diff options
Diffstat (limited to 'src/backend/access/heap/rewriteheap.c')
-rw-r--r-- | src/backend/access/heap/rewriteheap.c | 16 |
1 files changed, 8 insertions, 8 deletions
diff --git a/src/backend/access/heap/rewriteheap.c b/src/backend/access/heap/rewriteheap.c index e56140950af..37fe306a80b 100644 --- a/src/backend/access/heap/rewriteheap.c +++ b/src/backend/access/heap/rewriteheap.c @@ -10,7 +10,7 @@ * * The caller is responsible for creating the new heap, all catalog * changes, supplying the tuples to be written to the new heap, and - * rebuilding indexes. The caller must hold AccessExclusiveLock on the + * rebuilding indexes. The caller must hold AccessExclusiveLock on the * target table, because we assume no one else is writing into it. * * To use the facility: @@ -43,7 +43,7 @@ * to substitute the correct ctid instead. * * For each ctid reference from A -> B, we might encounter either A first - * or B first. (Note that a tuple in the middle of a chain is both A and B + * or B first. (Note that a tuple in the middle of a chain is both A and B * of different pairs.) * * If we encounter A first, we'll store the tuple in the unresolved_tups @@ -58,11 +58,11 @@ * and can write A immediately with the correct ctid. * * Entries in the hash tables can be removed as soon as the later tuple - * is encountered. That helps to keep the memory usage down. At the end, + * is encountered. That helps to keep the memory usage down. At the end, * both tables are usually empty; we should have encountered both A and B * of each pair. However, it's possible for A to be RECENTLY_DEAD and B * entirely DEAD according to HeapTupleSatisfiesVacuum, because the test - * for deadness using OldestXmin is not exact. In such a case we might + * for deadness using OldestXmin is not exact. In such a case we might * encounter B first, and skip it, and find A later. Then A would be added * to unresolved_tups, and stay there until end of the rewrite. Since * this case is very unusual, we don't worry about the memory usage. @@ -78,7 +78,7 @@ * of CLUSTERing on an unchanging key column, we'll see all the versions * of a given tuple together anyway, and so the peak memory usage is only * proportional to the number of RECENTLY_DEAD versions of a single row, not - * in the whole table. Note that if we do fail halfway through a CLUSTER, + * in the whole table. Note that if we do fail halfway through a CLUSTER, * the old table is still valid, so failure is not catastrophic. * * We can't use the normal heap_insert function to insert into the new @@ -277,7 +277,7 @@ end_heap_rewrite(RewriteState state) } /* - * If the rel is WAL-logged, must fsync before commit. We use heap_sync + * If the rel is WAL-logged, must fsync before commit. We use heap_sync * to ensure that the toast table gets fsync'd too. * * It's obvious that we must do this when not WAL-logging. It's less @@ -337,7 +337,7 @@ rewrite_heap_tuple(RewriteState state, * very-old xmin or xmax, so that future VACUUM effort can be saved. * * Note we abuse heap_freeze_tuple() a bit here, since it's expecting to - * be given a pointer to a tuple in a disk buffer. It happens though that + * be given a pointer to a tuple in a disk buffer. It happens though that * we can get the right things to happen by passing InvalidBuffer for the * buffer. */ @@ -548,7 +548,7 @@ rewrite_heap_dead_tuple(RewriteState state, HeapTuple old_tuple) } /* - * Insert a tuple to the new relation. This has to track heap_insert + * Insert a tuple to the new relation. This has to track heap_insert * and its subsidiary functions! * * t_self of the tuple is set to the new TID of the tuple. If t_ctid of the |