1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
|
<chapter id="textsearch">
<title>Full Text Search</title>
<sect1 id="textsearch-intro">
<title>Introduction</title>
<para>
Full Text Searching (or just <firstterm>text search</firstterm>) allows
identifying documents that satisfy a <firstterm>query</firstterm>, and
optionally sorting them by relevance to the query. The most common search
is to find all documents containing given <firstterm>query terms</firstterm>
and return them in order of their <firstterm>similarity</firstterm> to the
<varname>query</varname>. Notions of <varname>query</varname> and
<varname>similarity</varname> are very flexible and depend on the specific
application. The simplest search considers <varname>query</varname> as a
set of words and <varname>similarity</varname> as the frequency of query
words in the document. Full text indexing can be done inside the
database or outside. Doing indexing inside the database allows easy access
to document metadata to assist in indexing and display.
</para>
<para>
Textual search operators have existed in databases for years.
<productname>PostgreSQL</productname> has
<literal>~</literal>,<literal>~*</literal>, <literal>LIKE</literal>,
<literal>ILIKE</literal> operators for textual datatypes, but they lack
many essential properties required by modern information systems:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
There is no linguistic support, even for English. Regular expressions are
not sufficient because they cannot easily handle derived words,
e.g., <literal>satisfies</literal> and <literal>satisfy</literal>. You might
miss documents which contain <literal>satisfies</literal>, although you
probably would like to find them when searching for
<literal>satisfy</literal>. It is possible to use <literal>OR</literal>
to search <emphasis>any</emphasis> of them, but it is tedious and error-prone
(some words can have several thousand derivatives).
</para>
</listitem>
<listitem>
<para>
They provide no ordering (ranking) of search results, which makes them
ineffective when thousands of matching documents are found.
</para>
</listitem>
<listitem>
<para>
They tend to be slow because they process all documents for every search and
there is no index support.
</para>
</listitem>
</itemizedlist>
<para>
Full text indexing allows documents to be <emphasis>preprocessed</emphasis>
and an index saved for later rapid searching. Preprocessing includes:
</para>
<itemizedlist mark="none">
<listitem>
<para>
<emphasis>Parsing documents into <firstterm>lexemes</></emphasis>. It is
useful to identify various lexemes, e.g. digits, words, complex words,
email addresses, so they can be processed differently. In principle
lexemes depend on the specific application but for an ordinary search it
is useful to have a predefined list of lexemes. <!-- add list of lexemes.
-->
</para>
</listitem>
<listitem>
<para>
<emphasis>Dictionaries</emphasis> allow the conversion of lexemes into
a <emphasis>normalized form</emphasis> so it is not necessary to enter
search words in a specific form.
</para>
</listitem>
<listitem>
<para>
<emphasis>Store</emphasis> preprocessed documents optimized for
searching. For example, represent each document as a sorted array
of lexemes. Along with lexemes it is desirable to store positional
information to use for <varname>proximity ranking</varname>, so that
a document which contains a more "dense" region of query words is
assigned a higher rank than one with scattered query words.
</para>
</listitem>
</itemizedlist>
<para>
Dictionaries allow fine-grained control over how lexemes are created. With
dictionaries you can:
</para>
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
Define "stop words" that should not be indexed.
</para>
</listitem>
<listitem>
<para>
Map synonyms to a single word using <application>ispell</>.
</para>
</listitem>
<listitem>
<para>
Map phrases to a single word using a thesaurus.
</para>
</listitem>
<listitem>
<para>
Map different variations of a word to a canonical form using
an <application>ispell</> dictionary.
</para>
</listitem>
<listitem>
<para>
Map different variations of a word to a canonical form using
<application>snowball</> stemmer rules.
</para>
</listitem>
</itemizedlist>
<para>
A data type (<xref linkend="datatype-textsearch">), <type>tsvector</type>
is provided, for storing preprocessed documents,
along with a type <type>tsquery</type> for representing textual
queries. Also, a full text search operator <literal>@@</literal> is defined
for these data types (<xref linkend="textsearch-searches">). Full text
searches can be accelerated using indexes (<xref
linkend="textsearch-indexes">).
</para>
<sect2 id="textsearch-document">
<title>What Is a <firstterm>Document</firstterm>?</title>
<indexterm zone="textsearch-document">
<primary>document</primary>
</indexterm>
<para>
A document can be a simple text file stored in the file system. The full
text indexing engine can parse text files and store associations of lexemes
(words) with their parent document. Later, these associations are used to
search for documents which contain query words. In this case, the database
can be used to store the full text index and for executing searches, and
some unique identifier can be used to retrieve the document from the file
system.
</para>
<para>
A document can also be any textual database attribute or a combination
(concatenation), which in turn can be stored in various tables or obtained
dynamically. In other words, a document can be constructed from different
parts for indexing and it might not exist as a whole. For example:
<programlisting>
SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;
SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE mid = did AND mid = 12;
</programlisting>
</para>
<note>
<para>
Actually, in the previous example queries, <literal>COALESCE</literal>
<!-- TODO make this a link? -->
should be used to prevent a <literal>NULL</literal> attribute from causing
a <literal>NULL</literal> result.
</para>
</note>
</sect2>
<sect2 id="textsearch-searches">
<title>Performing Searches</title>
<para>
Full text searching in <productname>PostgreSQL</productname> is based on
the operator <literal>@@</literal>, which tests whether a <type>tsvector</type>
(document) matches a <type>tsquery</type> (query). Also, this operator
supports <type>text</type> input, allowing explicit conversion of a text
string to <type>tsvector</type> to be skipped. The variants available
are:
<programlisting>
tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text
</programlisting>
</para>
<para>
The match operator <literal>@@</literal> returns <literal>true</literal> if
the <type>tsvector</type> matches the <type>tsquery</type>. It doesn't
matter which data type is written first:
<programlisting>
SELECT 'cat & rat'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
?column?
----------
t
SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
?column?
----------
f
</programlisting>
</para>
<para>
The form <type>text</type> <literal>@@</literal> <type>tsquery</type>
is equivalent to <literal>to_tsvector(x) @@ y</literal>.
The form <type>text</type> <literal>@@</literal> <type>text</type>
is equivalent to <literal>to_tsvector(x) @@ plainto_tsquery(y)</literal>.
<xref linkend="functions-textsearch"> contains a full list of full text
search operators and functions.
</para>
<sect2 id="textsearch-configurations">
<title>Configurations</title>
<indexterm zone="textsearch-configurations">
<primary>configurations</primary>
</indexterm>
<para>
The above are all simple text search examples. As mentioned before, full
text search functionality includes the ability to do many more things:
skip indexing certain words (stop words), process synonyms, and use
sophisticated parsing, e.g. parse based on more than just white space.
This functionality is controlled by <emphasis>configurations</>.
Fortunately, <productname>PostgreSQL</> comes with predefined
configurations for many languages. (<application>psql</>'s <command>\dF</>
shows all predefined configurations.) During installation an appropriate
configuration was selected and <xref
linkend="guc-default-text-search-config"> was set accordingly. If you
need to change it, see <xref linkend="textsearch-tables-multiconfig">.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-tables">
<title>Tables and Indexes</title>
<para>
The previous section described how to perform full text searches using
constant strings. This section shows how to search table data, optionally
using indexes.
</para>
<sect2 id="textsearch-tables-search">
<title>Searching a Table</title>
<para>
It is possible to do full text table search with no index. A simple query
to find all <literal>title</> entries that contain the word
<literal>friend</> is:
<programlisting>
SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('friend')
</programlisting>
</para>
<para>
The query above uses the <literal>english</> the configuration set by <xref
linkend="guc-default-text-search-config">. A more complex query is to
select the ten most recent documents which contain <literal>create</> and
<literal>table</> in the <literal>title</> or <literal>body</>:
<programlisting>
SELECT title
FROM pgweb
WHERE to_tsvector('english', title || body) @@ to_tsquery('create & table')
ORDER BY dlm DESC LIMIT 10;
</programlisting>
<literal>dlm</> is the last-modified date so we
used <command>ORDER BY dlm LIMIT 10</> to get the ten most recent
matches. For clarity we omitted the <function>coalesce</function> function
which prevents the unwanted effect of <literal>NULL</literal>
concatenation.
</para>
</sect2>
<sect2 id="textsearch-tables-index">
<title>Creating Indexes</title>
<para>
We can create a <acronym>GIN</acronym> (<xref
linkend="textsearch-indexes">) index to speed up the search:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', body));
</programlisting>
Notice that the 2-argument version of <function>to_tsvector</function> is
used. Only text search functions which specify a configuration name can
be used in expression indexes (<xref linkend="indexes-expressional">).
This is because the index contents must be unaffected by <xref
linkend="guc-default-text-search-config">. If they were affected, the
index contents might be inconsistent because different entries could
contain <type>tsvector</>s that were created with different text search
configurations, and there would be no way to guess which was which. It
would be impossible to dump and restore such an index correctly.
</para>
<para>
Because the two-argument version of <function>to_tsvector</function> was
used in the index above, only a query reference that uses the 2-argument
version of <function>to_tsvector</function> with the same configuration
name will use that index, i.e. <literal>WHERE 'a & b' @@
to_svector('english', body)</> will use the index, but <literal>WHERE
'a & b' @@ to_svector(body))</> and <literal>WHERE 'a & b' @@
body::tsvector</> will not. This guarantees that an index will be used
only with the same configuration used to create the index rows.
</para>
<para>
It is possible to setup more complex expression indexes where the
configuration name is specified by another column, e.g.:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector(config_name, body));
</programlisting>
where <literal>config_name</> is a column in the <literal>pgweb</>
table. This allows mixed configurations in the same index while
recording which configuration was used for each index row.
</para>
<para>
Indexes can even concatenate columns:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('english', title || body));
</programlisting>
</para>
<para>
A more complex case is to create a separate <type>tsvector</> column
to hold the output of <function>to_tsvector()</>. This example is a
concatenation of <literal>title</literal> and <literal>body</literal>,
with ranking information. We assign different labels to them to encode
information about the origin of each word:
<programlisting>
ALTER TABLE pgweb ADD COLUMN textsearch_index tsvector;
UPDATE pgweb SET textsearch_index =
setweight(to_tsvector('english', coalesce(title,'')), 'A') || ' ' ||
setweight(to_tsvector('english', coalesce(body,'')),'D');
</programlisting>
Then we create a <acronym>GIN</acronym> index to speed up the search:
<programlisting>
CREATE INDEX textsearch_idx ON pgweb USING gin(textsearch_index);
</programlisting>
After vacuuming, we are ready to perform a fast full text search:
<programlisting>
SELECT ts_rank_cd(textsearch_index, q) AS rank, title
FROM pgweb, to_tsquery('create & table') q
WHERE q @@ textsearch_index
ORDER BY rank DESC LIMIT 10;
</programlisting>
It is necessary to create a trigger to keep the new <type>tsvector</>
column current anytime <literal>title</> or <literal>body</> changes.
Keep in mind that, just like with expression indexes, it is important to
specify the configuration name when creating text search data types
inside triggers so the column's contents are not affected by changes to
<varname>default_text_search_config</>.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-controls">
<title>Additional Controls</title>
<para>
To implement full text searching there must be a function to create a
<type>tsvector</type> from a document and a <type>tsquery</type> from a
user query. Also, we need to return results in some order, i.e., we need
a function which compares documents with respect to their relevance to
the <type>tsquery</type>. Full text searching in
<productname>PostgreSQL</productname> provides support for all of these
functions.
</para>
<sect2 id="textsearch-parser">
<title>Parsing</title>
<para>
Full text searching in <productname>PostgreSQL</productname> provides
function <function>to_tsvector</function>, which converts a document to
the <type>tsvector</type> data type. More details are available in <xref
linkend="functions-textsearch-tsvector">, but for now consider a simple example:
<programlisting>
SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
to_tsvector
-----------------------------------------------------
'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4
</programlisting>
</para>
<para>
In the example above we see that the resulting <type>tsvector</type> does not
contain the words <literal>a</literal>, <literal>on</literal>, or
<literal>it</literal>, the word <literal>rats</literal> became
<literal>rat</literal>, and the punctuation sign <literal>-</literal> was
ignored.
</para>
<para>
The <function>to_tsvector</function> function internally calls a parser
which breaks the document (<literal>a fat cat sat on a mat - it ate a
fat rats</literal>) into words and corresponding types. The default parser
recognizes 23 types. Each word, depending on its type, passes through a
group of dictionaries (<xref linkend="textsearch-dictionaries">). At the
end of this step we obtain <emphasis>lexemes</emphasis>. For example,
<literal>rats</literal> became <literal>rat</literal> because one of the
dictionaries recognized that the word <literal>rats</literal> is a plural
form of <literal>rat</literal>. Some words are treated as "stop words"
(<xref linkend="textsearch-stopwords">) and ignored since they occur too
frequently and have little informational value. In our example these are
<literal>a</literal>, <literal>on</literal>, and <literal>it</literal>.
The punctuation sign <literal>-</literal> was also ignored because its
type (<literal>Space symbols</literal>) is not indexed. All information
about the parser, dictionaries and what types of lexemes to index is
documented in the full text configuration section (<xref
linkend="textsearch-tables-configuration">). It is possible to have
several different configurations in the same database, and many predefined
system configurations are available for different languages. In our example
we used the default configuration <literal>english</literal> for the
English language.
</para>
<para>
As another example, below is the output from the <function>ts_debug</function>
function ( <xref linkend="textsearch-debugging"> ), which shows all details
of the full text machinery:
<programlisting>
SELECT * FROM ts_debug('english','a fat cat sat on a mat - it ate a fat rats');
Alias | Description | Token | Dictionaries | Lexized token
-------+---------------+-------+--------------+----------------
lword | Latin word | a | {english} | english: {}
blank | Space symbols | | |
lword | Latin word | fat | {english} | english: {fat}
blank | Space symbols | | |
lword | Latin word | cat | {english} | english: {cat}
blank | Space symbols | | |
lword | Latin word | sat | {english} | english: {sat}
blank | Space symbols | | |
lword | Latin word | on | {english} | english: {}
blank | Space symbols | | |
lword | Latin word | a | {english} | english: {}
blank | Space symbols | | |
lword | Latin word | mat | {english} | english: {mat}
blank | Space symbols | | |
blank | Space symbols | - | |
lword | Latin word | it | {english} | english: {}
blank | Space symbols | | |
lword | Latin word | ate | {english} | english: {ate}
blank | Space symbols | | |
lword | Latin word | a | {english} | english: {}
blank | Space symbols | | |
lword | Latin word | fat | {english} | english: {fat}
blank | Space symbols | | |
lword | Latin word | rats | {english} | english: {rat}
(24 rows)
</programlisting>
</para>
<para>
Function <function>setweight()</function> is used to label
<type>tsvector</type>. The typical usage of this is to mark out the
different parts of a document, perhaps by importance. Later, this can be
used for ranking of search results in addition to positional information
(distance between query terms). If no ranking is required, positional
information can be removed from <type>tsvector</type> using the
<function>strip()</function> function to save space.
</para>
<para>
Because <function>to_tsvector</function>(<LITERAL>NULL</LITERAL>) can
return <LITERAL>NULL</LITERAL>, it is recommended to use
<function>coalesce</function>. Here is the safe method for creating a
<type>tsvector</type> from a structured document:
<programlisting>
UPDATE tt SET ti=
setweight(to_tsvector(coalesce(title,'')), 'A') || ' ' ||
setweight(to_tsvector(coalesce(keyword,'')), 'B') || ' ' ||
setweight(to_tsvector(coalesce(abstract,'')), 'C') || ' ' ||
setweight(to_tsvector(coalesce(body,'')), 'D');
</programlisting>
</para>
<para>
The following functions allow manual parsing control:
<variablelist>
<varlistentry>
<indexterm zone="textsearch-parser">
<primary>parse</primary>
</indexterm>
<term>
<synopsis>
ts_parse(<replaceable class="PARAMETER">parser</replaceable>, <replaceable class="PARAMETER">document</replaceable> TEXT) returns SETOF <type>tokenout</type>
</synopsis>
</term>
<listitem>
<para>
Parses the given <replaceable>document</replaceable> and returns a series
of records, one for each token produced by parsing. Each record includes
a <varname>tokid</varname> giving its type and a <varname>token</varname>
which gives its content:
<programlisting>
SELECT * FROM ts_parse('default','123 - a number');
tokid | token
-------+--------
22 | 123
12 |
12 | -
1 | a
12 |
1 | number
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<indexterm zone="textsearch-parser">
<primary>ts_token_type</primary>
</indexterm>
<term>
<synopsis>
ts_token_type(<replaceable class="PARAMETER">parser</replaceable> ) returns SETOF <type>tokentype</type>
</synopsis>
</term>
<listitem>
<para>
Returns a table which describes each kind of token the
<replaceable>parser</replaceable> might produce as output. For each token
type the table gives the <varname>tokid</varname> which the
<replaceable>parser</replaceable> uses to label each
<varname>token</varname> of that type, the <varname>alias</varname> which
names the token type, and a short <varname>description</varname>:
<programlisting>
SELECT * FROM ts_token_type('default');
tokid | alias | description
-------+--------------+-----------------------------------
1 | lword | Latin word
2 | nlword | Non-latin word
3 | word | Word
4 | email | Email
5 | url | URL
6 | host | Host
7 | sfloat | Scientific notation
8 | version | VERSION
9 | part_hword | Part of hyphenated word
10 | nlpart_hword | Non-latin part of hyphenated word
11 | lpart_hword | Latin part of hyphenated word
12 | blank | Space symbols
13 | tag | HTML Tag
14 | protocol | Protocol head
15 | hword | Hyphenated word
16 | lhword | Latin hyphenated word
17 | nlhword | Non-latin hyphenated word
18 | uri | URI
19 | file | File or path name
20 | float | Decimal notation
21 | int | Signed integer
22 | uint | Unsigned integer
23 | entity | HTML Entity
</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
</sect2>
<sect2 id="textsearch-ranking">
<title>Ranking Search Results</title>
<para>
Ranking attempts to measure how relevant documents are to a particular
query by inspecting the number of times each search word appears in the
document, and whether different search terms occur near each other. Full
text searching provides two predefined ranking functions which attempt to
produce a measure of how a document is relevant to the query. In spite
of that, the concept of relevancy is vague and very application-specific.
These functions try to take into account lexical, proximity, and structural
information. Different applications might require additional information
for ranking, e.g. document modification time.
</para>
<para>
The lexical part of ranking reflects how often the query terms appear in
the document, how close the document query terms are, and in what part of
the document they occur. Note that ranking functions that use positional
information will only work on unstripped tsvectors because stripped
tsvectors lack positional information.
</para>
<para>
The two ranking functions currently available are:
<variablelist>
<varlistentry>
<indexterm zone="textsearch-ranking">
<primary>ts_rank</primary>
</indexterm>
<term>
<synopsis>
ts_rank(<optional> <replaceable class="PARAMETER">weights</replaceable> float4[]</optional>, <replaceable class="PARAMETER">vector</replaceable> TSVECTOR, <replaceable class="PARAMETER">query</replaceable> TSQUERY, <optional> <replaceable class="PARAMETER">normalization</replaceable> int4 </optional>) returns float4
</synopsis>
</term>
<listitem>
<para>
This ranking function offers the ability to weigh word instances more
heavily depending on how you have classified them. The weights specify
how heavily to weigh each category of word:
<programlisting>
{D-weight, C-weight, B-weight, A-weight}
</programlisting>
If no weights are provided,
then these defaults are used:
<programlisting>
{0.1, 0.2, 0.4, 1.0}
</programlisting>
Often weights are used to mark words from special areas of the document,
like the title or an initial abstract, and make them more or less important
than words in the document body.
</para>
</listitem>
</varlistentry>
<varlistentry>
<indexterm zone="textsearch-ranking">
<primary>ts_rank_cd</primary>
</indexterm>
<term>
<synopsis>
ts_rank_cd(<optional> <replaceable class="PARAMETER">weights</replaceable> float4[], </optional> <replaceable class="PARAMETER">vector</replaceable> TSVECTOR, <replaceable class="PARAMETER">query</replaceable> TSQUERY, <optional> <replaceable class="PARAMETER">normalization</replaceable> int4 </optional>) returns float4
</synopsis>
</term>
<listitem>
<para>
This function computes the <emphasis>cover density</emphasis> ranking for
the given document vector and query, as described in Clarke, Cormack, and
Tudhope's "Relevance Ranking for One to Three Term Queries" in the
"Information Processing and Management", 1999.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
<para>
Since a longer document has a greater chance of containing a query term
it is reasonable to take into account document size, i.e. a hundred-word
document with five instances of a search word is probably more relevant
than a thousand-word document with five instances. Both ranking functions
take an integer <replaceable>normalization</replaceable> option that
specifies whether a document's length should impact its rank. The integer
option controls several behaviors which is done using bit-wise fields and
<literal>|</literal> (for example, <literal>2|4</literal>):
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
0 (the default) ignores the document length
</para>
</listitem>
<listitem>
<para>
1 divides the rank by 1 + the logarithm of the document length
</para>
</listitem>
<listitem>
<para>
2 divides the rank by the length itself
</para>
</listitem>
<listitem>
<para>
<!-- what is mean harmonic distance -->
4 divides the rank by the mean harmonic distance between extents
</para>
</listitem>
<listitem>
<para>
8 divides the rank by the number of unique words in document
</para>
</listitem>
<listitem>
<para>
16 divides the rank by 1 + logarithm of the number of unique words in document
</para>
</listitem>
</itemizedlist>
</para>
<para>
It is important to note that ranking functions do not use any global
information so it is impossible to produce a fair normalization to 1% or
100%, as sometimes required. However, a simple technique like
<literal>rank/(rank+1)</literal> can be applied. Of course, this is just
a cosmetic change, i.e., the ordering of the search results will not change.
</para>
<para>
Several examples are shown below; note that the second example uses
normalized ranking:
<programlisting>
SELECT title, ts_rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query) AS rnk
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rnk DESC LIMIT 10;
title | rnk
-----------------------------------------------+----------
Neutrinos in the Sun | 3.1
The Sudbury Neutrino Detector | 2.4
A MACHO View of Galactic Dark Matter | 2.01317
Hot Gas and Dark Matter | 1.91171
The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
Rafting for Solar Neutrinos | 1.9
NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
Hot Gas and Dark Matter | 1.6123
Ice Fishing for Cosmic Neutrinos | 1.6
Weak Lensing Distorts the Universe | 0.818218
SELECT title, ts_rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query)/
(ts_rank_cd('{0.1, 0.2, 0.4, 1.0}',textsearch, query) + 1) AS rnk
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rnk DESC LIMIT 10;
title | rnk
-----------------------------------------------+-------------------
Neutrinos in the Sun | 0.756097569485493
The Sudbury Neutrino Detector | 0.705882361190954
A MACHO View of Galactic Dark Matter | 0.668123210574724
Hot Gas and Dark Matter | 0.65655958650282
The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
Rafting for Solar Neutrinos | 0.655172410958162
NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
Hot Gas and Dark Matter | 0.617195790024749
Ice Fishing for Cosmic Neutrinos | 0.615384618911517
Weak Lensing Distorts the Universe | 0.450010798361481
</programlisting>
</para>
<para>
The first argument in <function>ts_rank_cd</function> (<literal>'{0.1, 0.2,
0.4, 1.0}'</literal>) is an optional parameter which specifies the
weights for labels <literal>D</literal>, <literal>C</literal>,
<literal>B</literal>, and <literal>A</literal> used in function
<function>setweight</function>. These default values show that lexemes
labeled as <literal>A</literal> are ten times more important than ones
that are labeled with <literal>D</literal>.
</para>
<para>
Ranking can be expensive since it requires consulting the
<type>tsvector</type> of all documents, which can be I/O bound and
therefore slow. Unfortunately, it is almost impossible to avoid since full
text searching in a database should work without indexes <!-- TODO I don't
get this -->. Moreover an index can be lossy (a <acronym>GiST</acronym>
index, for example) so it must check documents to avoid false hits.
</para>
<para>
Note that the ranking functions above are only examples. You can write
your own ranking functions and/or combine additional factors to fit your
specific needs.
</para>
</sect2>
<sect2 id="textsearch-headline">
<title>Highlighting Results</title>
<indexterm zone="textsearch-headline">
<primary>headline</primary>
</indexterm>
<para>
To present search results it is ideal to show a part of each document and
how it is related to the query. Usually, search engines show fragments of
the document with marked search terms. <productname>PostgreSQL</> full
text searching provides the function <function>headline</function> that
implements such functionality.
</para>
<variablelist>
<varlistentry>
<term>
<synopsis>
ts_headline(<optional> <replaceable class="PARAMETER">config_name</replaceable> text</optional>, <replaceable class="PARAMETER">document</replaceable> text, <replaceable class="PARAMETER">query</replaceable> TSQUERY, <optional> <replaceable class="PARAMETER">options</replaceable> text </optional>) returns text
</synopsis>
</term>
<listitem>
<para>
The <function>ts_headline</function> function accepts a document along with
a query, and returns one or more ellipsis-separated excerpts from the
document in which terms from the query are highlighted. The configuration
used to parse the document can be specified by its
<replaceable>config_name</replaceable>; if none is specified, the current
configuration is used.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
If an <replaceable>options</replaceable> string is specified it should
consist of a comma-separated list of one or more 'option=value' pairs.
The available options are:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<literal>StartSel</>, <literal>StopSel</literal>: the strings with which
query words appearing in the document should be delimited to distinguish
them from other excerpted words.
</para>
</listitem>
<listitem >
<para>
<literal>MaxWords</>, <literal>MinWords</literal>: limit the shortest and
longest headlines to output
</para>
</listitem>
<listitem>
<para>
<literal>ShortWord</literal>: this prevents your headline from beginning
or ending with a word which has this many characters or less. The default
value of three eliminates the English articles.
</para>
</listitem>
<listitem>
<para>
<literal>HighlightAll</literal>: boolean flag; if
<literal>true</literal> the whole document will be highlighted
</para>
</listitem>
</itemizedlist>
Any unspecified options receive these defaults:
<programlisting>
StartSel=<b>, StopSel=</b>, MaxWords=35, MinWords=15, ShortWord=3, HighlightAll=FALSE
</programlisting>
</para>
<para>
For example:
<programlisting>
SELECT ts_headline('a b c', 'c'::tsquery);
headline
--------------
a b <b>c</b>
SELECT ts_headline('a b c', 'c'::tsquery, 'StartSel=<,StopSel=>');
ts_headline
-------------
a b <c>
</programlisting>
</para>
<para>
<function>headline</> uses the original document, not
<type>tsvector</type>, so it can be slow and should be used with care.
A typical mistake is to call <function>headline()</function> for
<emphasis>every</emphasis> matching document when only ten documents are
shown. <acronym>SQL</acronym> subselects can help here; below is an
example:
<programlisting>
SELECT id,ts_headline(body,q), rank
FROM (SELECT id,body,q, ts_rank_cd (ti,q) AS rank FROM apod, to_tsquery('stars') q
WHERE ti @@ q
ORDER BY rank DESC LIMIT 10) AS foo;
</programlisting>
</para>
<para>
Note that the cascade dropping of the <function>parser</function> function
causes dropping of the <literal>ts_headline</literal> used in the full text search
configuration <replaceable>config_name</replaceable><!-- TODO I don't get this -->.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-dictionaries">
<title>Dictionaries</title>
<para>
Dictionaries are used to eliminate words that should not be considered in a
search (<firstterm>stop words</>), and to <firstterm>normalize</> words so
that different derived forms of the same word will match. Aside from
improving search quality, normalization and removal of stop words reduce the
size of the <type>tsvector</type> representation of a document, thereby
improving performance. Normalization does not always have linguistic meaning
and usually depends on application semantics.
</para>
<para>
Some examples of normalization:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
Linguistic - ispell dictionaries try to reduce input words to a
normalized form; stemmer dictionaries remove word endings
</para>
</listitem>
<listitem>
<para>
Identical <acronym>URL</acronym> locations are identified and canonicalized:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
http://www.pgsql.ru/db/mw/index.html
</para>
</listitem>
<listitem>
<para>
http://www.pgsql.ru/db/mw/
</para>
</listitem>
<listitem>
<para>
http://www.pgsql.ru/db/../db/mw/index.html
</para>
</listitem>
</itemizedlist>
</para>
</listitem>
<listitem>
<para>
Colour names are substituted by their hexadecimal values, e.g.,
<literal>red, green, blue, magenta -> FF0000, 00FF00, 0000FF, FF00FF</literal>
</para>
</listitem>
<listitem>
<para>
Remove some numeric fractional digits to reduce the range of possible
numbers, so <emphasis>3.14</emphasis>159265359,
<emphasis>3.14</emphasis>15926, <emphasis>3.14</emphasis> will be the same
after normalization if only two digits are kept after the decimal point.
</para>
</listitem>
</itemizedlist>
</para>
<para>
A dictionary is a <emphasis>program</emphasis> which accepts lexemes as
input and returns:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
an array of lexemes if the input lexeme is known to the dictionary
</para>
</listitem>
<listitem>
<para>
a void array if the dictionary knows the lexeme, but it is a stop word
</para>
</listitem>
<listitem>
<para>
<literal>NULL</literal> if the dictionary does not recognize the input lexeme
</para>
</listitem>
</itemizedlist>
</para>
<para>
Full text searching provides predefined dictionaries for many languages,
and <acronym>SQL</acronym> commands to manipulate them. There are also
several predefined template dictionaries that can be used to create new
dictionaries by overriding their default parameters. Besides this, it is
possible to develop custom dictionaries using an <acronym>API</acronym>;
see the dictionary for integers (<xref
linkend="textsearch-rule-dictionary-example">) as an example.
</para>
<para>
The <literal>ALTER TEXT SEARCH CONFIGURATION ADD
MAPPING</literal> command binds specific types of lexemes and a set of
dictionaries to process them. (Mappings can also be specified as part of
configuration creation.) Lexemes are processed by a stack of dictionaries
until some dictionary identifies it as a known word or it turns out to be
a stop word. If no dictionary recognizes a lexeme, it will be discarded
and not indexed. A general rule for configuring a stack of dictionaries
is to place first the most narrow, most specific dictionary, then the more
general dictionaries and finish it with a very general dictionary, like
the <application>snowball</> stemmer or <literal>simple</>, which
recognizes everything. For example, for an astronomy-specific search
(<literal>astro_en</literal> configuration) one could bind
<type>lword</type> (latin word) with a synonym dictionary of astronomical
terms, a general English dictionary and a <application>snowball</> English
stemmer:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION astro_en
ADD MAPPING FOR lword WITH astrosyn, english_ispell, english_stem;
</programlisting>
</para>
<para>
Function <function>ts_lexize</function> can be used to test dictionaries,
for example:
<programlisting>
SELECT ts_lexize('english_stem', 'stars');
ts_lexize
-----------
{star}
(1 row)
</programlisting>
Also, the <function>ts_debug</function> function (<xref linkend="textsearch-debugging">)
can be used for this.
</para>
<sect2 id="textsearch-stopwords">
<title>Stop Words</title>
<para>
Stop words are words which are very common, appear in almost
every document, and have no discrimination value. Therefore, they can be ignored
in the context of full text searching. For example, every English text contains
words like <literal>a</literal> although it is useless to store them in an index.
However, stop words do affect the positions in <type>tsvector</type>,
which in turn, do affect ranking:
<programlisting>
SELECT to_tsvector('english','in the list of stop words');
to_tsvector
----------------------------
'list':3 'stop':5 'word':6
</programlisting>
The gaps between positions 1-3 and 3-5 are because of stop words, so ranks
calculated for documents with and without stop words are quite different:
<programlisting>
SELECT ts_rank_cd ('{1,1,1,1}', to_tsvector('english','in the list of stop words'), to_tsquery('list & stop'));
ts_rank_cd
------------
0.5
SELECT ts_rank_cd ('{1,1,1,1}', to_tsvector('english','list stop words'), to_tsquery('list & stop'));
ts_rank_cd
------------
1
</programlisting>
</para>
<para>
It is up to the specific dictionary how it treats stop words. For example,
<literal>ispell</literal> dictionaries first normalize words and then
look at the list of stop words, while <literal>stemmers</literal>
first check the list of stop words. The reason for the different
behaviour is an attempt to decrease possible noise.
</para>
<para>
Here is an example of a dictionary that returns the input word as lowercase
or <literal>NULL</literal> if it is a stop word; it also specifies the name
of a file of stop words. It uses the <literal>simple</> dictionary as
a template:
<programlisting>
CREATE TEXT SEARCH DICTIONARY public.simple_dict (
TEMPLATE = pg_catalog.simple,
STOPWORDS = english
);
</programlisting>
Now we can test our dictionary:
<programlisting>
SELECT ts_lexize('public.simple_dict','YeS');
ts_lexize
-----------
{yes}
SELECT ts_lexize('public.simple_dict','The');
ts_lexize
-----------
{}
</programlisting>
</para>
<caution>
<para>
Most types of dictionaries rely on configuration files, such as files of stop
words. These files <emphasis>must</> be stored in UTF-8 encoding. They will
be translated to the actual database encoding, if that is different, when they
are read into the server.
</para>
</caution>
</sect2>
<sect2 id="textsearch-synonym-dictionary">
<title>Synonym Dictionary</title>
<para>
This dictionary template is used to create dictionaries which replace a
word with a synonym. Phrases are not supported (use the thesaurus
dictionary (<xref linkend="textsearch-thesaurus">) for that). A synonym
dictionary can be used to overcome linguistic problems, for example, to
prevent an English stemmer dictionary from reducing the word 'Paris' to
'pari'. It is enough to have a <literal>Paris paris</literal> line in the
synonym dictionary and put it before the <literal>english_stem</> dictionary:
<programlisting>
SELECT * FROM ts_debug('english','Paris');
Alias | Description | Token | Dictionaries | Lexized token
-------+-------------+-------+----------------+----------------------
lword | Latin word | Paris | {english_stem} | english_stem: {pari}
(1 row)
CREATE TEXT SEARCH DICTIONARY synonym
(TEMPLATE = synonym, SYNONYMS = my_synonyms);
ALTER TEXT SEARCH CONFIGURATION english
ALTER MAPPING FOR lword WITH synonym, english_stem;
SELECT * FROM ts_debug('english','Paris');
Alias | Description | Token | Dictionaries | Lexized token
-------+-------------+-------+------------------------+------------------
lword | Latin word | Paris | {synonym,english_stem} | synonym: {paris}
(1 row)
</programlisting>
</para>
</sect2>
<sect2 id="textsearch-thesaurus">
<title>Thesaurus Dictionary</title>
<para>
A thesaurus dictionary (sometimes abbreviated as <acronym>TZ</acronym>) is
a collection of words which includes information about the relationships
of words and phrases, i.e., broader terms (<acronym>BT</acronym>), narrower
terms (<acronym>NT</acronym>), preferred terms, non-preferred terms, related
terms, etc.
</para>
<para>
Basically a thesaurus dictionary replaces all non-preferred terms by one
preferred term and, optionally, preserves them for indexing. Thesauruses
are used during indexing so any change in the thesaurus <emphasis>requires</emphasis>
reindexing. The current implementation of the thesaurus
dictionary is an extension of the synonym dictionary with added
<emphasis>phrase</emphasis> support. A thesaurus dictionary requires
a configuration file of the following format:
<programlisting>
# this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...
</programlisting>
where the colon (<symbol>:</symbol>) symbol acts as a delimiter between a
a phrase and its replacement.
</para>
<para>
A thesaurus dictionary uses a <emphasis>subdictionary</emphasis> (which
is defined in the dictionary's configuration) to normalize the input text
before checking for phrase matches. It is only possible to select one
subdictionary. An error is reported if the subdictionary fails to
recognize a word. In that case, you should remove the use of the word or teach
the subdictionary about it. Use an asterisk (<symbol>*</symbol>) at the
beginning of an indexed word to skip the subdictionary. It is still required
that sample words are known.
</para>
<para>
The thesaurus dictionary looks for the longest match.
</para>
<para>
Stop words recognized by the subdictionary are replaced by a 'stop word
placeholder' to record their position. To break possible ties the thesaurus
uses the last definition. To illustrate this, consider a thesaurus (with
a <parameter>simple</parameter> subdictionary) with pattern
<replaceable>swsw</>, where <replaceable>s</> designates any stop word and
<replaceable>w</>, any known word:
<programlisting>
a one the two : swsw
the one a two : swsw2
</programlisting>
Words <literal>a</> and <literal>the</> are stop words defined in the
configuration of a subdictionary. The thesaurus considers <literal>the
one the two</literal> and <literal>that one then two</literal> as equal
and will use definition <replaceable>swsw2</>.
</para>
<para>
As any normal dictionary, it can be assigned to the specific lexeme types.
Since a thesaurus dictionary has the capability to recognize phrases it
must remember its state and interact with the parser. A thesaurus dictionary
uses these assignments to check if it should handle the next word or stop
accumulation. The thesaurus dictionary compiler must be configured
carefully. For example, if the thesaurus dictionary is assigned to handle
only the <token>lword</token> lexeme, then a thesaurus dictionary
definition like ' one 7' will not work since lexeme type
<token>digit</token> is not assigned to the thesaurus dictionary.
</para>
</sect2>
<sect2 id="textsearch-thesaurus-config">
<title>Thesaurus Configuration</title>
<para>
To define a new thesaurus dictionary one can use the thesaurus template.
For example:
<programlisting>
CREATE TEXT SEARCH DICTIONARY thesaurus_simple (
TEMPLATE = thesaurus,
DictFile = mythesaurus,
Dictionary = pg_catalog.english_stem
);
</programlisting>
Here:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
<literal>thesaurus_simple</literal> is the thesaurus dictionary name
</para>
</listitem>
<listitem>
<para>
<literal>mythesaurus</literal> is the base name of the thesaurus file
(its full name will be <filename>$SHAREDIR/tsearch_data/mythesaurus.ths</>,
where <literal>$SHAREDIR</> means the installation shared-data directory,
often <filename>/usr/local/share</>).
</para>
</listitem>
<listitem>
<para>
<literal>pg_catalog.english_stem</literal> is the dictionary (Snowball
English stemmer) to use for thesaurus normalization. Notice that the
<literal>english_stem</> dictionary has its own configuration (for example,
stop words), which is not shown here.
</para>
</listitem>
</itemizedlist>
Now it is possible to bind the thesaurus dictionary <literal>thesaurus_simple</literal>
and selected <literal>tokens</literal>, for example:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION russian
ADD MAPPING FOR lword, lhword, lpart_hword WITH thesaurus_simple;
</programlisting>
</para>
</sect2>
<sect2 id="textsearch-thesaurus-examples">
<title>Thesaurus Example</title>
<para>
Consider a simple astronomical thesaurus <literal>thesaurus_astro</literal>,
which contains some astronomical word combinations:
<programlisting>
supernovae stars : sn
crab nebulae : crab
</programlisting>
Below we create a dictionary and bind some token types with
an astronomical thesaurus and english stemmer:
<programlisting>
CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
TEMPLATE = thesaurus,
DictFile = thesaurus_astro,
Dictionary = english_stem
);
ALTER TEXT SEARCH CONFIGURATION russian
ADD MAPPING FOR lword, lhword, lpart_hword WITH thesaurus_astro, english_stem;
</programlisting>
Now we can see how it works. Note that <function>ts_lexize</function> cannot
be used for testing the thesaurus (see description of
<function>ts_lexize</function>), but we can use
<function>plainto_tsquery</function> and <function>to_tsvector</function>
which accept <literal>text</literal> arguments, not lexemes:
<programlisting>
SELECT plainto_tsquery('supernova star');
plainto_tsquery
-----------------
'sn'
SELECT to_tsvector('supernova star');
to_tsvector
-------------
'sn':1
</programlisting>
In principle, one can use <function>to_tsquery</function> if you quote
the argument:
<programlisting>
SELECT to_tsquery('''supernova star''');
to_tsquery
------------
'sn'
</programlisting>
Notice that <literal>supernova star</literal> matches <literal>supernovae
stars</literal> in <literal>thesaurus_astro</literal> because we specified the
<literal>english_stem</literal> stemmer in the thesaurus definition.
</para>
<para>
To keep an original phrase in full text indexing just add it to the right part
of the definition:
<programlisting>
supernovae stars : sn supernovae stars
SELECT plainto_tsquery('supernova star');
plainto_tsquery
-----------------------------
'sn' & 'supernova' & 'star'
</programlisting>
</para>
</sect2>
<sect2 id="textsearch-ispell-dictionary">
<title>Ispell Dictionary</title>
<para>
The <application>Ispell</> template dictionary for full text allows the
creation of morphological dictionaries based on <ulink
url="http://ficus-www.cs.ucla.edu/geoff/ispell.html">Ispell</ulink>, which
supports a large number of languages. This dictionary tries to change an
input word to its normalized form. Also, more modern spelling dictionaries
are supported - <ulink
url="http://en.wikipedia.org/wiki/MySpell">MySpell</ulink> (OO < 2.0.1)
and <ulink url="http://sourceforge.net/projects/hunspell">Hunspell</ulink>
(OO >= 2.0.2). A large list of dictionaries is available on the <ulink
url="http://wiki.services.openoffice.org/wiki/Dictionaries">OpenOffice
Wiki</ulink>.
</para>
<para>
The <application>Ispell</> dictionary allows searches without bothering
about different linguistic forms of a word. For example, a search on
<literal>bank</literal> would return hits of all declensions and
conjugations of the search term <literal>bank</literal>, e.g.
<literal>banking</>, <literal>banked</>, <literal>banks</>,
<literal>banks'</>, and <literal>bank's</>.
<programlisting>
SELECT ts_lexize('english_ispell','banking');
ts_lexize
-----------
{bank}
SELECT ts_lexize('english_ispell','bank''s');
ts_lexize
-----------
{bank}
SELECT ts_lexize('english_ispell','banked');
ts_lexize
-----------
{bank}
</programlisting>
</para>
<para>
To create an ispell dictionary one should use the built-in
<literal>ispell</literal> dictionary and specify several
parameters.
</para>
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
);
</programlisting>
<para>
Here, <literal>DictFile</>, <literal>AffFile</>, and <literal>StopWords</>
specify the names of the dictionary, affixes, and stop-words files.
</para>
<para>
Ispell dictionaries usually recognize a restricted set of words so they
should be used in conjunction with another broader dictionary; for
example, a stemming dictionary, which recognizes everything.
</para>
<para>
Ispell dictionaries support splitting compound words based on an
ispell dictionary. This is a nice feature and full text searching
in <productname>PostgreSQL</productname> supports it.
Notice that the affix file should specify a special flag using the
<literal>compoundwords controlled</literal> statement that marks dictionary
words that can participate in compound formation:
<programlisting>
compoundwords controlled z
</programlisting>
Several examples for the Norwegian language:
<programlisting>
SELECT ts_lexize('norwegian_ispell','overbuljongterningpakkmesterassistent');
{over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell','sjokoladefabrikk');
{sjokoladefabrikk,sjokolade,fabrikk}
</programlisting>
</para>
<note>
<para>
<application>MySpell</> does not support compound words.
<application>Hunspell</> has sophisticated support for compound words. At
present, full text searching implements only the basic compound word
operations of Hunspell.
</para>
</note>
</sect2>
<sect2 id="textsearch-stemming-dictionary">
<title><application>Snowball</> Stemming Dictionary</title>
<para>
The <application>Snowball</> dictionary template is based on the project
of Martin Porter, inventor of the popular Porter's stemming algorithm
for the English language and now supported in many languages (see the <ulink
url="http://snowball.tartarus.org">Snowball site</ulink> for more
information). The Snowball project supplies a large number of stemmers for
many languages. A Snowball dictionary requires a language parameter to
identify which stemmer to use, and optionally can specify a stopword file name.
For example, there is a built-in definition equivalent to
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_stem (
TEMPLATE = snowball, Language = english, StopWords = english
);
</programlisting>
</para>
<para>
The <application>Snowball</> dictionary recognizes everything, so it is best
to place it at the end of the dictionary stack. It it useless to have it
before any other dictionary because a lexeme will never pass through it to
the next dictionary.
</para>
</sect2>
<sect2 id="textsearch-dictionary-testing">
<title>Dictionary Testing</title>
<para>
The <function>ts_lexize</> function facilitates dictionary testing:
<variablelist>
<varlistentry>
<indexterm zone="textsearch-dictionaries">
<primary>ts_lexize</primary>
</indexterm>
<term>
<synopsis>
ts_lexize(<replaceable class="PARAMETER">dict_name</replaceable> text, <replaceable class="PARAMETER">lexeme</replaceable> text) returns text[]
</synopsis>
</term>
<listitem>
<para>
Returns an array of lexemes if the input <replaceable>lexeme</replaceable>
is known to the dictionary <replaceable>dictname</replaceable>, or a void
array if the lexeme is known to the dictionary but it is a stop word, or
<literal>NULL</literal> if it is an unknown word.
</para>
<programlisting>
SELECT ts_lexize('english_stem', 'stars');
ts_lexize
-----------
{star}
SELECT ts_lexize('english_stem', 'a');
ts_lexize
-----------
{}
</programlisting>
</listitem>
</varlistentry>
</variablelist>
</para>
<note>
<para>
The <function>ts_lexize</function> function expects a
<replaceable>lexeme</replaceable>, not text. Below is an example:
<programlisting>
SELECT ts_lexize('thesaurus_astro','supernovae stars') is null;
?column?
----------
t
</programlisting>
The thesaurus dictionary <literal>thesaurus_astro</literal> does know
<literal>supernovae stars</literal>, but <function>ts_lexize</> fails since it
does not parse the input text and considers it as a single lexeme. Use
<function>plainto_tsquery</> and <function>to_tsvector</> to test thesaurus
dictionaries:
<programlisting>
SELECT plainto_tsquery('supernovae stars');
plainto_tsquery
-----------------
'sn'
</programlisting>
</para>
</note>
</sect2>
<sect2 id="textsearch-tables-configuration">
<title>Configuration Example</title>
<para>
A full text configuration specifies all options necessary to transform a
document into a <type>tsvector</type>: the parser breaks text into tokens,
and the dictionaries transform each token into a lexeme. Every call to
<function>to_tsvector()</function> and <function>to_tsquery()</function>
needs a configuration to perform its processing. To facilitate management
of full text searching objects, a set of <acronym>SQL</acronym> commands
is available, and there are several psql commands which display information
about full text searching objects (<xref linkend="textsearch-psql">).
</para>
<para>
The configuration parameter
<xref linkend="guc-default-text-search-config">
specifies the name of the current default configuration, which is the
one used by text search functions when an explicit configuration
parameter is omitted.
It can be set in <filename>postgresql.conf</filename>, or set for an
individual session using the <command>SET</> command.
</para>
<para>
Several predefined text searching configurations are available in the
<literal>pg_catalog</literal> schema. If you need a custom configuration
you can create a new text searching configuration and modify it using SQL
commands.
</para>
<para>
New text searching objects are created in the current schema by default
(usually the <literal>public</literal> schema), but a schema-qualified
name can be used to create objects in the specified schema.
</para>
<para>
As an example, we will create a configuration
<literal>pg</literal> which starts as a duplicate of the
<literal>english</> configuration. To be safe, we do this in a transaction:
<programlisting>
BEGIN;
CREATE TEXT SEARCH CONFIGURATION public.pg ( COPY = english );
</programlisting>
</para>
<para>
We will use a PostgreSQL-specific synonym list
and store it in <filename>share/tsearch_data/pg_dict.syn</filename>.
The file contents look like:
<programlisting>
postgres pg
pgsql pg
postgresql pg
</programlisting>
We define the dictionary like this:
<programlisting>
CREATE TEXT SEARCH DICTIONARY pg_dict (
TEMPLATE = synonym
SYNONYMS = pg_dict
);
</programlisting>
</para>
<para>
Then register the <productname>ispell</> dictionary
<literal>english_ispell</literal> using the <literal>ispell</literal> template:
<programlisting>
CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
);
</programlisting>
</para>
<para>
Now modify mappings for Latin words for configuration <literal>pg</>:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION pg
ALTER MAPPING FOR lword, lhword, lpart_hword
WITH pg_dict, english_ispell, english_stem;
</programlisting>
</para>
<para>
We do not index or search some tokens:
<programlisting>
ALTER TEXT SEARCH CONFIGURATION pg
DROP MAPPING FOR email, url, sfloat, uri, float;
</programlisting>
</para>
<para>
Now, we can test our configuration:
<programlisting>
SELECT * FROM ts_debug('public.pg', '
PostgreSQL, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software: PostgreSQL 8.3.
');
COMMIT;
</programlisting>
</para>
<para>
With the dictionaries and mappings set up, suppose we have a table
<literal>pgweb</literal> which contains 11239 documents from the
<productname>PostgreSQL</productname> web site. Only relevant columns
are shown:
<programlisting>
=> \d pgweb
Table "public.pgweb"
Column | Type | Modifiers
-----------+-------------------+-----------
tid | integer | not null
path | character varying | not null
body | character varying |
title | character varying |
dlm | date |
</programlisting>
</para>
<para>
The next step is to set the session to use the new configuration, which was
created in the <literal>public</> schema:
<programlisting>
=> \dF
List of fulltext configurations
Schema | Name | Description
---------+------+-------------
public | pg |
SET default_text_search_config = 'public.pg';
SET
SHOW default_text_search_config;
default_text_search_config
----------------------------
public.pg
</programlisting>
</para>
</sect2>
<sect2 id="textsearch-tables-multiconfig">
<title>Managing Multiple Configurations</title>
<para>
If you are using the same text search configuration for the entire cluster
just set the value in <filename>postgresql.conf</>. If using a single
text search configuration for an entire database, use <command>ALTER
DATABASE ... SET</>.
</para>
<para>
However, if you need to use several text search configurations in the same
database you must be careful to reference the proper text search
configuration. This can be done by either setting
<varname>default_text_search_config</> in each session or supplying the
configuration name in every function call, e.g. to_tsquery('french',
'friend'), to_tsvector('english', col). If you are using an expression
index you must embed the configuration name into the expression index, e.g.:
<programlisting>
CREATE INDEX pgweb_idx ON pgweb USING gin(to_tsvector('french', title || body));
</programlisting>
And for an expression index, specify the configuration name in the
<literal>WHERE</> clause as well so the expression index will be used.
</para>
</sect2>
</sect1>
<sect1 id="textsearch-indexes">
<title>GiST and GIN Index Types</title>
<indexterm zone="textsearch-indexes">
<primary>index</primary>
<secondary>full text</secondary>
</indexterm>
<para>
There are two kinds of indexes which can be used to speed up full text
operators (<xref linkend="textsearch-searches">).
Note that indexes are not mandatory for full text searching.
<variablelist>
<varlistentry>
<indexterm zone="textsearch-indexes">
<primary>index</primary>
<secondary>GIST, for text searching</secondary>
</indexterm>
<term>
<synopsis>
CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING gist(<replaceable>column</replaceable>);
</synopsis>
</term>
<listitem>
<para>
Creates a GiST (Generalized Search Tree)-based index.
The <replaceable>column</replaceable> can be of <type>tsvector</> or
<type>tsquery</> type.
</para>
</listitem>
</varlistentry>
<varlistentry>
<indexterm zone="textsearch-indexes">
<primary>index</primary>
<secondary>GIN</secondary>
</indexterm>
<term>
<synopsis>
CREATE INDEX <replaceable>name</replaceable> ON <replaceable>table</replaceable> USING gin(<replaceable>column</replaceable>);
</synopsis>
</term>
<listitem>
<para>
Creates a GIN (Generalized Inverted Index)-based index.
The <replaceable>column</replaceable> must be of <type>tsvector</> type.
</para>
</listitem>
</varlistentry>
</variablelist>
</para>
<para>
A GiST index is <firstterm>lossy</firstterm>, meaning it is necessary
to check the actual table row to eliminate false matches.
<productname>PostgreSQL</productname> does this automatically; for
example, in the query plan below, the <literal>Filter:</literal>
line indicates the index output will be rechecked:
<programlisting>
EXPLAIN SELECT * FROM apod WHERE textsearch @@ to_tsquery('supernovae');
QUERY PLAN
-------------------------------------------------------------------------
Index Scan using textsearch_gidx on apod (cost=0.00..12.29 rows=2 width=1469)
Index Cond: (textsearch @@ '''supernova'''::tsquery)
Filter: (textsearch @@ '''supernova'''::tsquery)
</programlisting>
GiST index lossiness happens because each document is represented by a
fixed-length signature. The signature is generated by hashing (crc32) each
word into a random bit in an n-bit string and all words combine to produce
an n-bit document signature. Because of hashing there is a chance that
some words hash to the same position and could result in a false hit.
Signatures calculated for each document in a collection are stored in an
<literal>RD-tree</literal> (Russian Doll tree), invented by Hellerstein,
which is an adaptation of <literal>R-tree</literal> for sets. In our case
the transitive containment relation <!-- huh --> is realized by
superimposed coding (Knuth, 1973) of signatures, i.e., a parent is the
result of 'OR'-ing the bit-strings of all children. This is a second
factor of lossiness. It is clear that parents tend to be full of
<literal>1</>s (degenerates) and become quite useless because of the
limited selectivity. Searching is performed as a bit comparison of a
signature representing the query and an <literal>RD-tree</literal> entry.
If all <literal>1</>s of both signatures are in the same position we
say that this branch probably matches the query, but if there is even one
discrepancy we can definitely reject this branch.
</para>
<para>
Lossiness causes serious performance degradation since random access of
<literal>heap</literal> records is slow and limits the usefulness of GiST
indexes. The likelihood of false hits depends on several factors, like
the number of unique words, so using dictionaries to reduce this number
is recommended.
</para>
<para>
Actually, this is not the whole story. GiST indexes have an optimization
for storing small tsvectors (< <literal>TOAST_INDEX_TARGET</literal>
bytes, 512 bytes). On leaf pages small tsvectors are stored unchanged,
while longer ones are represented by their signatures, which introduces
some lossiness. Unfortunately, the existing index API does not allow for
a return value to say whether it found an exact value (tsvector) or whether
the result needs to be checked. This is why the GiST index is
currently marked as lossy. We hope to improve this in the future.
</para>
<para>
GIN indexes are not lossy but their performance depends logarithmically on
the number of unique words.
</para>
<para>
There is one side-effect of the non-lossiness of a GIN index when using
query labels/weights, like <literal>'supernovae:a'</literal>. A GIN index
has all the information necessary to determine a match, so the heap is
not accessed. However, label information is not stored in the index,
so if the query involves label weights it must access
the heap. Therefore, a special full text search operator <literal>@@@</literal>
was created which forces the use of the heap to get information about
labels. GiST indexes are lossy so it always reads the heap and there is
no need for a special operator. In the example below,
<literal>fulltext_idx</literal> is a GIN index:<!-- why isn't this
automatic -->
<programlisting>
EXPLAIN SELECT * FROM apod WHERE textsearch @@@ to_tsquery('supernovae:a');
QUERY PLAN
------------------------------------------------------------------------
Index Scan using textsearch_idx on apod (cost=0.00..12.30 rows=2 width=1469)
Index Cond: (textsearch @@@ '''supernova'':A'::tsquery)
Filter: (textsearch @@@ '''supernova'':A'::tsquery)
</programlisting>
</para>
<para>
In choosing which index type to use, GiST or GIN, consider these differences:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
GiN index lookups are three times faster than GiST
</para>
</listitem>
<listitem>
<para>
GiN indexes take three times longer to build than GiST
</para>
</listitem>
<listitem>
<para>
GiN is about ten times slower to update than GiST
</para>
</listitem>
<listitem>
<para>
GiN indexes are two-to-three times larger than GiST
</para>
</listitem>
</itemizedlist>
</para>
<para>
In summary, <acronym>GIN</acronym> indexes are best for static data because
the indexes are faster for lookups. For dynamic data, GiST indexes are
faster to update. Specifically, <acronym>GiST</acronym> indexes are very
good for dynamic data and fast if the number of unique words (lexemes) is
under 100,000, while <acronym>GIN</acronym> handles +100,000 lexemes better
but is slower to update.
</para>
<para>
Partitioning of big collections and the proper use of GiST and GIN indexes
allows the implementation of very fast searches with online update.
Partitioning can be done at the database level using table inheritance
and <varname>constraint_exclusion</>, or distributing documents over
servers and collecting search results using the <filename>contrib/dblink</>
extension module. The latter is possible because ranking functions use
only local information.
</para>
</sect1>
<sect1 id="textsearch-limitations">
<title>Limitations</title>
<para>
The current limitations of Full Text Searching are:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>The length of each lexeme must be less than 2K bytes </para>
</listitem>
<listitem>
<para>The length of a <type>tsvector</type> (lexemes + positions) must be less than 1 megabyte </para>
</listitem>
<listitem>
<para>The number of lexemes must be less than 2<superscript>64</superscript> </para>
</listitem>
<listitem>
<para>Positional information must be non-negative and less than 16,383 </para>
</listitem>
<listitem>
<para>No more than 256 positions per lexeme </para>
</listitem>
<listitem>
<para>The number of nodes (lexemes + operations) in tsquery must be less than 32,768 </para>
</listitem>
</itemizedlist>
</para>
<para>
For comparison, the <productname>PostgreSQL</productname> 8.1 documentation
contained 10,441 unique words, a total of 335,420 words, and the most frequent
word <quote>postgresql</> was mentioned 6,127 times in 655 documents.
</para>
<!-- TODO we need to put a date on these numbers? -->
<para>
Another example — the <productname>PostgreSQL</productname> mailing list
archives contained 910,989 unique words with 57,491,343 lexemes in 461,020
messages.
</para>
</sect1>
<sect1 id="textsearch-psql">
<title><application>psql</> Support</title>
<para>
Information about full text searching objects can be obtained
in <literal>psql</literal> using a set of commands:
<synopsis>
\dF{,d,p}<optional>+</optional> <optional>PATTERN</optional>
</synopsis>
An optional <literal>+</literal> produces more details.
</para>
<para>
The optional parameter <literal>PATTERN</literal> should be the name of
a full text searching object, optionally schema-qualified. If
<literal>PATTERN</literal> is not specified then information about all
visible objects will be displayed. <literal>PATTERN</literal> can be a
regular expression and can apply <emphasis>separately</emphasis> to schema
names and object names. The following examples illustrate this:
<programlisting>
=> \dF *fulltext*
List of fulltext configurations
Schema | Name | Description
--------+--------------+-------------
public | fulltext_cfg |
</programlisting>
<programlisting>
=> \dF *.fulltext*
List of fulltext configurations
Schema | Name | Description
----------+----------------------------
fulltext | fulltext_cfg |
public | fulltext_cfg |
</programlisting>
</para>
<variablelist>
<varlistentry>
<term>\dF[+] [PATTERN]</term>
<listitem>
<para>
List full text searching configurations (add "+" for more detail)
</para>
<para>
By default (without <literal>PATTERN</literal>), information about
all <emphasis>visible</emphasis> full text configurations will be
displayed.
</para>
<para>
<programlisting>
=> \dF russian
List of fulltext configurations
Schema | Name | Description
------------+---------+-----------------------------------
pg_catalog | russian | default configuration for Russian
=> \dF+ russian
Configuration "pg_catalog.russian"
Parser name: "pg_catalog.default"
Token | Dictionaries
--------------+-------------------------
email | pg_catalog.simple
file | pg_catalog.simple
float | pg_catalog.simple
host | pg_catalog.simple
hword | pg_catalog.russian_stem
int | pg_catalog.simple
lhword | public.tz_simple
lpart_hword | public.tz_simple
lword | public.tz_simple
nlhword | pg_catalog.russian_stem
nlpart_hword | pg_catalog.russian_stem
nlword | pg_catalog.russian_stem
part_hword | pg_catalog.simple
sfloat | pg_catalog.simple
uint | pg_catalog.simple
uri | pg_catalog.simple
url | pg_catalog.simple
version | pg_catalog.simple
word | pg_catalog.russian_stem
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>\dFd[+] [PATTERN]</term>
<listitem>
<para>
List full text dictionaries (add "+" for more detail).
</para>
<para>
By default (without <literal>PATTERN</literal>), information about
all <emphasis>visible</emphasis> dictionaries will be displayed.
</para>
<para>
<programlisting>
=> \dFd
List of fulltext dictionaries
Schema | Name | Description
------------+------------+-----------------------------------------------------------
pg_catalog | danish | Snowball stemmer for danish language
pg_catalog | dutch | Snowball stemmer for dutch language
pg_catalog | english | Snowball stemmer for english language
pg_catalog | finnish | Snowball stemmer for finnish language
pg_catalog | french | Snowball stemmer for french language
pg_catalog | german | Snowball stemmer for german language
pg_catalog | hungarian | Snowball stemmer for hungarian language
pg_catalog | italian | Snowball stemmer for italian language
pg_catalog | norwegian | Snowball stemmer for norwegian language
pg_catalog | portuguese | Snowball stemmer for portuguese language
pg_catalog | romanian | Snowball stemmer for romanian language
pg_catalog | russian | Snowball stemmer for russian language
pg_catalog | simple | simple dictionary: just lower case and check for stopword
pg_catalog | spanish | Snowball stemmer for spanish language
pg_catalog | swedish | Snowball stemmer for swedish language
pg_catalog | turkish | Snowball stemmer for turkish language
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>\dFp[+] [PATTERN]</term>
<listitem>
<para>
List full text parsers (add "+" for more detail)
</para>
<para>
By default (without <literal>PATTERN</literal>), information about
all <emphasis>visible</emphasis> full text parsers will be displayed.
</para>
<para>
<programlisting>
=> \dFp
List of fulltext parsers
Schema | Name | Description
------------+---------+---------------------
pg_catalog | default | default word parser
(1 row)
=> \dFp+
Fulltext parser "pg_catalog.default"
Method | Function | Description
-------------------+---------------------------+-------------
Start parse | pg_catalog.prsd_start |
Get next token | pg_catalog.prsd_nexttoken |
End parse | pg_catalog.prsd_end |
Get headline | pg_catalog.prsd_headline |
Get lexeme's type | pg_catalog.prsd_lextype |
Token's types for parser "pg_catalog.default"
Token name | Description
--------------+-----------------------------------
blank | Space symbols
email | Email
entity | HTML Entity
file | File or path name
float | Decimal notation
host | Host
hword | Hyphenated word
int | Signed integer
lhword | Latin hyphenated word
lpart_hword | Latin part of hyphenated word
lword | Latin word
nlhword | Non-latin hyphenated word
nlpart_hword | Non-latin part of hyphenated word
nlword | Non-latin word
part_hword | Part of hyphenated word
protocol | Protocol head
sfloat | Scientific notation
tag | HTML Tag
uint | Unsigned integer
uri | URI
url | URL
version | VERSION
word | Word
(23 rows)
</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="textsearch-debugging">
<title>Debugging</title>
<para>
Function <function>ts_debug</function> allows easy testing of your full text searching
configuration.
</para>
<synopsis>
ts_debug(<optional><replaceable class="PARAMETER">config_name</replaceable></optional>, <replaceable class="PARAMETER">document</replaceable> TEXT) returns SETOF ts_debug
</synopsis>
<para>
<function>ts_debug</> displays information about every token of
<replaceable class="PARAMETER">document</replaceable> as produced by the
parser and processed by the configured dictionaries using the configuration
specified by <replaceable class="PARAMETER">config_name</replaceable>.
</para>
<para>
<replaceable class="PARAMETER">ts_debug</replaceable> type defined as:
<programlisting>
CREATE TYPE ts_debug AS (
"Alias" text,
"Description" text,
"Token" text,
"Dictionaries" regdictionary[],
"Lexized token" text
);
</programlisting>
</para>
<para>
For a demonstration of how function <function>ts_debug</function> works we
first create a <literal>public.english</literal> configuration and
ispell dictionary for the English language. You can skip the test step and
play with the standard <literal>english</literal> configuration.
</para>
<programlisting>
CREATE TEXT SEARCH CONFIGURATION public.english ( COPY = pg_catalog.english );
CREATE TEXT SEARCH DICTIONARY english_ispell (
TEMPLATE = ispell,
DictFile = english,
AffFile = english,
StopWords = english
);
ALTER TEXT SEARCH CONFIGURATION public.english
ALTER MAPPING FOR lword WITH english_ispell, english_stem;
</programlisting>
<programlisting>
SELECT * FROM ts_debug('public.english','The Brightest supernovaes');
Alias | Description | Token | Dicts list | Lexized token
-------+---------------+-------------+---------------------------------------+---------------------------------
lword | Latin word | The | {public.english_ispell,pg_catalog.english_stem} | public.english_ispell: {}
blank | Space symbols | | |
lword | Latin word | Brightest | {public.english_ispell,pg_catalog.english_stem} | public.english_ispell: {bright}
blank | Space symbols | | |
lword | Latin word | supernovaes | {public.english_ispell,pg_catalog.english_stem} | pg_catalog.english_stem: {supernova}
(5 rows)
</programlisting>
<para>
In this example, the word <literal>Brightest</> was recognized by a
parser as a <literal>Latin word</literal> (alias <literal>lword</literal>)
and came through the dictionaries <literal>public.english_ispell</> and
<literal>pg_catalog.english_stem</literal>. It was recognized by
<literal>public.english_ispell</literal>, which reduced it to the noun
<literal>bright</literal>. The word <literal>supernovaes</literal> is unknown
by the <literal>public.english_ispell</literal> dictionary so it was passed to
the next dictionary, and, fortunately, was recognized (in fact,
<literal>public.english_stem</literal> is a stemming dictionary and recognizes
everything; that is why it was placed at the end of the dictionary stack).
</para>
<para>
The word <literal>The</literal> was recognized by <literal>public.english_ispell</literal>
dictionary as a stop word (<xref linkend="textsearch-stopwords">) and will not be indexed.
</para>
<para>
You can always explicitly specify which columns you want to see:
<programlisting>
SELECT "Alias", "Token", "Lexized token"
FROM ts_debug('public.english','The Brightest supernovaes');
Alias | Token | Lexized token
-------+-------------+---------------------------------
lword | The | public.english_ispell: {}
blank | |
lword | Brightest | public.english_ispell: {bright}
blank | |
lword | supernovaes | pg_catalog.english_stem: {supernova}
(5 rows)
</programlisting>
</para>
</sect1>
<sect1 id="textsearch-rule-dictionary-example">
<title>Example of Creating a Rule-Based Dictionary</title>
<para>
The motivation for this example dictionary is to control the indexing of
integers (signed and unsigned), and, consequently, to minimize the number
of unique words which greatly affects to performance of searching.
</para>
<para>
The dictionary accepts two options:
<itemizedlist spacing="compact" mark="bullet">
<listitem>
<para>
The <LITERAL>MAXLEN</literal> parameter specifies the maximum length of the
number considered as a 'good' integer. The default value is 6.
</para>
</listitem>
<listitem>
<para>
The <LITERAL>REJECTLONG</LITERAL> parameter specifies if a 'long' integer
should be indexed or treated as a stop word. If
<literal>REJECTLONG</literal>=<LITERAL>FALSE</LITERAL> (default),
the dictionary returns the prefixed part of the integer with length
<LITERAL>MAXLEN</literal>. If
<LITERAL>REJECTLONG</LITERAL>=<LITERAL>TRUE</LITERAL>, the dictionary
considers a long integer as a stop word.
</para>
</listitem>
</itemizedlist>
</para>
<para>
A similar idea can be applied to the indexing of decimal numbers, for
example, in the <literal>DecDict</literal> dictionary. The dictionary
accepts two options: the <literal>MAXLENFRAC</literal> parameter specifies
the maximum length of the fractional part considered as a 'good' decimal.
The default value is 3. The <literal>REJECTLONG</literal> parameter
controls whether a decimal number with a 'long' fractional part should be indexed
or treated as a stop word. If
<literal>REJECTLONG</literal>=<literal>FALSE</literal> (default),
the dictionary returns the decimal number with the length of its fraction part
truncated to <literal>MAXLEN</literal>. If
<literal>REJECTLONG</literal>=<literal>TRUE</literal>, the dictionary
considers the number as a stop word. Notice that
<literal>REJECTLONG</literal>=<literal>FALSE</literal> allows the indexing
of 'shortened' numbers and search results will contain documents with
shortened numbers.
</para>
<para>
Examples:
<programlisting>
SELECT ts_lexize('intdict', 11234567890);
ts_lexize
-----------
{112345}
</programlisting>
</para>
<para>
Now, we want to ignore long integers:
<programlisting>
ALTER TEXT SEARCH DICTIONARY intdict (
MAXLEN = 6, REJECTLONG = TRUE
);
SELECT ts_lexize('intdict', 11234567890);
ts_lexize
-----------
{}
</programlisting>
</para>
<para>
Create <filename>contrib/dict_intdict</> directory with files
<filename>dict_tmpl.c</>, <filename>Makefile</>, <filename>dict_intdict.sql.in</>:
<programlisting>
$ make && make install
$ psql DBNAME < dict_intdict.sql
</programlisting>
</para>
<para>
This is a <filename>dict_tmpl.c</> file:
</para>
<programlisting>
#include "postgres.h"
#include "utils/builtins.h"
#include "fmgr.h"
#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif
#include "utils/ts_locale.h"
#include "utils/ts_public.h"
#include "utils/ts_utils.h"
typedef struct {
int maxlen;
bool rejectlong;
} DictInt;
PG_FUNCTION_INFO_V1(dinit_intdict);
Datum dinit_intdict(PG_FUNCTION_ARGS);
Datum
dinit_intdict(PG_FUNCTION_ARGS) {
DictInt *d = (DictInt*)malloc( sizeof(DictInt) );
Map *cfg, *pcfg;
text *in;
if (!d)
elog(ERROR, "No memory");
memset(d, 0, sizeof(DictInt));
/* Your INIT code */
/* defaults */
d->maxlen = 6;
d->rejectlong = false;
if (PG_ARGISNULL(0) || PG_GETARG_POINTER(0) == NULL) /* no options */
PG_RETURN_POINTER(d);
in = PG_GETARG_TEXT_P(0);
parse_keyvalpairs(in, &cfg);
PG_FREE_IF_COPY(in, 0);
pcfg=cfg;
while (pcfg->key)
{
if (strcasecmp("MAXLEN", pcfg->key) == 0)
d->maxlen=atoi(pcfg->value);
else if ( strcasecmp("REJECTLONG", pcfg->key) == 0)
{
if ( strcasecmp("true", pcfg->value) == 0 )
d->rejectlong=true;
else if ( strcasecmp("false", pcfg->value) == 0)
d->rejectlong=false;
else
elog(ERROR,"Unknown value: %s => %s", pcfg->key, pcfg->value);
}
else
elog(ERROR,"Unknown option: %s => %s", pcfg->key, pcfg->value);
pfree(pcfg->key);
pfree(pcfg->value);
pcfg++;
}
pfree(cfg);
PG_RETURN_POINTER(d);
}
PG_FUNCTION_INFO_V1(dlexize_intdict);
Datum dlexize_intdict(PG_FUNCTION_ARGS);
Datum
dlexize_intdict(PG_FUNCTION_ARGS)
{
DictInt *d = (DictInt*)PG_GETARG_POINTER(0);
char *in = (char*)PG_GETARG_POINTER(1);
char *txt = pnstrdup(in, PG_GETARG_INT32(2));
TSLexeme *res = palloc(sizeof(TSLexeme) * 2);
/* Your INIT dictionary code */
res[1].lexeme = NULL;
if (PG_GETARG_INT32(2) > d->maxlen)
{
if (d->rejectlong)
{ /* stop, return void array */
pfree(txt);
res[0].lexeme = NULL;
}
else
{ /* cut integer */
txt[d->maxlen] = '\0';
res[0].lexeme = txt;
}
}
else
res[0].lexeme = txt;
PG_RETURN_POINTER(res);
}
</programlisting>
<para>
This is the <literal>Makefile</literal>:
<programlisting>
subdir = contrib/dict_intdict
top_builddir = ../..
include $(top_builddir)/src/Makefile.global
MODULE_big = dict_intdict
OBJS = dict_tmpl.o
DATA_built = dict_intdict.sql
DOCS =
include $(top_srcdir)/contrib/contrib-global.mk
</programlisting>
</para>
<para>
This is a <literal>dict_intdict.sql.in</literal>:
<programlisting>
SET default_text_search_config = 'english';
BEGIN;
CREATE OR REPLACE FUNCTION dinit_intdict(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE 'C';
CREATE OR REPLACE FUNCTION dlexize_intdict(internal,internal,internal,internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE 'C'
WITH (isstrict);
CREATE TEXT SEARCH TEMPLATE intdict_template (
LEXIZE = dlexize_intdict, INIT = dinit_intdict
);
CREATE TEXT SEARCH DICTIONARY intdict (
TEMPLATE = intdict_template,
MAXLEN = 6, REJECTLONG = false
);
COMMENT ON TEXT SEARCH DICTIONARY intdict IS 'Dictionary for Integers';
END;
</programlisting>
</para>
</sect1>
<sect1 id="textsearch-parser-example">
<title>Example of Creating a Parser</title>
<para>
<acronym>SQL</acronym> command <literal>CREATE TEXT SEARCH PARSER</literal> creates
a parser for full text searching. In our example we will implement
a simple parser which recognizes space-delimited words and
has only two types (3, word, Word; 12, blank, Space symbols). Identifiers
were chosen to keep compatibility with the default <function>headline()</function> function
since we do not implement our own version.
</para>
<para>
To implement a parser one needs to create a minimum of four functions.
</para>
<variablelist>
<varlistentry>
<term>
<synopsis>
START = <replaceable class="PARAMETER">start_function</replaceable>
</synopsis>
</term>
<listitem>
<para>
Initialize the parser. Arguments are a pointer to the parsed text and its
length.
</para>
<para>
Returns a pointer to the internal structure of a parser. Note that it should
be <function>malloc</>ed or <function>palloc</>ed in the
<literal>TopMemoryContext</>. We name it <literal>ParserState</>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<synopsis>
GETTOKEN = <replaceable class="PARAMETER">gettoken_function</replaceable>
</synopsis>
</term>
<listitem>
<para>
Returns the next token.
Arguments are <literal>ParserState *, char **, int *</literal>.
</para>
<para>
This procedure will be called as long as the procedure returns token type zero.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<synopsis>
END = <replaceable class="PARAMETER">end_function</replaceable>,
</synopsis>
</term>
<listitem>
<para>
This void function will be called after parsing is finished to free
allocated resources in this procedure (<literal>ParserState</>). The argument
is <literal>ParserState *</literal>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>
<synopsis>
LEXTYPES = <replaceable class="PARAMETER">lextypes_function</replaceable>
</synopsis>
</term>
<listitem>
<para>
Returns an array containing the id, alias, and the description of the tokens
in the parser. See <structname>LexDescr</structname> in <filename>src/include/utils/ts_public.h</>.
</para>
</listitem>
</varlistentry>
</variablelist>
<para>
Below is the source code of our test parser, organized as a <filename>contrib</> module.
</para>
<para>
Testing:
<programlisting>
SELECT * FROM ts_parse('testparser','That''s my first own parser');
tokid | token
-------+--------
3 | That's
12 |
3 | my
12 |
3 | first
12 |
3 | own
12 |
3 | parser
SELECT to_tsvector('testcfg','That''s my first own parser');
to_tsvector
-------------------------------------------------
'my':2 'own':4 'first':3 'parser':5 'that''s':1
SELECT ts_headline('testcfg','Supernovae stars are the brightest phenomena in galaxies', to_tsquery('testcfg', 'star'));
headline
-----------------------------------------------------------------
Supernovae <b>stars</b> are the brightest phenomena in galaxies
</programlisting>
</para>
<para>
This test parser is an example adopted from a tutorial by Valli, <ulink
url="http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/docs/HOWTO-parser-tsearch2.html">parser
HOWTO</ulink>.
</para>
<para>
To compile the example just do:
<programlisting>
$ make
$ make install
$ psql regression < test_parser.sql
</programlisting>
</para>
<para>
This is a <filename>test_parser.c</>:
<programlisting>
#ifdef PG_MODULE_MAGIC
PG_MODULE_MAGIC;
#endif
/*
* types
*/
/* self-defined type */
typedef struct {
char * buffer; /* text to parse */
int len; /* length of the text in buffer */
int pos; /* position of the parser */
} ParserState;
/* copy-paste from wparser.h of tsearch2 */
typedef struct {
int lexid;
char *alias;
char *descr;
} LexDescr;
/*
* prototypes
*/
PG_FUNCTION_INFO_V1(testprs_start);
Datum testprs_start(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(testprs_getlexeme);
Datum testprs_getlexeme(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(testprs_end);
Datum testprs_end(PG_FUNCTION_ARGS);
PG_FUNCTION_INFO_V1(testprs_lextype);
Datum testprs_lextype(PG_FUNCTION_ARGS);
/*
* functions
*/
Datum testprs_start(PG_FUNCTION_ARGS)
{
ParserState *pst = (ParserState *) palloc(sizeof(ParserState));
pst->buffer = (char *) PG_GETARG_POINTER(0);
pst->len = PG_GETARG_INT32(1);
pst->pos = 0;
PG_RETURN_POINTER(pst);
}
Datum testprs_getlexeme(PG_FUNCTION_ARGS)
{
ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
char **t = (char **) PG_GETARG_POINTER(1);
int *tlen = (int *) PG_GETARG_POINTER(2);
int type;
*tlen = pst->pos;
*t = pst->buffer + pst->pos;
if ((pst->buffer)[pst->pos] == ' ')
{
/* blank type */
type = 12;
/* go to the next non-white-space character */
while ((pst->buffer)[pst->pos] == ' ' &&
pst->pos < pst->len)
(pst->pos)++;
} else {
/* word type */
type = 3;
/* go to the next white-space character */
while ((pst->buffer)[pst->pos] != ' ' &&
pst->pos < pst->len)
(pst->pos)++;
}
*tlen = pst->pos - *tlen;
/* we are finished if (*tlen == 0) */
if (*tlen == 0)
type=0;
PG_RETURN_INT32(type);
}
Datum testprs_end(PG_FUNCTION_ARGS)
{
ParserState *pst = (ParserState *) PG_GETARG_POINTER(0);
pfree(pst);
PG_RETURN_VOID();
}
Datum testprs_lextype(PG_FUNCTION_ARGS)
{
/*
Remarks:
- we have to return the blanks for headline reason
- we use the same lexids like Teodor in the default
word parser; in this way we can reuse the headline
function of the default word parser.
*/
LexDescr *descr = (LexDescr *) palloc(sizeof(LexDescr) * (2+1));
/* there are only two types in this parser */
descr[0].lexid = 3;
descr[0].alias = pstrdup("word");
descr[0].descr = pstrdup("Word");
descr[1].lexid = 12;
descr[1].alias = pstrdup("blank");
descr[1].descr = pstrdup("Space symbols");
descr[2].lexid = 0;
PG_RETURN_POINTER(descr);
}
</programlisting>
This is a <literal>Makefile</literal>
<programlisting>
override CPPFLAGS := -I. $(CPPFLAGS)
MODULE_big = test_parser
OBJS = test_parser.o
DATA_built = test_parser.sql
DATA =
DOCS = README.test_parser
REGRESS = test_parser
ifdef USE_PGXS
PGXS := $(shell pg_config --pgxs)
include $(PGXS)
else
subdir = contrib/test_parser
top_builddir = ../..
include $(top_builddir)/src/Makefile.global
include $(top_srcdir)/contrib/contrib-global.mk
endif
</programlisting>
This is a <literal>test_parser.sql.in</literal>:
<programlisting>
SET default_text_search_config = 'english';
BEGIN;
CREATE FUNCTION testprs_start(internal,int4)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE 'C' with (isstrict);
CREATE FUNCTION testprs_getlexeme(internal,internal,internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE 'C' with (isstrict);
CREATE FUNCTION testprs_end(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE 'C' with (isstrict);
CREATE FUNCTION testprs_lextype(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE 'C' with (isstrict);
CREATE TEXT SEARCH PARSER testparser (
START = testprs_start,
GETTOKEN = testprs_getlexeme,
END = testprs_end,
LEXTYPES = testprs_lextype
);
CREATE TEXT SEARCH CONFIGURATION testcfg (PARSER = testparser);
ALTER TEXT SEARCH CONFIGURATION testcfg ADD MAPPING FOR word WITH simple;
END;
</programlisting>
</para>
</sect1>
</chapter>
|