1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
|
/**
* @file lv_matrix.c
*
*/
/*********************
* INCLUDES
*********************/
#include "lv_matrix.h"
#if LV_USE_MATRIX
#include "../stdlib/lv_string.h"
#include "lv_math.h"
#include <math.h>
/*********************
* DEFINES
*********************/
#ifndef M_PI
#define M_PI 3.1415926f
#endif
/**********************
* TYPEDEFS
**********************/
/**********************
* STATIC PROTOTYPES
**********************/
/**********************
* STATIC VARIABLES
**********************/
/**********************
* MACROS
**********************/
/**********************
* GLOBAL FUNCTIONS
**********************/
void lv_matrix_identity(lv_matrix_t * matrix)
{
matrix->m[0][0] = 1.0f;
matrix->m[0][1] = 0.0f;
matrix->m[0][2] = 0.0f;
matrix->m[1][0] = 0.0f;
matrix->m[1][1] = 1.0f;
matrix->m[1][2] = 0.0f;
matrix->m[2][0] = 0.0f;
matrix->m[2][1] = 0.0f;
matrix->m[2][2] = 1.0f;
}
void lv_matrix_translate(lv_matrix_t * matrix, float dx, float dy)
{
if(lv_matrix_is_identity_or_translation(matrix)) {
/*optimization for matrix translation.*/
matrix->m[0][2] += dx;
matrix->m[1][2] += dy;
return;
}
lv_matrix_t tlm = {{
{1.0f, 0.0f, dx},
{0.0f, 1.0f, dy},
{0.0f, 0.0f, 1.0f},
}
};
lv_matrix_multiply(matrix, &tlm);
}
void lv_matrix_scale(lv_matrix_t * matrix, float scale_x, float scale_y)
{
lv_matrix_t scm = {{
{scale_x, 0.0f, 0.0f},
{0.0f, scale_y, 0.0f},
{0.0f, 0.0f, 1.0f},
}
};
lv_matrix_multiply(matrix, &scm);
}
void lv_matrix_rotate(lv_matrix_t * matrix, float degree)
{
float radian = degree / 180.0f * (float)M_PI;
float cos_r = cosf(radian);
float sin_r = sinf(radian);
lv_matrix_t rtm = {{
{cos_r, -sin_r, 0.0f},
{sin_r, cos_r, 0.0f},
{0.0f, 0.0f, 1.0f},
}
};
lv_matrix_multiply(matrix, &rtm);
}
void lv_matrix_skew(lv_matrix_t * matrix, float skew_x, float skew_y)
{
float rskew_x = skew_x / 180.0f * (float)M_PI;
float rskew_y = skew_y / 180.0f * (float)M_PI;
float tan_x = tanf(rskew_x);
float tan_y = tanf(rskew_y);
lv_matrix_t skm = {{
{1.0f, tan_x, 0.0f},
{tan_y, 1.0f, 0.0f},
{0.0f, 0.0f, 1.0f},
}
};
lv_matrix_multiply(matrix, &skm);
}
void lv_matrix_multiply(lv_matrix_t * matrix, const lv_matrix_t * mul)
{
/*TODO: use NEON to optimize this function on ARM architecture.*/
lv_matrix_t tmp;
for(int y = 0; y < 3; y++) {
for(int x = 0; x < 3; x++) {
tmp.m[y][x] = (matrix->m[y][0] * mul->m[0][x])
+ (matrix->m[y][1] * mul->m[1][x])
+ (matrix->m[y][2] * mul->m[2][x]);
}
}
lv_memcpy(matrix, &tmp, sizeof(lv_matrix_t));
}
bool lv_matrix_inverse(lv_matrix_t * matrix, const lv_matrix_t * m)
{
float det00, det01, det02;
float d;
bool is_affine;
/* Test for identity matrix. */
if(m == NULL) {
lv_matrix_identity(matrix);
return true;
}
det00 = (m->m[1][1] * m->m[2][2]) - (m->m[2][1] * m->m[1][2]);
det01 = (m->m[2][0] * m->m[1][2]) - (m->m[1][0] * m->m[2][2]);
det02 = (m->m[1][0] * m->m[2][1]) - (m->m[2][0] * m->m[1][1]);
/* Compute determinant. */
d = (m->m[0][0] * det00) + (m->m[0][1] * det01) + (m->m[0][2] * det02);
/* Return 0 if there is no inverse matrix. */
if(d == 0.0f)
return false;
/* Compute reciprocal. */
d = 1.0f / d;
/* Determine if the matrix is affine. */
is_affine = (m->m[2][0] == 0.0f) && (m->m[2][1] == 0.0f) && (m->m[2][2] == 1.0f);
matrix->m[0][0] = d * det00;
matrix->m[0][1] = d * ((m->m[2][1] * m->m[0][2]) - (m->m[0][1] * m->m[2][2]));
matrix->m[0][2] = d * ((m->m[0][1] * m->m[1][2]) - (m->m[1][1] * m->m[0][2]));
matrix->m[1][0] = d * det01;
matrix->m[1][1] = d * ((m->m[0][0] * m->m[2][2]) - (m->m[2][0] * m->m[0][2]));
matrix->m[1][2] = d * ((m->m[1][0] * m->m[0][2]) - (m->m[0][0] * m->m[1][2]));
matrix->m[2][0] = is_affine ? 0.0f : d * det02;
matrix->m[2][1] = is_affine ? 0.0f : d * ((m->m[2][0] * m->m[0][1]) - (m->m[0][0] * m->m[2][1]));
matrix->m[2][2] = is_affine ? 1.0f : d * ((m->m[0][0] * m->m[1][1]) - (m->m[1][0] * m->m[0][1]));
/* Success. */
return true;
}
lv_point_precise_t lv_matrix_transform_precise_point(const lv_matrix_t * matrix, const lv_point_precise_t * point)
{
lv_point_precise_t p;
p.x = (lv_value_precise_t)roundf(point->x * matrix->m[0][0] + point->y * matrix->m[0][1] + matrix->m[0][2]);
p.y = (lv_value_precise_t)roundf(point->x * matrix->m[1][0] + point->y * matrix->m[1][1] + matrix->m[1][2]);
return p;
}
lv_area_t lv_matrix_transform_area(const lv_matrix_t * matrix, const lv_area_t * area)
{
lv_area_t res;
lv_point_precise_t p[4] = {
{area->x1, area->y1},
{area->x1, area->y2},
{area->x2, area->y1},
{area->x2, area->y2},
};
p[0] = lv_matrix_transform_precise_point(matrix, &p[0]);
p[1] = lv_matrix_transform_precise_point(matrix, &p[1]);
p[2] = lv_matrix_transform_precise_point(matrix, &p[2]);
p[3] = lv_matrix_transform_precise_point(matrix, &p[3]);
res.x1 = (int32_t)(LV_MIN4(p[0].x, p[1].x, p[2].x, p[3].x));
res.x2 = (int32_t)(LV_MAX4(p[0].x, p[1].x, p[2].x, p[3].x));
res.y1 = (int32_t)(LV_MIN4(p[0].y, p[1].y, p[2].y, p[3].y));
res.y2 = (int32_t)(LV_MAX4(p[0].y, p[1].y, p[2].y, p[3].y));
return res;
}
bool lv_matrix_is_identity_or_translation(const lv_matrix_t * matrix)
{
return (matrix->m[0][0] == 1.0f &&
matrix->m[0][1] == 0.0f &&
matrix->m[1][0] == 0.0f &&
matrix->m[1][1] == 1.0f &&
matrix->m[2][0] == 0.0f &&
matrix->m[2][1] == 0.0f &&
matrix->m[2][2] == 1.0f);
}
/**********************
* STATIC FUNCTIONS
**********************/
#endif /*LV_USE_MATRIX*/
|