aboutsummaryrefslogtreecommitdiff
path: root/src/backend/access/nbtree/nbtutils.c
diff options
context:
space:
mode:
authorBruce Momjian <bruce@momjian.us>2012-06-10 15:20:04 -0400
committerBruce Momjian <bruce@momjian.us>2012-06-10 15:20:04 -0400
commit927d61eeff78363ea3938c818d07e511ebaf75cf (patch)
tree2f0bcecf53327f76272a8ce690fa62505520fab9 /src/backend/access/nbtree/nbtutils.c
parent60801944fa105252b48ea5688d47dfc05c695042 (diff)
downloadpostgresql-927d61eeff78363ea3938c818d07e511ebaf75cf.tar.gz
postgresql-927d61eeff78363ea3938c818d07e511ebaf75cf.zip
Run pgindent on 9.2 source tree in preparation for first 9.3
commit-fest.
Diffstat (limited to 'src/backend/access/nbtree/nbtutils.c')
-rw-r--r--src/backend/access/nbtree/nbtutils.c72
1 files changed, 37 insertions, 35 deletions
diff --git a/src/backend/access/nbtree/nbtutils.c b/src/backend/access/nbtree/nbtutils.c
index f79ce552b62..33ad8915f5a 100644
--- a/src/backend/access/nbtree/nbtutils.c
+++ b/src/backend/access/nbtree/nbtutils.c
@@ -37,10 +37,10 @@ typedef struct BTSortArrayContext
static Datum _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
StrategyNumber strat,
Datum *elems, int nelems);
-static int _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
+static int _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
bool reverse,
Datum *elems, int nelems);
-static int _bt_compare_array_elements(const void *a, const void *b, void *arg);
+static int _bt_compare_array_elements(const void *a, const void *b, void *arg);
static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
ScanKey leftarg, ScanKey rightarg,
bool *result);
@@ -227,8 +227,8 @@ _bt_preprocess_array_keys(IndexScanDesc scan)
}
/*
- * Make a scan-lifespan context to hold array-associated data, or reset
- * it if we already have one from a previous rescan cycle.
+ * Make a scan-lifespan context to hold array-associated data, or reset it
+ * if we already have one from a previous rescan cycle.
*/
if (so->arrayContext == NULL)
so->arrayContext = AllocSetContextCreate(CurrentMemoryContext,
@@ -269,7 +269,7 @@ _bt_preprocess_array_keys(IndexScanDesc scan)
continue;
/*
- * First, deconstruct the array into elements. Anything allocated
+ * First, deconstruct the array into elements. Anything allocated
* here (including a possibly detoasted array value) is in the
* workspace context.
*/
@@ -283,7 +283,7 @@ _bt_preprocess_array_keys(IndexScanDesc scan)
&elem_values, &elem_nulls, &num_elems);
/*
- * Compress out any null elements. We can ignore them since we assume
+ * Compress out any null elements. We can ignore them since we assume
* all btree operators are strict.
*/
num_nonnulls = 0;
@@ -338,7 +338,7 @@ _bt_preprocess_array_keys(IndexScanDesc scan)
* successive primitive indexscans produce data in index order.
*/
num_elems = _bt_sort_array_elements(scan, cur,
- (indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0,
+ (indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0,
elem_values, num_nonnulls);
/*
@@ -387,9 +387,10 @@ _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
/*
* Look up the appropriate comparison operator in the opfamily.
*
- * Note: it's possible that this would fail, if the opfamily is incomplete,
- * but it seems quite unlikely that an opfamily would omit non-cross-type
- * comparison operators for any datatype that it supports at all.
+ * Note: it's possible that this would fail, if the opfamily is
+ * incomplete, but it seems quite unlikely that an opfamily would omit
+ * non-cross-type comparison operators for any datatype that it supports
+ * at all.
*/
cmp_op = get_opfamily_member(rel->rd_opfamily[skey->sk_attno - 1],
elemtype,
@@ -455,9 +456,10 @@ _bt_sort_array_elements(IndexScanDesc scan, ScanKey skey,
/*
* Look up the appropriate comparison function in the opfamily.
*
- * Note: it's possible that this would fail, if the opfamily is incomplete,
- * but it seems quite unlikely that an opfamily would omit non-cross-type
- * support functions for any datatype that it supports at all.
+ * Note: it's possible that this would fail, if the opfamily is
+ * incomplete, but it seems quite unlikely that an opfamily would omit
+ * non-cross-type support functions for any datatype that it supports at
+ * all.
*/
cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
elemtype,
@@ -515,7 +517,7 @@ _bt_compare_array_elements(const void *a, const void *b, void *arg)
* _bt_start_array_keys() -- Initialize array keys at start of a scan
*
* Set up the cur_elem counters and fill in the first sk_argument value for
- * each array scankey. We can't do this until we know the scan direction.
+ * each array scankey. We can't do this until we know the scan direction.
*/
void
_bt_start_array_keys(IndexScanDesc scan, ScanDirection dir)
@@ -609,8 +611,8 @@ _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir)
* so that the index sorts in the desired direction.
*
* One key purpose of this routine is to discover which scan keys must be
- * satisfied to continue the scan. It also attempts to eliminate redundant
- * keys and detect contradictory keys. (If the index opfamily provides
+ * satisfied to continue the scan. It also attempts to eliminate redundant
+ * keys and detect contradictory keys. (If the index opfamily provides
* incomplete sets of cross-type operators, we may fail to detect redundant
* or contradictory keys, but we can survive that.)
*
@@ -676,7 +678,7 @@ _bt_advance_array_keys(IndexScanDesc scan, ScanDirection dir)
* Note: the reason we have to copy the preprocessed scan keys into private
* storage is that we are modifying the array based on comparisons of the
* key argument values, which could change on a rescan or after moving to
- * new elements of array keys. Therefore we can't overwrite the source data.
+ * new elements of array keys. Therefore we can't overwrite the source data.
*/
void
_bt_preprocess_keys(IndexScanDesc scan)
@@ -781,8 +783,8 @@ _bt_preprocess_keys(IndexScanDesc scan)
* set qual_ok to false and abandon further processing.
*
* We also have to deal with the case of "key IS NULL", which is
- * unsatisfiable in combination with any other index condition.
- * By the time we get here, that's been classified as an equality
+ * unsatisfiable in combination with any other index condition. By
+ * the time we get here, that's been classified as an equality
* check, and we've rejected any combination of it with a regular
* equality condition; but not with other types of conditions.
*/
@@ -1421,12 +1423,12 @@ _bt_checkkeys(IndexScanDesc scan,
/*
* Since NULLs are sorted before non-NULLs, we know we have
* reached the lower limit of the range of values for this
- * index attr. On a backward scan, we can stop if this qual
+ * index attr. On a backward scan, we can stop if this qual
* is one of the "must match" subset. We can stop regardless
* of whether the qual is > or <, so long as it's required,
- * because it's not possible for any future tuples to pass.
- * On a forward scan, however, we must keep going, because we
- * may have initially positioned to the start of the index.
+ * because it's not possible for any future tuples to pass. On
+ * a forward scan, however, we must keep going, because we may
+ * have initially positioned to the start of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsBackward(dir))
@@ -1437,11 +1439,11 @@ _bt_checkkeys(IndexScanDesc scan,
/*
* Since NULLs are sorted after non-NULLs, we know we have
* reached the upper limit of the range of values for this
- * index attr. On a forward scan, we can stop if this qual is
- * one of the "must match" subset. We can stop regardless of
+ * index attr. On a forward scan, we can stop if this qual is
+ * one of the "must match" subset. We can stop regardless of
* whether the qual is > or <, so long as it's required,
- * because it's not possible for any future tuples to pass.
- * On a backward scan, however, we must keep going, because we
+ * because it's not possible for any future tuples to pass. On
+ * a backward scan, however, we must keep going, because we
* may have initially positioned to the end of the index.
*/
if ((key->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
@@ -1532,12 +1534,12 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
/*
* Since NULLs are sorted before non-NULLs, we know we have
* reached the lower limit of the range of values for this
- * index attr. On a backward scan, we can stop if this qual
+ * index attr. On a backward scan, we can stop if this qual
* is one of the "must match" subset. We can stop regardless
* of whether the qual is > or <, so long as it's required,
- * because it's not possible for any future tuples to pass.
- * On a forward scan, however, we must keep going, because we
- * may have initially positioned to the start of the index.
+ * because it's not possible for any future tuples to pass. On
+ * a forward scan, however, we must keep going, because we may
+ * have initially positioned to the start of the index.
*/
if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&
ScanDirectionIsBackward(dir))
@@ -1548,11 +1550,11 @@ _bt_check_rowcompare(ScanKey skey, IndexTuple tuple, TupleDesc tupdesc,
/*
* Since NULLs are sorted after non-NULLs, we know we have
* reached the upper limit of the range of values for this
- * index attr. On a forward scan, we can stop if this qual is
- * one of the "must match" subset. We can stop regardless of
+ * index attr. On a forward scan, we can stop if this qual is
+ * one of the "must match" subset. We can stop regardless of
* whether the qual is > or <, so long as it's required,
- * because it's not possible for any future tuples to pass.
- * On a backward scan, however, we must keep going, because we
+ * because it's not possible for any future tuples to pass. On
+ * a backward scan, however, we must keep going, because we
* may have initially positioned to the end of the index.
*/
if ((subkey->sk_flags & (SK_BT_REQFWD | SK_BT_REQBKWD)) &&