aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer/path
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer/path')
-rw-r--r--src/backend/optimizer/path/costsize.c72
-rw-r--r--src/backend/optimizer/path/joinpath.c47
2 files changed, 77 insertions, 42 deletions
diff --git a/src/backend/optimizer/path/costsize.c b/src/backend/optimizer/path/costsize.c
index 3d44815ed5a..344a3188317 100644
--- a/src/backend/optimizer/path/costsize.c
+++ b/src/backend/optimizer/path/costsize.c
@@ -2247,7 +2247,7 @@ append_nonpartial_cost(List *subpaths, int numpaths, int parallel_workers)
* Determines and returns the cost of an Append node.
*/
void
-cost_append(AppendPath *apath)
+cost_append(AppendPath *apath, PlannerInfo *root)
{
ListCell *l;
@@ -2309,26 +2309,52 @@ cost_append(AppendPath *apath)
foreach(l, apath->subpaths)
{
Path *subpath = (Path *) lfirst(l);
- Path sort_path; /* dummy for result of cost_sort */
+ int presorted_keys;
+ Path sort_path; /* dummy for result of
+ * cost_sort/cost_incremental_sort */
- if (!pathkeys_contained_in(pathkeys, subpath->pathkeys))
+ if (!pathkeys_count_contained_in(pathkeys, subpath->pathkeys,
+ &presorted_keys))
{
/*
* We'll need to insert a Sort node, so include costs for
- * that. We can use the parent's LIMIT if any, since we
+ * that. We choose to use incremental sort if it is
+ * enabled and there are presorted keys; otherwise we use
+ * full sort.
+ *
+ * We can use the parent's LIMIT if any, since we
* certainly won't pull more than that many tuples from
* any child.
*/
- cost_sort(&sort_path,
- NULL, /* doesn't currently need root */
- pathkeys,
- subpath->disabled_nodes,
- subpath->total_cost,
- subpath->rows,
- subpath->pathtarget->width,
- 0.0,
- work_mem,
- apath->limit_tuples);
+ if (enable_incremental_sort && presorted_keys > 0)
+ {
+ cost_incremental_sort(&sort_path,
+ root,
+ pathkeys,
+ presorted_keys,
+ subpath->disabled_nodes,
+ subpath->startup_cost,
+ subpath->total_cost,
+ subpath->rows,
+ subpath->pathtarget->width,
+ 0.0,
+ work_mem,
+ apath->limit_tuples);
+ }
+ else
+ {
+ cost_sort(&sort_path,
+ root,
+ pathkeys,
+ subpath->disabled_nodes,
+ subpath->total_cost,
+ subpath->rows,
+ subpath->pathtarget->width,
+ 0.0,
+ work_mem,
+ apath->limit_tuples);
+ }
+
subpath = &sort_path;
}
@@ -2546,13 +2572,13 @@ cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
Cost input_startup_cost = mpath->subpath->startup_cost;
Cost input_total_cost = mpath->subpath->total_cost;
double tuples = mpath->subpath->rows;
- double calls = mpath->calls;
+ Cardinality est_calls = mpath->est_calls;
int width = mpath->subpath->pathtarget->width;
double hash_mem_bytes;
double est_entry_bytes;
- double est_cache_entries;
- double ndistinct;
+ Cardinality est_cache_entries;
+ Cardinality ndistinct;
double evict_ratio;
double hit_ratio;
Cost startup_cost;
@@ -2578,7 +2604,7 @@ cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
est_cache_entries = floor(hash_mem_bytes / est_entry_bytes);
/* estimate on the distinct number of parameter values */
- ndistinct = estimate_num_groups(root, mpath->param_exprs, calls, NULL,
+ ndistinct = estimate_num_groups(root, mpath->param_exprs, est_calls, NULL,
&estinfo);
/*
@@ -2590,7 +2616,10 @@ cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
* certainly mean a MemoizePath will never survive add_path().
*/
if ((estinfo.flags & SELFLAG_USED_DEFAULT) != 0)
- ndistinct = calls;
+ ndistinct = est_calls;
+
+ /* Remember the ndistinct estimate for EXPLAIN */
+ mpath->est_unique_keys = ndistinct;
/*
* Since we've already estimated the maximum number of entries we can
@@ -2618,9 +2647,12 @@ cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath,
* must look at how many scans are estimated in total for this node and
* how many of those scans we expect to get a cache hit.
*/
- hit_ratio = ((calls - ndistinct) / calls) *
+ hit_ratio = ((est_calls - ndistinct) / est_calls) *
(est_cache_entries / Max(ndistinct, est_cache_entries));
+ /* Remember the hit ratio estimate for EXPLAIN */
+ mpath->est_hit_ratio = hit_ratio;
+
Assert(hit_ratio >= 0 && hit_ratio <= 1.0);
/*
diff --git a/src/backend/optimizer/path/joinpath.c b/src/backend/optimizer/path/joinpath.c
index 7aa8f5d799c..ebedc5574ca 100644
--- a/src/backend/optimizer/path/joinpath.c
+++ b/src/backend/optimizer/path/joinpath.c
@@ -154,13 +154,17 @@ add_paths_to_joinrel(PlannerInfo *root,
/*
* See if the inner relation is provably unique for this outer rel.
*
- * We have some special cases: for JOIN_SEMI and JOIN_ANTI, it doesn't
- * matter since the executor can make the equivalent optimization anyway;
- * we need not expend planner cycles on proofs. For JOIN_UNIQUE_INNER, we
- * must be considering a semijoin whose inner side is not provably unique
- * (else reduce_unique_semijoins would've simplified it), so there's no
- * point in calling innerrel_is_unique. However, if the LHS covers all of
- * the semijoin's min_lefthand, then it's appropriate to set inner_unique
+ * We have some special cases: for JOIN_SEMI, it doesn't matter since the
+ * executor can make the equivalent optimization anyway. It also doesn't
+ * help enable use of Memoize, since a semijoin with a provably unique
+ * inner side should have been reduced to an inner join in that case.
+ * Therefore, we need not expend planner cycles on proofs. (For
+ * JOIN_ANTI, although it doesn't help the executor for the same reason,
+ * it can benefit Memoize paths.) For JOIN_UNIQUE_INNER, we must be
+ * considering a semijoin whose inner side is not provably unique (else
+ * reduce_unique_semijoins would've simplified it), so there's no point in
+ * calling innerrel_is_unique. However, if the LHS covers all of the
+ * semijoin's min_lefthand, then it's appropriate to set inner_unique
* because the path produced by create_unique_path will be unique relative
* to the LHS. (If we have an LHS that's only part of the min_lefthand,
* that is *not* true.) For JOIN_UNIQUE_OUTER, pass JOIN_INNER to avoid
@@ -169,12 +173,6 @@ add_paths_to_joinrel(PlannerInfo *root,
switch (jointype)
{
case JOIN_SEMI:
- case JOIN_ANTI:
-
- /*
- * XXX it may be worth proving this to allow a Memoize to be
- * considered for Nested Loop Semi/Anti Joins.
- */
extra.inner_unique = false; /* well, unproven */
break;
case JOIN_UNIQUE_INNER:
@@ -715,16 +713,21 @@ get_memoize_path(PlannerInfo *root, RelOptInfo *innerrel,
return NULL;
/*
- * Currently we don't do this for SEMI and ANTI joins unless they're
- * marked as inner_unique. This is because nested loop SEMI/ANTI joins
- * don't scan the inner node to completion, which will mean memoize cannot
- * mark the cache entry as complete.
- *
- * XXX Currently we don't attempt to mark SEMI/ANTI joins as inner_unique
- * = true. Should we? See add_paths_to_joinrel()
+ * Currently we don't do this for SEMI and ANTI joins, because nested loop
+ * SEMI/ANTI joins don't scan the inner node to completion, which means
+ * memoize cannot mark the cache entry as complete. Nor can we mark the
+ * cache entry as complete after fetching the first inner tuple, because
+ * if that tuple and the current outer tuple don't satisfy the join
+ * clauses, a second inner tuple that satisfies the parameters would find
+ * the cache entry already marked as complete. The only exception is when
+ * the inner relation is provably unique, as in that case, there won't be
+ * a second matching tuple and we can safely mark the cache entry as
+ * complete after fetching the first inner tuple. Note that in such
+ * cases, the SEMI join should have been reduced to an inner join by
+ * reduce_unique_semijoins.
*/
- if (!extra->inner_unique && (jointype == JOIN_SEMI ||
- jointype == JOIN_ANTI))
+ if ((jointype == JOIN_SEMI || jointype == JOIN_ANTI) &&
+ !extra->inner_unique)
return NULL;
/*