aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/README
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer/README')
-rw-r--r--src/backend/optimizer/README102
1 files changed, 102 insertions, 0 deletions
diff --git a/src/backend/optimizer/README b/src/backend/optimizer/README
index 775bcc3b73b..19987397028 100644
--- a/src/backend/optimizer/README
+++ b/src/backend/optimizer/README
@@ -877,6 +877,108 @@ lateral reference. (Perhaps now that that stuff works, we could relax the
pullup restriction?)
+Security-level constraints on qual clauses
+------------------------------------------
+
+To support row-level security and security-barrier views efficiently,
+we mark qual clauses (RestrictInfo nodes) with a "security_level" field.
+The basic concept is that a qual with a lower security_level must be
+evaluated before one with a higher security_level. This ensures that
+"leaky" quals that might expose sensitive data are not evaluated until
+after the security barrier quals that are supposed to filter out
+security-sensitive rows. However, many qual conditions are "leakproof",
+that is we trust the functions they use to not expose data. To avoid
+unnecessarily inefficient plans, a leakproof qual is not delayed by
+security-level considerations, even if it has a higher syntactic
+security_level than another qual.
+
+In a query that contains no use of RLS or security-barrier views, all
+quals will have security_level zero, so that none of these restrictions
+kick in; we don't even need to check leakproofness of qual conditions.
+
+If there are security-barrier quals, they get security_level zero (and
+possibly higher, if there are multiple layers of barriers). Regular quals
+coming from the query text get a security_level one more than the highest
+level used for barrier quals.
+
+When new qual clauses are generated by EquivalenceClass processing,
+they must be assigned a security_level. This is trickier than it seems.
+One's first instinct is that it would be safe to use the largest level
+found among the source quals for the EquivalenceClass, but that isn't
+safe at all, because it allows unwanted delays of security-barrier quals.
+Consider a barrier qual "t.x = t.y" plus a query qual "t.x = constant",
+and suppose there is another query qual "leaky_function(t.z)" that
+we mustn't evaluate before the barrier qual has been checked.
+We will have an EC {t.x, t.y, constant} which will lead us to replace
+the EC quals with "t.x = constant AND t.y = constant". (We do not want
+to give up that behavior, either, since the latter condition could allow
+use of an index on t.y, which we would never discover from the original
+quals.) If these generated quals are assigned the same security_level as
+the query quals, then it's possible for the leaky_function qual to be
+evaluated first, allowing leaky_function to see data from rows that
+possibly don't pass the barrier condition.
+
+Instead, our handling of security levels with ECs works like this:
+* Quals are not accepted as source clauses for ECs in the first place
+unless they are leakproof or have security_level zero.
+* EC-derived quals are assigned the minimum (not maximum) security_level
+found among the EC's source clauses.
+* If the maximum security_level found among the EC's source clauses is
+above zero, then the equality operators selected for derived quals must
+be leakproof. When no such operator can be found, the EC is treated as
+"broken" and we fall back to emitting its source clauses without any
+additional derived quals.
+
+These rules together ensure that an untrusted qual clause (one with
+security_level above zero) cannot cause an EC to generate a leaky derived
+clause. This makes it safe to use the minimum not maximum security_level
+for derived clauses. The rules could result in poor plans due to not
+being able to generate derived clauses at all, but the risk of that is
+small in practice because most btree equality operators are leakproof.
+Also, by making exceptions for level-zero quals, we ensure that there is
+no plan degradation when no barrier quals are present.
+
+Once we have security levels assigned to all clauses, enforcement
+of barrier-qual ordering restrictions boils down to two rules:
+
+* Table scan plan nodes must not select quals for early execution
+(for example, use them as index qualifiers in an indexscan) unless
+they are leakproof or have security_level no higher than any other
+qual that is due to be executed at the same plan node. (Use the
+utility function restriction_is_securely_promotable() to check
+whether it's okay to select a qual for early execution.)
+
+* Normal execution of a list of quals must execute them in an order
+that satisfies the same security rule, ie higher security_levels must
+be evaluated later unless leakproof. (This is handled in a single place
+by order_qual_clauses() in createplan.c.)
+
+order_qual_clauses() uses a heuristic to decide exactly what to do with
+leakproof clauses. Normally it sorts clauses by security_level then cost,
+being careful that the sort is stable so that we don't reorder clauses
+without a clear reason. But this could result in a very expensive qual
+being done before a cheaper one that is of higher security_level.
+If the cheaper qual is leaky we have no choice, but if it is leakproof
+we could put it first. We choose to sort leakproof quals as if they
+have security_level zero, but only when their cost is less than 10X
+cpu_operator_cost; that restriction alleviates the opposite problem of
+doing expensive quals first just because they're leakproof.
+
+Additional rules will be needed to support safe handling of join quals
+when there is a mix of security levels among join quals; for example, it
+will be necessary to prevent leaky higher-security-level quals from being
+evaluated at a lower join level than other quals of lower security level.
+Currently there is no need to consider that since security-prioritized
+quals can only be single-table restriction quals coming from RLS policies
+or security-barrier views, and security-barrier view subqueries are never
+flattened into the parent query. Hence enforcement of security-prioritized
+quals only happens at the table scan level. With extra rules for safe
+handling of security levels among join quals, it should be possible to let
+security-barrier views be flattened into the parent query, allowing more
+flexibility of planning while still preserving required ordering of qual
+evaluation. But that will come later.
+
+
Post scan/join planning
-----------------------