/* * PostgreSQL type definitions for IP addresses. This * is for IP V4 CIDR notation, but prepared for V6: just * add the necessary bits where the comments indicate. * * $Id: ip.c,v 1.4 1998/10/04 16:24:30 momjian Exp $ */ #include #include #include #include #include #include #include #include #include #include #include /* * Access macros. Add IPV6 support. */ #define ip_addrsize(ipaddrptr) \ (((ipaddr_struct *)VARDATA(ipaddrptr))->family == AF_INET ? 4 : -1) #define ip_family(ipaddrptr) \ (((ipaddr_struct *)VARDATA(ipaddrptr))->family) #define ip_bits(ipaddrptr) \ (((ipaddr_struct *)VARDATA(ipaddrptr))->bits) #define ip_v4addr(ipaddrptr) \ (((ipaddr_struct *)VARDATA(ipaddrptr))->addr.ipv4_addr) /* * IP address reader. */ ipaddr * ipaddr_in(char *src) { int bits; ipaddr *dst; dst = palloc(VARHDRSZ + sizeof(ipaddr_struct)); if (dst == NULL) { elog(ERROR, "unable to allocate memory in ipaddr_in()"); return (NULL); } /* First, try for an IP V4 address: */ ip_family(dst) = AF_INET; bits = inet_net_pton(ip_family(dst), src, &ip_v4addr(dst), ip_addrsize(dst)); if ((bits < 0) || (bits > 32)) { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "could not parse \"%s\"", src); pfree(dst); return (NULL); } VARSIZE(dst) = VARHDRSZ + ((char *) &ip_v4addr(dst) - (char *) VARDATA(dst)) + ip_addrsize(dst); ip_bits(dst) = bits; return (dst); } /* * IP address output function. */ char * ipaddr_out(ipaddr *src) { char *dst, tmp[sizeof("255.255.255.255/32")]; if (ip_family(src) == AF_INET) { /* It's an IP V4 address: */ if (inet_net_ntop(AF_INET, &ip_v4addr(src), ip_bits(src), tmp, sizeof(tmp)) < 0) { elog(ERROR, "unable to print address (%s)", strerror(errno)); return (NULL); } } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "unknown address family (%d)", ip_family(src)); return (NULL); } dst = palloc(strlen(tmp) + 1); if (dst == NULL) { elog(ERROR, "unable to allocate memory in ipaddr_out()"); return (NULL); } strcpy(dst, tmp); return (dst); } /* * Boolean tests for magnitude. Add V4/V6 testing! */ bool ipaddr_lt(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { int order = v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)); return ((order < 0) || ((order == 0) && (ip_bits(a1) < ip_bits(a2)))); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_le(ipaddr *a1, ipaddr *a2) { return (ipaddr_lt(a1, a2) || ipaddr_eq(a1, a2)); } bool ipaddr_eq(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { return ((ip_bits(a1) == ip_bits(a2)) && (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0)); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_ge(ipaddr *a1, ipaddr *a2) { return (ipaddr_gt(a1, a2) || ipaddr_eq(a1, a2)); } bool ipaddr_gt(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { int order = v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)); return ((order > 0) || ((order == 0) && (ip_bits(a1) > ip_bits(a2)))); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_ne(ipaddr *a1, ipaddr *a2) { return (!ipaddr_eq(a1, a2)); } bool ipaddr_sub(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { return ((ip_bits(a1) > ip_bits(a2)) && (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0)); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_subeq(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { return ((ip_bits(a1) >= ip_bits(a2)) && (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a2)) == 0)); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_sup(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { return ((ip_bits(a1) < ip_bits(a2)) && (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0)); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } bool ipaddr_supeq(ipaddr *a1, ipaddr *a2) { if ((ip_family(a1) == AF_INET) && (ip_family(a2) == AF_INET)) { return ((ip_bits(a1) <= ip_bits(a2)) && (v4bitncmp(ip_v4addr(a1), ip_v4addr(a2), ip_bits(a1)) == 0)); } else { /* Go for an IPV6 address here, before faulting out: */ elog(ERROR, "cannot compare address families %d and %d", ip_family(a1), ip_family(a2)); return (FALSE); } } /* * Comparison function for sorting. Add V4/V6 testing! */ int4 ipaddr_cmp(ipaddr *a1, ipaddr *a2) { if (ntohl(ip_v4addr(a1)) < ntohl(ip_v4addr(a2))) return (-1); else if (ntohl(ip_v4addr(a1)) > ntohl(ip_v4addr(a2))) return (1); return 0; } /* * Bitwise comparison for V4 addresses. Add V6 implementation! */ int v4bitncmp(unsigned int a1, unsigned int a2, int bits) { unsigned long mask = 0; int i; for (i = 0; i < bits; i++) mask = (mask >> 1) | 0x80000000; a1 = ntohl(a1); a2 = ntohl(a2); if ((a1 & mask) < (a2 & mask)) return (-1); else if ((a1 & mask) > (a2 & mask)) return (1); return (0); }