm_fastlevel = level; /* XLOG stuff */ if (!rel->rd_istemp) { xl_btree_newmeta xlrec; XLogRecPtr recptr; XLogRecData rdata[1]; xlrec.node = rel->rd_node; xlrec.meta.root = metad->btm_root; xlrec.meta.level = metad->btm_level; xlrec.meta.fastroot = metad->btm_fastroot; xlrec.meta.fastlevel = metad->btm_fastlevel; rdata[0].buffer = InvalidBuffer; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfBtreeNewmeta; rdata[0].next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_NEWMETA, rdata); PageSetLSN(metap, recptr); PageSetSUI(metap, ThisStartUpID); } END_CRIT_SECTION(); _bt_wrtbuf(rel, metabuf); } /* * Delete an item from a btree page. * * This must only be used for deleting leaf items. Deleting an item on a * non-leaf page has to be done as part of an atomic action that includes * deleting the page it points to. * * This routine assumes that the caller has pinned and locked the buffer, * and will write the buffer afterwards. */ void _bt_itemdel(Relation rel, Buffer buf, ItemPointer tid) { Page page = BufferGetPage(buf); OffsetNumber offno; offno = ItemPointerGetOffsetNumber(tid); START_CRIT_SECTION(); PageIndexTupleDelete(page, offno); /* XLOG stuff */ if (!rel->rd_istemp) { xl_btree_delete xlrec; XLogRecPtr recptr; XLogRecData rdata[2]; xlrec.target.node = rel->rd_node; xlrec.target.tid = *tid; rdata[0].buffer = InvalidBuffer; rdata[0].data = (char *) &xlrec; rdata[0].len = SizeOfBtreeDelete; rdata[0].next = &(rdata[1]); rdata[1].buffer = buf; rdata[1].data = NULL; rdata[1].len = 0; rdata[1].next = NULL; recptr = XLogInsert(RM_BTREE_ID, XLOG_BTREE_DELETE, rdata); PageSetLSN(page, recptr); PageSetSUI(page, ThisStartUpID); } END_CRIT_SECTION(); }