aboutsummaryrefslogtreecommitdiff
path: root/src/backend
diff options
context:
space:
mode:
Diffstat (limited to 'src/backend')
-rw-r--r--src/backend/utils/adt/selfuncs.c160
1 files changed, 160 insertions, 0 deletions
diff --git a/src/backend/utils/adt/selfuncs.c b/src/backend/utils/adt/selfuncs.c
index e62b69d6f26..4fdcb07d97b 100644
--- a/src/backend/utils/adt/selfuncs.c
+++ b/src/backend/utils/adt/selfuncs.c
@@ -830,6 +830,132 @@ histogram_selectivity(VariableStatData *vardata, FmgrInfo *opproc,
}
/*
+ * generic_restriction_selectivity - Selectivity for almost anything
+ *
+ * This function estimates selectivity for operators that we don't have any
+ * special knowledge about, but are on data types that we collect standard
+ * MCV and/or histogram statistics for. (Additional assumptions are that
+ * the operator is strict and immutable, or at least stable.)
+ *
+ * If we have "VAR OP CONST" or "CONST OP VAR", selectivity is estimated by
+ * applying the operator to each element of the column's MCV and/or histogram
+ * stats, and merging the results using the assumption that the histogram is
+ * a reasonable random sample of the column's non-MCV population. Note that
+ * if the operator's semantics are related to the histogram ordering, this
+ * might not be such a great assumption; other functions such as
+ * scalarineqsel() are probably a better match in such cases.
+ *
+ * Otherwise, fall back to the default selectivity provided by the caller.
+ */
+double
+generic_restriction_selectivity(PlannerInfo *root, Oid operator,
+ List *args, int varRelid,
+ double default_selectivity)
+{
+ double selec;
+ VariableStatData vardata;
+ Node *other;
+ bool varonleft;
+
+ /*
+ * If expression is not variable OP something or something OP variable,
+ * then punt and return the default estimate.
+ */
+ if (!get_restriction_variable(root, args, varRelid,
+ &vardata, &other, &varonleft))
+ return default_selectivity;
+
+ /*
+ * If the something is a NULL constant, assume operator is strict and
+ * return zero, ie, operator will never return TRUE.
+ */
+ if (IsA(other, Const) &&
+ ((Const *) other)->constisnull)
+ {
+ ReleaseVariableStats(vardata);
+ return 0.0;
+ }
+
+ if (IsA(other, Const))
+ {
+ /* Variable is being compared to a known non-null constant */
+ Datum constval = ((Const *) other)->constvalue;
+ FmgrInfo opproc;
+ double mcvsum;
+ double mcvsel;
+ double nullfrac;
+ int hist_size;
+
+ fmgr_info(get_opcode(operator), &opproc);
+
+ /*
+ * Calculate the selectivity for the column's most common values.
+ */
+ mcvsel = mcv_selectivity(&vardata, &opproc, constval, varonleft,
+ &mcvsum);
+
+ /*
+ * If the histogram is large enough, see what fraction of it matches
+ * the query, and assume that's representative of the non-MCV
+ * population. Otherwise use the default selectivity for the non-MCV
+ * population.
+ */
+ selec = histogram_selectivity(&vardata, &opproc,
+ constval, varonleft,
+ 10, 1, &hist_size);
+ if (selec < 0)
+ {
+ /* Nope, fall back on default */
+ selec = default_selectivity;
+ }
+ else if (hist_size < 100)
+ {
+ /*
+ * For histogram sizes from 10 to 100, we combine the histogram
+ * and default selectivities, putting increasingly more trust in
+ * the histogram for larger sizes.
+ */
+ double hist_weight = hist_size / 100.0;
+
+ selec = selec * hist_weight +
+ default_selectivity * (1.0 - hist_weight);
+ }
+
+ /* In any case, don't believe extremely small or large estimates. */
+ if (selec < 0.0001)
+ selec = 0.0001;
+ else if (selec > 0.9999)
+ selec = 0.9999;
+
+ /* Don't forget to account for nulls. */
+ if (HeapTupleIsValid(vardata.statsTuple))
+ nullfrac = ((Form_pg_statistic) GETSTRUCT(vardata.statsTuple))->stanullfrac;
+ else
+ nullfrac = 0.0;
+
+ /*
+ * Now merge the results from the MCV and histogram calculations,
+ * realizing that the histogram covers only the non-null values that
+ * are not listed in MCV.
+ */
+ selec *= 1.0 - nullfrac - mcvsum;
+ selec += mcvsel;
+ }
+ else
+ {
+ /* Comparison value is not constant, so we can't do anything */
+ selec = default_selectivity;
+ }
+
+ ReleaseVariableStats(vardata);
+
+ /* result should be in range, but make sure... */
+ CLAMP_PROBABILITY(selec);
+
+ return selec;
+}
+
+/*
* ineq_histogram_selectivity - Examine the histogram for scalarineqsel
*
* Determine the fraction of the variable's histogram population that
@@ -2917,6 +3043,40 @@ fail:
/*
+ * matchingsel -- generic matching-operator selectivity support
+ *
+ * Use these for any operators that (a) are on data types for which we collect
+ * standard statistics, and (b) have behavior for which the default estimate
+ * (twice DEFAULT_EQ_SEL) is sane. Typically that is good for match-like
+ * operators.
+ */
+
+Datum
+matchingsel(PG_FUNCTION_ARGS)
+{
+ PlannerInfo *root = (PlannerInfo *) PG_GETARG_POINTER(0);
+ Oid operator = PG_GETARG_OID(1);
+ List *args = (List *) PG_GETARG_POINTER(2);
+ int varRelid = PG_GETARG_INT32(3);
+ double selec;
+
+ /* Use generic restriction selectivity logic. */
+ selec = generic_restriction_selectivity(root, operator,
+ args, varRelid,
+ DEFAULT_MATCHING_SEL);
+
+ PG_RETURN_FLOAT8((float8) selec);
+}
+
+Datum
+matchingjoinsel(PG_FUNCTION_ARGS)
+{
+ /* Just punt, for the moment. */
+ PG_RETURN_FLOAT8(DEFAULT_MATCHING_SEL);
+}
+
+
+/*
* Helper routine for estimate_num_groups: add an item to a list of
* GroupVarInfos, but only if it's not known equal to any of the existing
* entries.