1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
|
--- Day 7: Some Assembly Required ---
This year, Santa brought little Bobby Tables a set of wires and bitwise logic gates! Unfortunately, little Bobby is a little under the recommended age range, and he needs help assembling the circuit.
Each wire has an identifier (some lowercase letters) and can carry a 16-bit signal (a number from 0 to 65535). A signal is provided to each wire by a gate, another wire, or some specific value. Each wire can only get a signal from one source, but can provide its signal to multiple destinations. A gate provides no signal until all of its inputs have a signal.
The included instructions booklet describes how to connect the parts together: x AND y -> z means to connect wires x and y to an AND gate, and then connect its output to wire z.
For example:
123 -> x means that the signal 123 is provided to wire x.
x AND y -> z means that the bitwise AND of wire x and wire y is provided to wire z.
p LSHIFT 2 -> q means that the value from wire p is left-shifted by 2 and then provided to wire q.
NOT e -> f means that the bitwise complement of the value from wire e is provided to wire f.
Other possible gates include OR (bitwise OR) and RSHIFT (right-shift). If, for some reason, you'd like to emulate the circuit instead, almost all programming languages (for example, C, JavaScript, or Python) provide operators for these gates.
For example, here is a simple circuit:
123 -> x
456 -> y
x AND y -> d
x OR y -> e
x LSHIFT 2 -> f
y RSHIFT 2 -> g
NOT x -> h
NOT y -> i
After it is run, these are the signals on the wires:
d: 72
e: 507
f: 492
g: 114
h: 65412
i: 65079
x: 123
y: 456
In little Bobby's kit's instructions booklet (provided as your puzzle input), what signal is ultimately provided to wire a?
--- Part Two ---
Now, take the signal you got on wire a, override wire b to that signal, and reset the other wires (including wire a). What new signal is ultimately provided to wire a?
|