diff options
Diffstat (limited to 'src/backend/executor/functions.c')
-rw-r--r-- | src/backend/executor/functions.c | 34 |
1 files changed, 17 insertions, 17 deletions
diff --git a/src/backend/executor/functions.c b/src/backend/executor/functions.c index f0a89d23b87..4d112604bb7 100644 --- a/src/backend/executor/functions.c +++ b/src/backend/executor/functions.c @@ -47,7 +47,7 @@ typedef struct } DR_sqlfunction; /* - * We have an execution_state record for each query in a function. Each + * We have an execution_state record for each query in a function. Each * record contains a plantree for its query. If the query is currently in * F_EXEC_RUN state then there's a QueryDesc too. * @@ -466,7 +466,7 @@ sql_fn_resolve_param_name(SQLFunctionParseInfoPtr pinfo, * Set up the per-query execution_state records for a SQL function. * * The input is a List of Lists of parsed and rewritten, but not planned, - * querytrees. The sublist structure denotes the original query boundaries. + * querytrees. The sublist structure denotes the original query boundaries. */ static List * init_execution_state(List *queryTree_list, @@ -590,7 +590,7 @@ init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK) bool isNull; /* - * Create memory context that holds all the SQLFunctionCache data. It + * Create memory context that holds all the SQLFunctionCache data. It * must be a child of whatever context holds the FmgrInfo. */ fcontext = AllocSetContextCreate(finfo->fn_mcxt, @@ -602,7 +602,7 @@ init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK) oldcontext = MemoryContextSwitchTo(fcontext); /* - * Create the struct proper, link it to fcontext and fn_extra. Once this + * Create the struct proper, link it to fcontext and fn_extra. Once this * is done, we'll be able to recover the memory after failure, even if the * FmgrInfo is long-lived. */ @@ -672,7 +672,7 @@ init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK) fcache->src = TextDatumGetCString(tmp); /* - * Parse and rewrite the queries in the function text. Use sublists to + * Parse and rewrite the queries in the function text. Use sublists to * keep track of the original query boundaries. But we also build a * "flat" list of the rewritten queries to pass to check_sql_fn_retval. * This is because the last canSetTag query determines the result type @@ -712,7 +712,7 @@ init_sql_fcache(FmgrInfo *finfo, Oid collation, bool lazyEvalOK) * any polymorphic arguments. * * Note: we set fcache->returnsTuple according to whether we are returning - * the whole tuple result or just a single column. In the latter case we + * the whole tuple result or just a single column. In the latter case we * clear returnsTuple because we need not act different from the scalar * result case, even if it's a rowtype column. (However, we have to force * lazy eval mode in that case; otherwise we'd need extra code to expand @@ -944,7 +944,7 @@ postquel_get_single_result(TupleTableSlot *slot, /* * Set up to return the function value. For pass-by-reference datatypes, * be sure to allocate the result in resultcontext, not the current memory - * context (which has query lifespan). We can't leave the data in the + * context (which has query lifespan). We can't leave the data in the * TupleTableSlot because we intend to clear the slot before returning. */ oldcontext = MemoryContextSwitchTo(resultcontext); @@ -1052,7 +1052,7 @@ fmgr_sql(PG_FUNCTION_ARGS) /* * Switch to context in which the fcache lives. This ensures that our * tuplestore etc will have sufficient lifetime. The sub-executor is - * responsible for deleting per-tuple information. (XXX in the case of a + * responsible for deleting per-tuple information. (XXX in the case of a * long-lived FmgrInfo, this policy represents more memory leakage, but * it's not entirely clear where to keep stuff instead.) */ @@ -1106,7 +1106,7 @@ fmgr_sql(PG_FUNCTION_ARGS) * suspend execution before completion is if we are returning a row from a * lazily-evaluated SELECT. So, when first entering this loop, we'll * either start a new query (and push a fresh snapshot) or re-establish - * the active snapshot from the existing query descriptor. If we need to + * the active snapshot from the existing query descriptor. If we need to * start a new query in a subsequent execution of the loop, either we need * a fresh snapshot (and pushed_snapshot is false) or the existing * snapshot is on the active stack and we can just bump its command ID. @@ -1162,7 +1162,7 @@ fmgr_sql(PG_FUNCTION_ARGS) * Break from loop if we didn't shut down (implying we got a * lazily-evaluated row). Otherwise we'll press on till the whole * function is done, relying on the tuplestore to keep hold of the - * data to eventually be returned. This is necessary since an + * data to eventually be returned. This is necessary since an * INSERT/UPDATE/DELETE RETURNING that sets the result might be * followed by additional rule-inserted commands, and we want to * finish doing all those commands before we return anything. @@ -1184,7 +1184,7 @@ fmgr_sql(PG_FUNCTION_ARGS) /* * Flush the current snapshot so that we will take a new one for - * the new query list. This ensures that new snaps are taken at + * the new query list. This ensures that new snaps are taken at * original-query boundaries, matching the behavior of interactive * execution. */ @@ -1242,7 +1242,7 @@ fmgr_sql(PG_FUNCTION_ARGS) else if (fcache->lazyEval) { /* - * We are done with a lazy evaluation. Clean up. + * We are done with a lazy evaluation. Clean up. */ tuplestore_clear(fcache->tstore); @@ -1266,8 +1266,8 @@ fmgr_sql(PG_FUNCTION_ARGS) else { /* - * We are done with a non-lazy evaluation. Return whatever is in - * the tuplestore. (It is now caller's responsibility to free the + * We are done with a non-lazy evaluation. Return whatever is in + * the tuplestore. (It is now caller's responsibility to free the * tuplestore when done.) */ rsi->returnMode = SFRM_Materialize; @@ -1379,7 +1379,7 @@ sql_exec_error_callback(void *arg) /* * Try to determine where in the function we failed. If there is a query - * with non-null QueryDesc, finger it. (We check this rather than looking + * with non-null QueryDesc, finger it. (We check this rather than looking * for F_EXEC_RUN state, so that errors during ExecutorStart or * ExecutorEnd are blamed on the appropriate query; see postquel_start and * postquel_end.) @@ -1671,7 +1671,7 @@ check_sql_fn_retval(Oid func_id, Oid rettype, List *queryTreeList, * the function that's calling it. * * XXX Note that if rettype is RECORD, the IsBinaryCoercible check - * will succeed for any composite restype. For the moment we rely on + * will succeed for any composite restype. For the moment we rely on * runtime type checking to catch any discrepancy, but it'd be nice to * do better at parse time. */ @@ -1717,7 +1717,7 @@ check_sql_fn_retval(Oid func_id, Oid rettype, List *queryTreeList, /* * Verify that the targetlist matches the return tuple type. We scan * the non-deleted attributes to ensure that they match the datatypes - * of the non-resjunk columns. For deleted attributes, insert NULL + * of the non-resjunk columns. For deleted attributes, insert NULL * result columns if the caller asked for that. */ tupnatts = tupdesc->natts; |