/* * This file is from https://github.com/llvm/llvm-project/pull/71968 * with minor modifications to avoid name clash and work with older * LLVM versions. The llvm::backport::SectionMemoryManager class is a * drop-in replacement for llvm::SectionMemoryManager, for use with * llvm::RuntimeDyld. It fixes a memory layout bug on large memory * ARM systems (see pull request for details). If the LLVM project * eventually commits the change, we may need to resynchronize our * copy with any further modifications, but they would be unlikely to * backport it into the LLVM versions that we target so we would still * need this copy. * * In the future we will switch to using JITLink instead of * RuntimeDyld where possible, and later remove this code (.cpp, .h, * .LICENSE) after all LLVM versions that we target allow it. * * This file is a modified copy of a part of the LLVM source code that * we would normally access from the LLVM library. It is therefore * covered by the license at https://llvm.org/LICENSE.txt, reproduced * verbatim in SectionMemoryManager.LICENSE in fulfillment of clause * 4a. The bugfix changes from the pull request are also covered, per * clause 5. */ //===- SectionMemoryManager.cpp - Memory manager for MCJIT/RtDyld *- C++ -*-==// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// // // This file implements the section-based memory manager used by the MCJIT // execution engine and RuntimeDyld // //===----------------------------------------------------------------------===// #include "jit/llvmjit_backport.h" #ifdef USE_LLVM_BACKPORT_SECTION_MEMORY_MANAGER #include "jit/SectionMemoryManager.h" #include #include namespace llvm { namespace backport { bool SectionMemoryManager::hasSpace(const MemoryGroup &MemGroup, uintptr_t Size) const { for (const FreeMemBlock &FreeMB : MemGroup.FreeMem) { if (FreeMB.Free.allocatedSize() >= Size) return true; } return false; } #if LLVM_VERSION_MAJOR < 16 void SectionMemoryManager::reserveAllocationSpace(uintptr_t CodeSize, uint32_t CodeAlign_i, uintptr_t RODataSize, uint32_t RODataAlign_i, uintptr_t RWDataSize, uint32_t RWDataAlign_i) { Align CodeAlign(CodeAlign_i); Align RODataAlign(RODataAlign_i); Align RWDataAlign(RWDataAlign_i); #else void SectionMemoryManager::reserveAllocationSpace( uintptr_t CodeSize, Align CodeAlign, uintptr_t RODataSize, Align RODataAlign, uintptr_t RWDataSize, Align RWDataAlign) { #endif if (CodeSize == 0 && RODataSize == 0 && RWDataSize == 0) return; static const size_t PageSize = sys::Process::getPageSizeEstimate(); // Code alignment needs to be at least the stub alignment - however, we // don't have an easy way to get that here so as a workaround, we assume // it's 8, which is the largest value I observed across all platforms. constexpr uint64_t StubAlign = 8; CodeAlign = Align(std::max(CodeAlign.value(), StubAlign)); RODataAlign = Align(std::max(RODataAlign.value(), StubAlign)); RWDataAlign = Align(std::max(RWDataAlign.value(), StubAlign)); // Get space required for each section. Use the same calculation as // allocateSection because we need to be able to satisfy it. uint64_t RequiredCodeSize = alignTo(CodeSize, CodeAlign) + CodeAlign.value(); uint64_t RequiredRODataSize = alignTo(RODataSize, RODataAlign) + RODataAlign.value(); uint64_t RequiredRWDataSize = alignTo(RWDataSize, RWDataAlign) + RWDataAlign.value(); if (hasSpace(CodeMem, RequiredCodeSize) && hasSpace(RODataMem, RequiredRODataSize) && hasSpace(RWDataMem, RequiredRWDataSize)) { // Sufficient space in contiguous block already available. return; } // MemoryManager does not have functions for releasing memory after it's // allocated. Normally it tries to use any excess blocks that were allocated // due to page alignment, but if we have insufficient free memory for the // request this can lead to allocating disparate memory that can violate the // ARM ABI. Clear free memory so only the new allocations are used, but do // not release allocated memory as it may still be in-use. CodeMem.FreeMem.clear(); RODataMem.FreeMem.clear(); RWDataMem.FreeMem.clear(); // Round up to the nearest page size. Blocks must be page-aligned. RequiredCodeSize = alignTo(RequiredCodeSize, PageSize); RequiredRODataSize = alignTo(RequiredRODataSize, PageSize); RequiredRWDataSize = alignTo(RequiredRWDataSize, PageSize); uint64_t RequiredSize = RequiredCodeSize + RequiredRODataSize + RequiredRWDataSize; std::error_code ec; sys::MemoryBlock MB = MMapper->allocateMappedMemory( AllocationPurpose::RWData, RequiredSize, nullptr, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { return; } // CodeMem will arbitrarily own this MemoryBlock to handle cleanup. CodeMem.AllocatedMem.push_back(MB); uintptr_t Addr = (uintptr_t)MB.base(); FreeMemBlock FreeMB; FreeMB.PendingPrefixIndex = (unsigned)-1; if (CodeSize > 0) { assert(isAddrAligned(CodeAlign, (void *)Addr)); FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredCodeSize); CodeMem.FreeMem.push_back(FreeMB); Addr += RequiredCodeSize; } if (RODataSize > 0) { assert(isAddrAligned(RODataAlign, (void *)Addr)); FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredRODataSize); RODataMem.FreeMem.push_back(FreeMB); Addr += RequiredRODataSize; } if (RWDataSize > 0) { assert(isAddrAligned(RWDataAlign, (void *)Addr)); FreeMB.Free = sys::MemoryBlock((void *)Addr, RequiredRWDataSize); RWDataMem.FreeMem.push_back(FreeMB); } } uint8_t *SectionMemoryManager::allocateDataSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName, bool IsReadOnly) { if (IsReadOnly) return allocateSection(SectionMemoryManager::AllocationPurpose::ROData, Size, Alignment); return allocateSection(SectionMemoryManager::AllocationPurpose::RWData, Size, Alignment); } uint8_t *SectionMemoryManager::allocateCodeSection(uintptr_t Size, unsigned Alignment, unsigned SectionID, StringRef SectionName) { return allocateSection(SectionMemoryManager::AllocationPurpose::Code, Size, Alignment); } uint8_t *SectionMemoryManager::allocateSection( SectionMemoryManager::AllocationPurpose Purpose, uintptr_t Size, unsigned Alignment) { if (!Alignment) Alignment = 16; assert(!(Alignment & (Alignment - 1)) && "Alignment must be a power of two."); uintptr_t RequiredSize = Alignment * ((Size + Alignment - 1) / Alignment + 1); uintptr_t Addr = 0; MemoryGroup &MemGroup = [&]() -> MemoryGroup & { switch (Purpose) { case AllocationPurpose::Code: return CodeMem; case AllocationPurpose::ROData: return RODataMem; case AllocationPurpose::RWData: return RWDataMem; } llvm_unreachable("Unknown SectionMemoryManager::AllocationPurpose"); }(); // Look in the list of free memory regions and use a block there if one // is available. for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { if (FreeMB.Free.allocatedSize() >= RequiredSize) { Addr = (uintptr_t)FreeMB.Free.base(); uintptr_t EndOfBlock = Addr + FreeMB.Free.allocatedSize(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); if (FreeMB.PendingPrefixIndex == (unsigned)-1) { // The part of the block we're giving out to the user is now pending MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size)); // Remember this pending block, such that future allocations can just // modify it rather than creating a new one FreeMB.PendingPrefixIndex = MemGroup.PendingMem.size() - 1; } else { sys::MemoryBlock &PendingMB = MemGroup.PendingMem[FreeMB.PendingPrefixIndex]; PendingMB = sys::MemoryBlock(PendingMB.base(), Addr + Size - (uintptr_t)PendingMB.base()); } // Remember how much free space is now left in this block FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), EndOfBlock - Addr - Size); return (uint8_t *)Addr; } } // No pre-allocated free block was large enough. Allocate a new memory region. // Note that all sections get allocated as read-write. The permissions will // be updated later based on memory group. // // FIXME: It would be useful to define a default allocation size (or add // it as a constructor parameter) to minimize the number of allocations. // // FIXME: Initialize the Near member for each memory group to avoid // interleaving. std::error_code ec; sys::MemoryBlock MB = MMapper->allocateMappedMemory( Purpose, RequiredSize, &MemGroup.Near, sys::Memory::MF_READ | sys::Memory::MF_WRITE, ec); if (ec) { // FIXME: Add error propagation to the interface. return nullptr; } // Save this address as the basis for our next request MemGroup.Near = MB; // Copy the address to all the other groups, if they have not // been initialized. if (CodeMem.Near.base() == nullptr) CodeMem.Near = MB; if (RODataMem.Near.base() == nullptr) RODataMem.Near = MB; if (RWDataMem.Near.base() == nullptr) RWDataMem.Near = MB; // Remember that we allocated this memory MemGroup.AllocatedMem.push_back(MB); Addr = (uintptr_t)MB.base(); uintptr_t EndOfBlock = Addr + MB.allocatedSize(); // Align the address. Addr = (Addr + Alignment - 1) & ~(uintptr_t)(Alignment - 1); // The part of the block we're giving out to the user is now pending MemGroup.PendingMem.push_back(sys::MemoryBlock((void *)Addr, Size)); // The allocateMappedMemory may allocate much more memory than we need. In // this case, we store the unused memory as a free memory block. unsigned FreeSize = EndOfBlock - Addr - Size; if (FreeSize > 16) { FreeMemBlock FreeMB; FreeMB.Free = sys::MemoryBlock((void *)(Addr + Size), FreeSize); FreeMB.PendingPrefixIndex = (unsigned)-1; MemGroup.FreeMem.push_back(FreeMB); } // Return aligned address return (uint8_t *)Addr; } bool SectionMemoryManager::finalizeMemory(std::string *ErrMsg) { // FIXME: Should in-progress permissions be reverted if an error occurs? std::error_code ec; // Make code memory executable. ec = applyMemoryGroupPermissions(CodeMem, sys::Memory::MF_READ | sys::Memory::MF_EXEC); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Make read-only data memory read-only. ec = applyMemoryGroupPermissions(RODataMem, sys::Memory::MF_READ); if (ec) { if (ErrMsg) { *ErrMsg = ec.message(); } return true; } // Read-write data memory already has the correct permissions // Some platforms with separate data cache and instruction cache require // explicit cache flush, otherwise JIT code manipulations (like resolved // relocations) will get to the data cache but not to the instruction cache. invalidateInstructionCache(); return false; } static sys::MemoryBlock trimBlockToPageSize(sys::MemoryBlock M) { static const size_t PageSize = sys::Process::getPageSizeEstimate(); size_t StartOverlap = (PageSize - ((uintptr_t)M.base() % PageSize)) % PageSize; size_t TrimmedSize = M.allocatedSize(); TrimmedSize -= StartOverlap; TrimmedSize -= TrimmedSize % PageSize; sys::MemoryBlock Trimmed((void *)((uintptr_t)M.base() + StartOverlap), TrimmedSize); assert(((uintptr_t)Trimmed.base() % PageSize) == 0); assert((Trimmed.allocatedSize() % PageSize) == 0); assert(M.base() <= Trimmed.base() && Trimmed.allocatedSize() <= M.allocatedSize()); return Trimmed; } std::error_code SectionMemoryManager::applyMemoryGroupPermissions(MemoryGroup &MemGroup, unsigned Permissions) { for (sys::MemoryBlock &MB : MemGroup.PendingMem) if (std::error_code EC = MMapper->protectMappedMemory(MB, Permissions)) return EC; MemGroup.PendingMem.clear(); // Now go through free blocks and trim any of them that don't span the entire // page because one of the pending blocks may have overlapped it. for (FreeMemBlock &FreeMB : MemGroup.FreeMem) { FreeMB.Free = trimBlockToPageSize(FreeMB.Free); // We cleared the PendingMem list, so all these pointers are now invalid FreeMB.PendingPrefixIndex = (unsigned)-1; } // Remove all blocks which are now empty erase_if(MemGroup.FreeMem, [](FreeMemBlock &FreeMB) { return FreeMB.Free.allocatedSize() == 0; }); return std::error_code(); } void SectionMemoryManager::invalidateInstructionCache() { for (sys::MemoryBlock &Block : CodeMem.PendingMem) sys::Memory::InvalidateInstructionCache(Block.base(), Block.allocatedSize()); } SectionMemoryManager::~SectionMemoryManager() { for (MemoryGroup *Group : {&CodeMem, &RWDataMem, &RODataMem}) { for (sys::MemoryBlock &Block : Group->AllocatedMem) MMapper->releaseMappedMemory(Block); } } SectionMemoryManager::MemoryMapper::~MemoryMapper() = default; void SectionMemoryManager::anchor() {} namespace { // Trivial implementation of SectionMemoryManager::MemoryMapper that just calls // into sys::Memory. class DefaultMMapper final : public SectionMemoryManager::MemoryMapper { public: sys::MemoryBlock allocateMappedMemory(SectionMemoryManager::AllocationPurpose Purpose, size_t NumBytes, const sys::MemoryBlock *const NearBlock, unsigned Flags, std::error_code &EC) override { return sys::Memory::allocateMappedMemory(NumBytes, NearBlock, Flags, EC); } std::error_code protectMappedMemory(const sys::MemoryBlock &Block, unsigned Flags) override { return sys::Memory::protectMappedMemory(Block, Flags); } std::error_code releaseMappedMemory(sys::MemoryBlock &M) override { return sys::Memory::releaseMappedMemory(M); } }; } // namespace SectionMemoryManager::SectionMemoryManager(MemoryMapper *UnownedMM, bool ReserveAlloc) : MMapper(UnownedMM), OwnedMMapper(nullptr), ReserveAllocation(ReserveAlloc) { if (!MMapper) { OwnedMMapper = std::make_unique(); MMapper = OwnedMMapper.get(); } } } // namespace backport } // namespace llvm #endif