aboutsummaryrefslogtreecommitdiff
path: root/src/backend/optimizer
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend/optimizer')
-rw-r--r--src/backend/optimizer/path/costsize.c121
-rw-r--r--src/backend/optimizer/util/var.c57
2 files changed, 124 insertions, 54 deletions
diff --git a/src/backend/optimizer/path/costsize.c b/src/backend/optimizer/path/costsize.c
index 7dfe834b779..dddca240e95 100644
--- a/src/backend/optimizer/path/costsize.c
+++ b/src/backend/optimizer/path/costsize.c
@@ -31,17 +31,18 @@
* result by interpolating between startup_cost and total_cost. In detail:
* actual_cost = startup_cost +
* (total_cost - startup_cost) * tuples_to_fetch / path->parent->rows;
- * Note that a relation's rows count (and, by extension, a Plan's plan_rows)
- * are set without regard to any LIMIT, so that this equation works properly.
- * (Also, these routines guarantee not to set the rows count to zero, so there
- * will be no zero divide.) The LIMIT is applied as a separate Plan node.
+ * Note that a base relation's rows count (and, by extension, plan_rows for
+ * plan nodes below the LIMIT node) are set without regard to any LIMIT, so
+ * that this equation works properly. (Also, these routines guarantee not to
+ * set the rows count to zero, so there will be no zero divide.) The LIMIT is
+ * applied as a top-level plan node.
*
*
* Portions Copyright (c) 1996-2001, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
* IDENTIFICATION
- * $Header: /cvsroot/pgsql/src/backend/optimizer/path/costsize.c,v 1.72 2001/05/09 00:35:09 tgl Exp $
+ * $Header: /cvsroot/pgsql/src/backend/optimizer/path/costsize.c,v 1.73 2001/05/09 23:13:34 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -205,12 +206,18 @@ cost_index(Path *path, Query *root,
{
Cost startup_cost = 0;
Cost run_cost = 0;
- Cost cpu_per_tuple;
Cost indexStartupCost;
Cost indexTotalCost;
Selectivity indexSelectivity;
+ double indexCorrelation,
+ csquared;
+ Cost min_IO_cost,
+ max_IO_cost;
+ Cost cpu_per_tuple;
double tuples_fetched;
double pages_fetched;
+ double T,
+ b;
/* Should only be applied to base relations */
Assert(IsA(baserel, RelOptInfo) &&IsA(index, IndexOptInfo));
@@ -224,38 +231,52 @@ cost_index(Path *path, Query *root,
* Call index-access-method-specific code to estimate the processing
* cost for scanning the index, as well as the selectivity of the
* index (ie, the fraction of main-table tuples we will have to
- * retrieve).
+ * retrieve) and its correlation to the main-table tuple order.
*/
- OidFunctionCall7(index->amcostestimate,
+ OidFunctionCall8(index->amcostestimate,
PointerGetDatum(root),
PointerGetDatum(baserel),
PointerGetDatum(index),
PointerGetDatum(indexQuals),
PointerGetDatum(&indexStartupCost),
PointerGetDatum(&indexTotalCost),
- PointerGetDatum(&indexSelectivity));
+ PointerGetDatum(&indexSelectivity),
+ PointerGetDatum(&indexCorrelation));
/* all costs for touching index itself included here */
startup_cost += indexStartupCost;
run_cost += indexTotalCost - indexStartupCost;
- /*
+ /*----------
* Estimate number of main-table tuples and pages fetched.
*
- * If the number of tuples is much smaller than the number of pages in
- * the relation, each tuple will cost a separate nonsequential fetch.
- * If it is comparable or larger, then probably we will be able to
- * avoid some fetches. We use a growth rate of log(#tuples/#pages +
- * 1) --- probably totally bogus, but intuitively it gives the right
- * shape of curve at least.
+ * When the index ordering is uncorrelated with the table ordering,
+ * we use an approximation proposed by Mackert and Lohman, "Index Scans
+ * Using a Finite LRU Buffer: A Validated I/O Model", ACM Transactions
+ * on Database Systems, Vol. 14, No. 3, September 1989, Pages 401-424.
+ * The Mackert and Lohman approximation is that the number of pages
+ * fetched is
+ * PF =
+ * min(2TNs/(2T+Ns), T) when T <= b
+ * 2TNs/(2T+Ns) when T > b and Ns <= 2Tb/(2T-b)
+ * b + (Ns - 2Tb/(2T-b))*(T-b)/T when T > b and Ns > 2Tb/(2T-b)
+ * where
+ * T = # pages in table
+ * N = # tuples in table
+ * s = selectivity = fraction of table to be scanned
+ * b = # buffer pages available (we include kernel space here)
*
- * XXX if the relation has recently been "clustered" using this index,
- * then in fact the target tuples will be highly nonuniformly
- * distributed, and we will be seriously overestimating the scan cost!
- * Currently we have no way to know whether the relation has been
- * clustered, nor how much it's been modified since the last
- * clustering, so we ignore this effect. Would be nice to do better
- * someday.
+ * When the index ordering is exactly correlated with the table ordering
+ * (just after a CLUSTER, for example), the number of pages fetched should
+ * be just sT. What's more, these will be sequential fetches, not the
+ * random fetches that occur in the uncorrelated case. So, depending on
+ * the extent of correlation, we should estimate the actual I/O cost
+ * somewhere between s * T * 1.0 and PF * random_cost. We currently
+ * interpolate linearly between these two endpoints based on the
+ * correlation squared (XXX is that appropriate?).
+ *
+ * In any case the number of tuples fetched is Ns.
+ *----------
*/
tuples_fetched = indexSelectivity * baserel->tuples;
@@ -263,24 +284,56 @@ cost_index(Path *path, Query *root,
if (tuples_fetched < 1.0)
tuples_fetched = 1.0;
- if (baserel->pages > 0)
- pages_fetched = ceil(baserel->pages *
- log(tuples_fetched / baserel->pages + 1.0));
+ /* This part is the Mackert and Lohman formula */
+
+ T = (baserel->pages > 1) ? (double) baserel->pages : 1.0;
+ b = (effective_cache_size > 1) ? effective_cache_size : 1.0;
+
+ if (T <= b)
+ {
+ pages_fetched =
+ (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
+ if (pages_fetched > T)
+ pages_fetched = T;
+ }
else
- pages_fetched = tuples_fetched;
+ {
+ double lim;
+
+ lim = (2.0 * T * b) / (2.0 * T - b);
+ if (tuples_fetched <= lim)
+ {
+ pages_fetched =
+ (2.0 * T * tuples_fetched) / (2.0 * T + tuples_fetched);
+ }
+ else
+ {
+ pages_fetched =
+ b + (tuples_fetched - lim) * (T - b) / T;
+ }
+ }
/*
- * Now estimate one nonsequential access per page fetched, plus
- * appropriate CPU costs per tuple.
+ * min_IO_cost corresponds to the perfectly correlated case (csquared=1),
+ * max_IO_cost to the perfectly uncorrelated case (csquared=0). Note
+ * that we just charge random_page_cost per page in the uncorrelated
+ * case, rather than using cost_nonsequential_access, since we've already
+ * accounted for caching effects by using the Mackert model.
*/
+ min_IO_cost = ceil(indexSelectivity * T);
+ max_IO_cost = pages_fetched * random_page_cost;
- /* disk costs for main table */
- run_cost += pages_fetched * cost_nonsequential_access(baserel->pages);
+ /*
+ * Now interpolate based on estimated index order correlation
+ * to get total disk I/O cost for main table accesses.
+ */
+ csquared = indexCorrelation * indexCorrelation;
- /* CPU costs */
- cpu_per_tuple = cpu_tuple_cost + baserel->baserestrictcost;
+ run_cost += max_IO_cost + csquared * (min_IO_cost - max_IO_cost);
/*
+ * Estimate CPU costs per tuple.
+ *
* Normally the indexquals will be removed from the list of
* restriction clauses that we have to evaluate as qpquals, so we
* should subtract their costs from baserestrictcost. For a lossy
@@ -290,6 +343,8 @@ cost_index(Path *path, Query *root,
* Rather than work out exactly how much to subtract, we don't
* subtract anything in that case either.
*/
+ cpu_per_tuple = cpu_tuple_cost + baserel->baserestrictcost;
+
if (!index->lossy && !is_injoin)
cpu_per_tuple -= cost_qual_eval(indexQuals);
diff --git a/src/backend/optimizer/util/var.c b/src/backend/optimizer/util/var.c
index 30f02de5c72..9b620c80f5a 100644
--- a/src/backend/optimizer/util/var.c
+++ b/src/backend/optimizer/util/var.c
@@ -8,7 +8,7 @@
*
*
* IDENTIFICATION
- * $Header: /cvsroot/pgsql/src/backend/optimizer/util/var.c,v 1.31 2001/04/18 20:42:55 tgl Exp $
+ * $Header: /cvsroot/pgsql/src/backend/optimizer/util/var.c,v 1.32 2001/05/09 23:13:35 tgl Exp $
*
*-------------------------------------------------------------------------
*/
@@ -28,8 +28,9 @@ typedef struct
typedef struct
{
int varno;
+ int varattno;
int sublevels_up;
-} contain_whole_tuple_var_context;
+} contain_var_reference_context;
typedef struct
{
@@ -39,8 +40,8 @@ typedef struct
static bool pull_varnos_walker(Node *node,
pull_varnos_context *context);
-static bool contain_whole_tuple_var_walker(Node *node,
- contain_whole_tuple_var_context *context);
+static bool contain_var_reference_walker(Node *node,
+ contain_var_reference_context *context);
static bool contain_var_clause_walker(Node *node, void *context);
static bool pull_var_clause_walker(Node *node,
pull_var_clause_context *context);
@@ -129,10 +130,10 @@ pull_varnos_walker(Node *node, pull_varnos_context *context)
/*
- * contain_whole_tuple_var
+ * contain_var_reference
*
- * Detect whether a parsetree contains any references to the whole
- * tuple of a given rtable entry (ie, a Var with varattno = 0).
+ * Detect whether a parsetree contains any references to a specified
+ * attribute of a specified rtable entry.
*
* NOTE: this is used on not-yet-planned expressions. It may therefore find
* bare SubLinks, and if so it needs to recurse into them to look for uplevel
@@ -140,11 +141,12 @@ pull_varnos_walker(Node *node, pull_varnos_context *context)
* SubPlan, we only need to look at the parameters passed to the subplan.
*/
bool
-contain_whole_tuple_var(Node *node, int varno, int levelsup)
+contain_var_reference(Node *node, int varno, int varattno, int levelsup)
{
- contain_whole_tuple_var_context context;
+ contain_var_reference_context context;
context.varno = varno;
+ context.varattno = varattno;
context.sublevels_up = levelsup;
/*
@@ -154,15 +156,15 @@ contain_whole_tuple_var(Node *node, int varno, int levelsup)
*/
if (node && IsA(node, Query))
return query_tree_walker((Query *) node,
- contain_whole_tuple_var_walker,
+ contain_var_reference_walker,
(void *) &context, true);
else
- return contain_whole_tuple_var_walker(node, &context);
+ return contain_var_reference_walker(node, &context);
}
static bool
-contain_whole_tuple_var_walker(Node *node,
- contain_whole_tuple_var_context *context)
+contain_var_reference_walker(Node *node,
+ contain_var_reference_context *context)
{
if (node == NULL)
return false;
@@ -171,8 +173,8 @@ contain_whole_tuple_var_walker(Node *node,
Var *var = (Var *) node;
if (var->varno == context->varno &&
- var->varlevelsup == context->sublevels_up &&
- var->varattno == InvalidAttrNumber)
+ var->varattno == context->varattno &&
+ var->varlevelsup == context->sublevels_up)
return true;
return false;
}
@@ -187,11 +189,11 @@ contain_whole_tuple_var_walker(Node *node,
*/
Expr *expr = (Expr *) node;
- if (contain_whole_tuple_var_walker((Node *) ((SubPlan *) expr->oper)->sublink->oper,
- context))
+ if (contain_var_reference_walker((Node *) ((SubPlan *) expr->oper)->sublink->oper,
+ context))
return true;
- if (contain_whole_tuple_var_walker((Node *) expr->args,
- context))
+ if (contain_var_reference_walker((Node *) expr->args,
+ context))
return true;
return false;
}
@@ -202,17 +204,30 @@ contain_whole_tuple_var_walker(Node *node,
context->sublevels_up++;
result = query_tree_walker((Query *) node,
- contain_whole_tuple_var_walker,
+ contain_var_reference_walker,
(void *) context, true);
context->sublevels_up--;
return result;
}
- return expression_tree_walker(node, contain_whole_tuple_var_walker,
+ return expression_tree_walker(node, contain_var_reference_walker,
(void *) context);
}
/*
+ * contain_whole_tuple_var
+ *
+ * Detect whether a parsetree contains any references to the whole
+ * tuple of a given rtable entry (ie, a Var with varattno = 0).
+ */
+bool
+contain_whole_tuple_var(Node *node, int varno, int levelsup)
+{
+ return contain_var_reference(node, varno, InvalidAttrNumber, levelsup);
+}
+
+
+/*
* contain_var_clause
* Recursively scan a clause to discover whether it contains any Var nodes
* (of the current query level).