aboutsummaryrefslogtreecommitdiff
path: root/src/backend
diff options
context:
space:
mode:
authorDean Rasheed <dean.a.rasheed@gmail.com>2020-01-25 14:00:59 +0000
committerDean Rasheed <dean.a.rasheed@gmail.com>2020-01-25 14:00:59 +0000
commit13661ddd7eaec7e2809ff5c29fc14653b6161036 (patch)
tree478835d5b14b5b5c304face1c351079495cdbb38 /src/backend
parent530609aa4263bee5b5ca205d83f0dbad098d0465 (diff)
downloadpostgresql-13661ddd7eaec7e2809ff5c29fc14653b6161036.tar.gz
postgresql-13661ddd7eaec7e2809ff5c29fc14653b6161036.zip
Add functions gcd() and lcm() for integer and numeric types.
These compute the greatest common divisor and least common multiple of a pair of numbers using the Euclidean algorithm. Vik Fearing, reviewed by Fabien Coelho. Discussion: https://postgr.es/m/adbd3e0b-e3f1-5bbc-21db-03caf1cef0f7@2ndquadrant.com
Diffstat (limited to 'src/backend')
-rw-r--r--src/backend/utils/adt/int.c126
-rw-r--r--src/backend/utils/adt/int8.c126
-rw-r--r--src/backend/utils/adt/numeric.c171
3 files changed, 423 insertions, 0 deletions
diff --git a/src/backend/utils/adt/int.c b/src/backend/utils/adt/int.c
index 583ce71e664..4acbc27d426 100644
--- a/src/backend/utils/adt/int.c
+++ b/src/backend/utils/adt/int.c
@@ -1196,6 +1196,132 @@ int2abs(PG_FUNCTION_ARGS)
PG_RETURN_INT16(result);
}
+/*
+ * Greatest Common Divisor
+ *
+ * Returns the largest positive integer that exactly divides both inputs.
+ * Special cases:
+ * - gcd(x, 0) = gcd(0, x) = abs(x)
+ * because 0 is divisible by anything
+ * - gcd(0, 0) = 0
+ * complies with the previous definition and is a common convention
+ *
+ * Special care must be taken if either input is INT_MIN --- gcd(0, INT_MIN),
+ * gcd(INT_MIN, 0) and gcd(INT_MIN, INT_MIN) are all equal to abs(INT_MIN),
+ * which cannot be represented as a 32-bit signed integer.
+ */
+static int32
+int4gcd_internal(int32 arg1, int32 arg2)
+{
+ int32 swap;
+ int32 a1, a2;
+
+ /*
+ * Put the greater absolute value in arg1.
+ *
+ * This would happen automatically in the loop below, but avoids an
+ * expensive modulo operation, and simplifies the special-case handling
+ * for INT_MIN below.
+ *
+ * We do this in negative space in order to handle INT_MIN.
+ */
+ a1 = (arg1 < 0) ? arg1 : -arg1;
+ a2 = (arg2 < 0) ? arg2 : -arg2;
+ if (a1 > a2)
+ {
+ swap = arg1;
+ arg1 = arg2;
+ arg2 = swap;
+ }
+
+ /* Special care needs to be taken with INT_MIN. See comments above. */
+ if (arg1 == PG_INT32_MIN)
+ {
+ if (arg2 == 0 || arg2 == PG_INT32_MIN)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ /*
+ * Some machines throw a floating-point exception for INT_MIN % -1,
+ * which is a bit silly since the correct answer is perfectly
+ * well-defined, namely zero. Guard against this and just return the
+ * result, gcd(INT_MIN, -1) = 1.
+ */
+ if (arg2 == -1)
+ return 1;
+ }
+
+ /* Use the Euclidean algorithm to find the GCD */
+ while (arg2 != 0)
+ {
+ swap = arg2;
+ arg2 = arg1 % arg2;
+ arg1 = swap;
+ }
+
+ /*
+ * Make sure the result is positive. (We know we don't have INT_MIN
+ * anymore).
+ */
+ if (arg1 < 0)
+ arg1 = -arg1;
+
+ return arg1;
+}
+
+Datum
+int4gcd(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int32 result;
+
+ result = int4gcd_internal(arg1, arg2);
+
+ PG_RETURN_INT32(result);
+}
+
+/*
+ * Least Common Multiple
+ */
+Datum
+int4lcm(PG_FUNCTION_ARGS)
+{
+ int32 arg1 = PG_GETARG_INT32(0);
+ int32 arg2 = PG_GETARG_INT32(1);
+ int32 gcd;
+ int32 result;
+
+ /*
+ * Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
+ * division-by-zero error below when x is zero, and an overflow error from
+ * the GCD computation when x = INT_MIN.
+ */
+ if (arg1 == 0 || arg2 == 0)
+ PG_RETURN_INT32(0);
+
+ /* lcm(x, y) = abs(x / gcd(x, y) * y) */
+ gcd = int4gcd_internal(arg1, arg2);
+ arg1 = arg1 / gcd;
+
+ if (unlikely(pg_mul_s32_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ /* If the result is INT_MIN, it cannot be represented. */
+ if (unlikely(result == PG_INT32_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("integer out of range")));
+
+ if (result < 0)
+ result = -result;
+
+ PG_RETURN_INT32(result);
+}
+
Datum
int2larger(PG_FUNCTION_ARGS)
{
diff --git a/src/backend/utils/adt/int8.c b/src/backend/utils/adt/int8.c
index fcdf77331e7..494768c1901 100644
--- a/src/backend/utils/adt/int8.c
+++ b/src/backend/utils/adt/int8.c
@@ -667,6 +667,132 @@ int8mod(PG_FUNCTION_ARGS)
PG_RETURN_INT64(arg1 % arg2);
}
+/*
+ * Greatest Common Divisor
+ *
+ * Returns the largest positive integer that exactly divides both inputs.
+ * Special cases:
+ * - gcd(x, 0) = gcd(0, x) = abs(x)
+ * because 0 is divisible by anything
+ * - gcd(0, 0) = 0
+ * complies with the previous definition and is a common convention
+ *
+ * Special care must be taken if either input is INT64_MIN ---
+ * gcd(0, INT64_MIN), gcd(INT64_MIN, 0) and gcd(INT64_MIN, INT64_MIN) are
+ * all equal to abs(INT64_MIN), which cannot be represented as a 64-bit signed
+ * integer.
+ */
+static int64
+int8gcd_internal(int64 arg1, int64 arg2)
+{
+ int64 swap;
+ int64 a1, a2;
+
+ /*
+ * Put the greater absolute value in arg1.
+ *
+ * This would happen automatically in the loop below, but avoids an
+ * expensive modulo operation, and simplifies the special-case handling
+ * for INT64_MIN below.
+ *
+ * We do this in negative space in order to handle INT64_MIN.
+ */
+ a1 = (arg1 < 0) ? arg1 : -arg1;
+ a2 = (arg2 < 0) ? arg2 : -arg2;
+ if (a1 > a2)
+ {
+ swap = arg1;
+ arg1 = arg2;
+ arg2 = swap;
+ }
+
+ /* Special care needs to be taken with INT64_MIN. See comments above. */
+ if (arg1 == PG_INT64_MIN)
+ {
+ if (arg2 == 0 || arg2 == PG_INT64_MIN)
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ /*
+ * Some machines throw a floating-point exception for INT64_MIN % -1,
+ * which is a bit silly since the correct answer is perfectly
+ * well-defined, namely zero. Guard against this and just return the
+ * result, gcd(INT64_MIN, -1) = 1.
+ */
+ if (arg2 == -1)
+ return 1;
+ }
+
+ /* Use the Euclidean algorithm to find the GCD */
+ while (arg2 != 0)
+ {
+ swap = arg2;
+ arg2 = arg1 % arg2;
+ arg1 = swap;
+ }
+
+ /*
+ * Make sure the result is positive. (We know we don't have INT64_MIN
+ * anymore).
+ */
+ if (arg1 < 0)
+ arg1 = -arg1;
+
+ return arg1;
+}
+
+Datum
+int8gcd(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 result;
+
+ result = int8gcd_internal(arg1, arg2);
+
+ PG_RETURN_INT64(result);
+}
+
+/*
+ * Least Common Multiple
+ */
+Datum
+int8lcm(PG_FUNCTION_ARGS)
+{
+ int64 arg1 = PG_GETARG_INT64(0);
+ int64 arg2 = PG_GETARG_INT64(1);
+ int64 gcd;
+ int64 result;
+
+ /*
+ * Handle lcm(x, 0) = lcm(0, x) = 0 as a special case. This prevents a
+ * division-by-zero error below when x is zero, and an overflow error from
+ * the GCD computation when x = INT64_MIN.
+ */
+ if (arg1 == 0 || arg2 == 0)
+ PG_RETURN_INT64(0);
+
+ /* lcm(x, y) = abs(x / gcd(x, y) * y) */
+ gcd = int8gcd_internal(arg1, arg2);
+ arg1 = arg1 / gcd;
+
+ if (unlikely(pg_mul_s64_overflow(arg1, arg2, &result)))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ /* If the result is INT64_MIN, it cannot be represented. */
+ if (unlikely(result == PG_INT64_MIN))
+ ereport(ERROR,
+ (errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
+ errmsg("bigint out of range")));
+
+ if (result < 0)
+ result = -result;
+
+ PG_RETURN_INT64(result);
+}
Datum
int8inc(PG_FUNCTION_ARGS)
diff --git a/src/backend/utils/adt/numeric.c b/src/backend/utils/adt/numeric.c
index 76a597e56fa..c92ad5a4fe0 100644
--- a/src/backend/utils/adt/numeric.c
+++ b/src/backend/utils/adt/numeric.c
@@ -521,6 +521,8 @@ static void mod_var(const NumericVar *var1, const NumericVar *var2,
static void ceil_var(const NumericVar *var, NumericVar *result);
static void floor_var(const NumericVar *var, NumericVar *result);
+static void gcd_var(const NumericVar *var1, const NumericVar *var2,
+ NumericVar *result);
static void sqrt_var(const NumericVar *arg, NumericVar *result, int rscale);
static void exp_var(const NumericVar *arg, NumericVar *result, int rscale);
static int estimate_ln_dweight(const NumericVar *var);
@@ -2839,6 +2841,107 @@ numeric_larger(PG_FUNCTION_ARGS)
*/
/*
+ * numeric_gcd() -
+ *
+ * Calculate the greatest common divisor of two numerics
+ */
+Datum
+numeric_gcd(PG_FUNCTION_ARGS)
+{
+ Numeric num1 = PG_GETARG_NUMERIC(0);
+ Numeric num2 = PG_GETARG_NUMERIC(1);
+ NumericVar arg1;
+ NumericVar arg2;
+ NumericVar result;
+ Numeric res;
+
+ /*
+ * Handle NaN
+ */
+ if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
+ PG_RETURN_NUMERIC(make_result(&const_nan));
+
+ /*
+ * Unpack the arguments
+ */
+ init_var_from_num(num1, &arg1);
+ init_var_from_num(num2, &arg2);
+
+ init_var(&result);
+
+ /*
+ * Find the GCD and return the result
+ */
+ gcd_var(&arg1, &arg2, &result);
+
+ res = make_result(&result);
+
+ free_var(&result);
+
+ PG_RETURN_NUMERIC(res);
+}
+
+
+/*
+ * numeric_lcm() -
+ *
+ * Calculate the least common multiple of two numerics
+ */
+Datum
+numeric_lcm(PG_FUNCTION_ARGS)
+{
+ Numeric num1 = PG_GETARG_NUMERIC(0);
+ Numeric num2 = PG_GETARG_NUMERIC(1);
+ NumericVar arg1;
+ NumericVar arg2;
+ NumericVar result;
+ Numeric res;
+
+ /*
+ * Handle NaN
+ */
+ if (NUMERIC_IS_NAN(num1) || NUMERIC_IS_NAN(num2))
+ PG_RETURN_NUMERIC(make_result(&const_nan));
+
+ /*
+ * Unpack the arguments
+ */
+ init_var_from_num(num1, &arg1);
+ init_var_from_num(num2, &arg2);
+
+ init_var(&result);
+
+ /*
+ * Compute the result using lcm(x, y) = abs(x / gcd(x, y) * y), returning
+ * zero if either input is zero.
+ *
+ * Note that the division is guaranteed to be exact, returning an integer
+ * result, so the LCM is an integral multiple of both x and y. A display
+ * scale of Min(x.dscale, y.dscale) would be sufficient to represent it,
+ * but as with other numeric functions, we choose to return a result whose
+ * display scale is no smaller than either input.
+ */
+ if (arg1.ndigits == 0 || arg2.ndigits == 0)
+ set_var_from_var(&const_zero, &result);
+ else
+ {
+ gcd_var(&arg1, &arg2, &result);
+ div_var(&arg1, &result, &result, 0, false);
+ mul_var(&arg2, &result, &result, arg2.dscale);
+ result.sign = NUMERIC_POS;
+ }
+
+ result.dscale = Max(arg1.dscale, arg2.dscale);
+
+ res = make_result(&result);
+
+ free_var(&result);
+
+ PG_RETURN_NUMERIC(res);
+}
+
+
+/*
* numeric_fac()
*
* Compute factorial
@@ -8040,6 +8143,74 @@ floor_var(const NumericVar *var, NumericVar *result)
/*
+ * gcd_var() -
+ *
+ * Calculate the greatest common divisor of two numerics at variable level
+ */
+static void
+gcd_var(const NumericVar *var1, const NumericVar *var2, NumericVar *result)
+{
+ int res_dscale;
+ int cmp;
+ NumericVar tmp_arg;
+ NumericVar mod;
+
+ res_dscale = Max(var1->dscale, var2->dscale);
+
+ /*
+ * Arrange for var1 to be the number with the greater absolute value.
+ *
+ * This would happen automatically in the loop below, but avoids an
+ * expensive modulo operation.
+ */
+ cmp = cmp_abs(var1, var2);
+ if (cmp < 0)
+ {
+ const NumericVar *tmp = var1;
+
+ var1 = var2;
+ var2 = tmp;
+ }
+
+ /*
+ * Also avoid the taking the modulo if the inputs have the same absolute
+ * value, or if the smaller input is zero.
+ */
+ if (cmp == 0 || var2->ndigits == 0)
+ {
+ set_var_from_var(var1, result);
+ result->sign = NUMERIC_POS;
+ result->dscale = res_dscale;
+ return;
+ }
+
+ init_var(&tmp_arg);
+ init_var(&mod);
+
+ /* Use the Euclidean algorithm to find the GCD */
+ set_var_from_var(var1, &tmp_arg);
+ set_var_from_var(var2, result);
+
+ for (;;)
+ {
+ /* this loop can take a while, so allow it to be interrupted */
+ CHECK_FOR_INTERRUPTS();
+
+ mod_var(&tmp_arg, result, &mod);
+ if (mod.ndigits == 0)
+ break;
+ set_var_from_var(result, &tmp_arg);
+ set_var_from_var(&mod, result);
+ }
+ result->sign = NUMERIC_POS;
+ result->dscale = res_dscale;
+
+ free_var(&tmp_arg);
+ free_var(&mod);
+}
+
+
+/*
* sqrt_var() -
*
* Compute the square root of x using Newton's algorithm