| Commit message (Collapse) | Author | Age |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows the RETURNING list of INSERT/UPDATE/DELETE/MERGE queries
to explicitly return old and new values by using the special aliases
"old" and "new", which are automatically added to the query (if not
already defined) while parsing its RETURNING list, allowing things
like:
RETURNING old.colname, new.colname, ...
RETURNING old.*, new.*
Additionally, a new syntax is supported, allowing the names "old" and
"new" to be changed to user-supplied alias names, e.g.:
RETURNING WITH (OLD AS o, NEW AS n) o.colname, n.colname, ...
This is useful when the names "old" and "new" are already defined,
such as inside trigger functions, allowing backwards compatibility to
be maintained -- the interpretation of any existing queries that
happen to already refer to relations called "old" or "new", or use
those as aliases for other relations, is not changed.
For an INSERT, old values will generally be NULL, and for a DELETE,
new values will generally be NULL, but that may change for an INSERT
with an ON CONFLICT ... DO UPDATE clause, or if a query rewrite rule
changes the command type. Therefore, we put no restrictions on the use
of old and new in any DML queries.
Dean Rasheed, reviewed by Jian He and Jeff Davis.
Discussion: https://postgr.es/m/CAEZATCWx0J0-v=Qjc6gXzR=KtsdvAE7Ow=D=mu50AgOe+pvisQ@mail.gmail.com
|
|
|
|
| |
Backpatch-through: 13
|
|
|
|
|
|
|
|
| |
Many of them just seem to have been copied around for no real reason.
Their presence causes (small) risks of hiding actual type mismatches
or silently discarding qualifiers
Discussion: https://www.postgresql.org/message-id/flat/461ea37c-8b58-43b4-9736-52884e862820@eisentraut.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows an error cursor to be supplied for a bunch of
bad-function-definition errors that previously lacked one,
or that cheated a bit by pointing at the contained type name
when the error isn't really about that.
Bump catversion from an abundance of caution --- I don't think
this node type can actually appear in stored views/rules, but
better safe than sorry.
Jian He and Tom Lane (extracted from a larger patch by Jian,
with some additional work by me)
Discussion: https://postgr.es/m/CACJufxEmONE3P2En=jopZy1m=cCCUs65M4+1o52MW5og9oaUPA@mail.gmail.com
|
|
|
|
|
|
|
|
|
| |
The result is already of the correct type, so these casts don't do
anything.
Reviewed-by: Nathan Bossart <nathandbossart@gmail.com>
Reviewed-by: Tender Wang <tndrwang@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/637eeea8-5663-460b-a114-39572c0f6c6e%40eisentraut.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
If there are subqueries in the grouping expressions, each of these
subqueries in the targetlist and HAVING clause is expanded into
distinct SubPlan nodes. As a result, only one of these SubPlan nodes
would be converted to reference to the grouping key column output by
the Agg node; others would have to get evaluated afresh. This is not
efficient, and with grouping sets this can cause wrong results issues
in cases where they should go to NULL because they are from the wrong
grouping set. Furthermore, during re-evaluation, these SubPlan nodes
might use nulled column values from grouping sets, which is not
correct.
This issue is not limited to subqueries. For other types of
expressions that are part of grouping items, if they are transformed
into another form during preprocessing, they may fail to match lower
target items. This can also lead to wrong results with grouping sets.
To fix this issue, we introduce a new kind of RTE representing the
output of the grouping step, with columns that are the Vars or
expressions being grouped on. In the parser, we replace the grouping
expressions in the targetlist and HAVING clause with Vars referencing
this new RTE, so that the output of the parser directly expresses the
semantic requirement that the grouping expressions be gotten from the
grouping output rather than computed some other way. In the planner,
we first preprocess all the columns of this new RTE and then replace
any Vars in the targetlist and HAVING clause that reference this new
RTE with the underlying grouping expressions, so that we will have
only one instance of a SubPlan node for each subquery contained in the
grouping expressions.
Bump catversion because this changes the querytree produced by the
parser.
Thanks to Tom Lane for the idea to invent a new kind of RTE.
Per reports from Geoff Winkless, Tobias Wendorff, Richard Guo from
various threads.
Author: Richard Guo
Reviewed-by: Ashutosh Bapat, Sutou Kouhei
Discussion: https://postgr.es/m/CAMbWs4_dp7e7oTwaiZeBX8+P1rXw4ThkZxh1QG81rhu9Z47VsQ@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Instead of looking up casts at parse time for converting the result
of JsonPath* query functions to the specified or the default
RETURNING type, always perform the conversion at runtime using either
the target type's input function or the function
json_populate_type().
There are two motivations for this change:
1. json_populate_type() coerces to types with typmod such that any
string values that exceed length limit cause an error instead of
silent truncation, which is necessary to be standard-conforming.
2. It was possible to end up with a cast expression that doesn't
support soft handling of errors causing bugs in the of handling
ON ERROR clause.
JsonExpr.coercion_expr which would store the cast expression is no
longer necessary, so remove.
Bump catversion because stored rules change because of the above
removal.
Reported-by: Alvaro Herrera <alvherre@alvh.no-ip.org>
Reviewed-by: Jian He <jian.universality@gmail.com>
Discussion: Discussion: https://postgr.es/m/202405271326.5a5rprki64aw%40alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
94985c210 added code to detect when WindowFuncs were monotonic and
allowed additional quals to be "pushed down" into the subquery to be
used as WindowClause runConditions in order to short-circuit execution
in nodeWindowAgg.c.
The Node representation of runConditions wasn't well selected and
because we do qual pushdown before planning the subquery, the planning
of the subquery could perform subquery pull-up of nested subqueries.
For WindowFuncs with args, the arguments could be changed after pushing
the qual down to the subquery.
This was made more difficult by the fact that the code duplicated the
WindowFunc inside an OpExpr to include in the WindowClauses runCondition
field. This could result in duplication of subqueries and a pull-up of
such a subquery could result in another initplan parameter being issued
for the 2nd version of the subplan. This could result in errors such as:
ERROR: WindowFunc not found in subplan target lists
To fix this, we change the node representation of these run conditions
and instead of storing an OpExpr containing the WindowFunc in a list
inside WindowClause, we now store a new node type named
WindowFuncRunCondition within a new field in the WindowFunc. These get
transformed into OpExprs later in planning once subquery pull-up has been
performed.
This problem did exist in v15 and v16, but that was fixed by 9d36b883b
and e5d20bbd.
Cat version bump due to new node type and modifying WindowFunc struct.
Bug: #18305
Reported-by: Zuming Jiang
Discussion: https://postgr.es/m/18305-33c49b4c830b37b3%40postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
A NESTED path allows to extract data from nested levels of JSON
objects given by the parent path expression, which are projected as
columns specified using a nested COLUMNS clause, just like the parent
COLUMNS clause. Rows comprised from a NESTED columns are "joined"
to the row comprised from the parent columns. If a particular NESTED
path evaluates to 0 rows, then the nested COLUMNS will emit NULLs,
making it an OUTER join.
NESTED columns themselves may include NESTED paths to allow
extracting data from arbitrary nesting levels, which are likewise
joined against the rows at the parent level.
Multiple NESTED paths at a given level are called "sibling" paths
and their rows are combined by UNIONing them, that is, after being
joined against the parent row as described above.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
JSON_TABLE() allows JSON data to be converted into a relational view
and thus used, for example, in a FROM clause, like other tabular
data. Data to show in the view is selected from a source JSON object
using a JSON path expression to get a sequence of JSON objects that's
called a "row pattern", which becomes the source to compute the
SQL/JSON values that populate the view's output columns. Column
values themselves are computed using JSON path expressions applied to
each of the JSON objects comprising the "row pattern", for which the
SQL/JSON query functions added in 6185c9737cf4 are used.
To implement JSON_TABLE() as a table function, this augments the
TableFunc and TableFuncScanState nodes that are currently used to
support XMLTABLE() with some JSON_TABLE()-specific fields.
Note that the JSON_TABLE() spec includes NESTED COLUMNS and PLAN
clauses, which are required to provide more flexibility to extract
data out of nested JSON objects, but they are not implemented here
to keep this commit of manageable size.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows MERGE commands to include WHEN NOT MATCHED BY SOURCE
actions, which operate on rows that exist in the target relation, but
not in the data source. These actions can execute UPDATE, DELETE, or
DO NOTHING sub-commands.
This is in contrast to already-supported WHEN NOT MATCHED actions,
which operate on rows that exist in the data source, but not in the
target relation. To make this distinction clearer, such actions may
now be written as WHEN NOT MATCHED BY TARGET.
Writing WHEN NOT MATCHED without specifying BY SOURCE or BY TARGET is
equivalent to writing WHEN NOT MATCHED BY TARGET.
Dean Rasheed, reviewed by Alvaro Herrera, Ted Yu and Vik Fearing.
Discussion: https://postgr.es/m/CAEZATCWqnKGc57Y_JanUBHQXNKcXd7r=0R4NEZUVwP+syRkWbA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces the following SQL/JSON functions for querying JSON
data using jsonpath expressions:
JSON_EXISTS(), which can be used to apply a jsonpath expression to a
JSON value to check if it yields any values.
JSON_QUERY(), which can be used to to apply a jsonpath expression to
a JSON value to get a JSON object, an array, or a string. There are
various options to control whether multi-value result uses array
wrappers and whether the singleton scalar strings are quoted or not.
JSON_VALUE(), which can be used to apply a jsonpath expression to a
JSON value to return a single scalar value, producing an error if it
multiple values are matched.
Both JSON_VALUE() and JSON_QUERY() functions have options for
handling EMPTY and ERROR conditions, which can be used to specify
the behavior when no values are matched and when an error occurs
during jsonpath evaluation, respectively.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Peter Eisentraut <peter@eisentraut.org>
Author: Jian He <jian.universality@gmail.com>
Reviewers have included (in no particular order):
Andres Freund, Alexander Korotkov, Pavel Stehule, Andrew Alsup,
Erik Rijkers, Zihong Yu, Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby, Álvaro Herrera, Jian He, Anton A. Melnikov,
Nikita Malakhov, Peter Eisentraut, Tomas Vondra
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqHROpf9e644D8BRqYvaAPmgBZVup-xKMDPk-nd4EpgzHw@mail.gmail.com
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This allows a RETURNING clause to be appended to a MERGE query, to
return values based on each row inserted, updated, or deleted. As with
plain INSERT, UPDATE, and DELETE commands, the returned values are
based on the new contents of the target table for INSERT and UPDATE
actions, and on its old contents for DELETE actions. Values from the
source relation may also be returned.
As with INSERT/UPDATE/DELETE, the output of MERGE ... RETURNING may be
used as the source relation for other operations such as WITH queries
and COPY commands.
Additionally, a special function merge_action() is provided, which
returns 'INSERT', 'UPDATE', or 'DELETE', depending on the action
executed for each row. The merge_action() function can be used
anywhere in the RETURNING list, including in arbitrary expressions and
subqueries, but it is an error to use it anywhere outside of a MERGE
query's RETURNING list.
Dean Rasheed, reviewed by Isaac Morland, Vik Fearing, Alvaro Herrera,
Gurjeet Singh, Jian He, Jeff Davis, Merlin Moncure, Peter Eisentraut,
and Wolfgang Walther.
Discussion: http://postgr.es/m/CAEZATCWePEGQR5LBn-vD6SfeLZafzEm2Qy_L_Oky2=qw2w3Pzg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
as determined by include-what-you-use (IWYU)
While IWYU also suggests to *add* a bunch of #include's (which is its
main purpose), this patch does not do that. In some cases, a more
specific #include replaces another less specific one.
Some manual adjustments of the automatic result:
- IWYU currently doesn't know about includes that provide global
variable declarations (like -Wmissing-variable-declarations), so
those includes are being kept manually.
- All includes for port(ability) headers are being kept for now, to
play it safe.
- No changes of catalog/pg_foo.h to catalog/pg_foo_d.h, to keep the
patch from exploding in size.
Note that this patch touches just *.c files, so nothing declared in
header files changes in hidden ways.
As a small example, in src/backend/access/transam/rmgr.c, some IWYU
pragma annotations are added to handle a special case there.
Discussion: https://www.postgresql.org/message-id/flat/af837490-6b2f-46df-ba05-37ea6a6653fc%40eisentraut.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 9d9c02ccd, which added the notion of a "run condition" for
window functions, neglected to teach nodeFuncs.c to process the new
field. Remarkably, that doesn't seem to have had any ill effects
before we invented Var.varnullingrels, but now it can cause visible
failures in join-removal scenarios.
I have no faith that there's not reachable problems in v15 too,
so back-patch the code change to v15 where 9d9c02ccd came in.
The test case seems irrelevant to v15, though.
Per bug #18277 from Zuming Jiang. Diagnosis and patch by
Richard Guo.
Discussion: https://postgr.es/m/18277-089ead83b329a2fd@postgresql.org
|
|
|
|
|
|
|
|
| |
Reported-by: Michael Paquier
Discussion: https://postgr.es/m/ZZKTDPxBBMt3C0J9@paquier.xyz
Backpatch-through: 12
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This Patch introduces three SQL standard JSON functions:
JSON()
JSON_SCALAR()
JSON_SERIALIZE()
JSON() produces json values from text, bytea, json or jsonb values,
and has facilitites for handling duplicate keys.
JSON_SCALAR() produces a json value from any scalar sql value,
including json and jsonb.
JSON_SERIALIZE() produces text or bytea from input which containis
or represents json or jsonb;
For the most part these functions don't add any significant new
capabilities, but they will be of use to users wanting standard
compliant JSON handling.
Catversion bumped as this changes ruleutils.c.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby, Álvaro Herrera,
Peter Eisentraut
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
Discussion: https://postgr.es/m/CA+HiwqE4XTdfb1nW=Ojoy_tQSRhYt-q_kb6i5d4xcKyrLC1Nbg@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
| |
b6e1157e7d made some changes to enforce that
JsonValueExpr.formatted_expr is always set and is the expression that
gives a JsonValueExpr its runtime value, but that's not really
apparent from the comments about and the code manipulating
formatted_expr. This commit fixes that.
Per suggestion from Álvaro Herrera.
Discussion: https://postgr.es/m/20230718155313.3wqg6encgt32adqb%40alvherre.pgsql
|
|
|
|
|
|
|
|
| |
It was walking into the ColumnDef->compression field, which is not a
node but a string. This code is currently not reachable (because the
compression field is only set in situations that don't go through
raw_expression_tree_walker()), but if it had been, this could have
behaved erratically.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This is equivalent to a revert of f193883 and fb32748, with the addition
that the declaration of the SQLValueFunction node needs to gain a couple
of node_attr for query jumbling. The performance impact of removing the
function call inlining is proving to be too huge for some workloads
where these are used. A worst-case test case of involving only simple
SELECT queries with a SQL keyword is proving to lead to a reduction of
10% in TPS via pgbench and prepared queries on a high-end machine.
None of the tests I ran back for this set of changes saw such a huge
gap, but Alexander Lakhin and Andres Freund have found that this can be
noticeable. Keeping the older performance would mean to do more
inlining in the executor when using COERCE_SQL_SYNTAX for a function
expression, similarly to what SQLValueFunction does. This requires more
redesign work and there is little time until 16beta1 is released, so for
now reverting the change is the best way forward, bringing back the
previous performance.
Bump catalog version.
Reported-by: Alexander Lakhin
Discussion: https://postgr.es/m/b32bed1b-0746-9b20-1472-4bdc9ca66d52@gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- At the last minute and for no particularly good reason, I changed the
WITHOUT token to be marked especially for lookahead, from the one in
WITHOUT TIME to the one in WITHOUT UNIQUE. Study of upcoming patches
(where a new WITHOUT ARRAY WRAPPER clause is added) showed me that the
former was better, so put it back the way the original patch had it.
- update exprTypmod() for JsonConstructorExpr to return the typmod of
the RETURNING clause, as a comment there suggested. Perhaps it's
possible for this to make a difference with datetime types, but I
didn't try to build a test case.
- The nodeFuncs.c support code for new nodes was calling walker()
directly instead of the WALK() macro as introduced by commit 1c27d16e6e5c.
Modernize that. Also add exprLocation() support for a couple of nodes
that missed it. Lastly, reorder the code more sensibly.
The WITHOUT_LA -> WITHOUT change means that stored rules containing
either WITHOUT TIME ZONE or WITHOUT UNIQUE KEYS would change
representation. Therefore, bump catversion.
Discussion: https://postgr.es/m/20230329181708.e64g2tpy7jyufqkr@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON, as well as on the json and
jsonb types. Each test has IS and IS NOT variants and supports a WITH
UNIQUE KEYS flag. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
These should be self-explanatory.
The WITH UNIQUE KEYS flag makes these return false when duplicate keys
exist in any object within the value, not necessarily directly contained
in the outermost object.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Andrew Dunstan <andrew@dunslane.net>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit introduces the SQL/JSON standard-conforming constructors for
JSON types:
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
Most of the functionality was already present in PostgreSQL-specific
functions, but these include some new functionality such as the ability
to skip or include NULL values, and to allow duplicate keys or throw
error when they are found, as well as the standard specified syntax to
specify output type and format.
Author: Nikita Glukhov <n.gluhov@postgrespro.ru>
Author: Teodor Sigaev <teodor@sigaev.ru>
Author: Oleg Bartunov <obartunov@gmail.com>
Author: Alexander Korotkov <aekorotkov@gmail.com>
Author: Amit Langote <amitlangote09@gmail.com>
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/CAF4Au4w2x-5LTnN_bxky-mq4=WOqsGsxSpENCzHRAzSnEd8+WQ@mail.gmail.com
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
Discussion: https://postgr.es/m/20220616233130.rparivafipt6doj3@alap3.anarazel.de
Discussion: https://postgr.es/m/abd9b83b-aa66-f230-3d6d-734817f0995d%40postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Traditionally we used the same Var struct to represent the value
of a table column everywhere in parse and plan trees. This choice
predates our support for SQL outer joins, and it's really a pretty
bad idea with outer joins, because the Var's value can depend on
where it is in the tree: it might go to NULL above an outer join.
So expression nodes that are equal() per equalfuncs.c might not
represent the same value, which is a huge correctness hazard for
the planner.
To improve this, decorate Var nodes with a bitmapset showing
which outer joins (identified by RTE indexes) may have nulled
them at the point in the parse tree where the Var appears.
This allows us to trust that equal() Vars represent the same value.
A certain amount of klugery is still needed to cope with cases
where we re-order two outer joins, but it's possible to make it
work without sacrificing that core principle. PlaceHolderVars
receive similar decoration for the same reason.
In the planner, we include these outer join bitmapsets into the relids
that an expression is considered to depend on, and in consequence also
add outer-join relids to the relids of join RelOptInfos. This allows
us to correctly perceive whether an expression can be calculated above
or below a particular outer join.
This change affects FDWs that want to plan foreign joins. They *must*
follow suit when labeling foreign joins in order to match with the
core planner, but for many purposes (if postgres_fdw is any guide)
they'd prefer to consider only base relations within the join.
To support both requirements, redefine ForeignScan.fs_relids as
base+OJ relids, and add a new field fs_base_relids that's set up by
the core planner.
Large though it is, this commit just does the minimum necessary to
install the new mechanisms and get check-world passing again.
Follow-up patches will perform some cleanup. (The README additions
and comments mention some stuff that will appear in the follow-up.)
Patch by me; thanks to Richard Guo for review.
Discussion: https://postgr.es/m/830269.1656693747@sss.pgh.pa.us
|
|
|
|
| |
Backpatch-through: 11
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This switch impacts 9 patterns related to a SQL-mandated special syntax
for function calls:
- LOCALTIME [ ( typmod ) ]
- LOCALTIMESTAMP [ ( typmod ) ]
- CURRENT_TIME [ ( typmod ) ]
- CURRENT_TIMESTAMP [ ( typmod ) ]
- CURRENT_DATE
Five new entries are added to pg_proc to compensate the removal of
SQLValueFunction to provide backward-compatibility and making this
change transparent for the end-user (for example for the attribute
generated when a keyword is specified in a SELECT or in a FROM clause
without an alias, or when specifying something else than an Iconst to
the parser).
The parser included a set of checks coming from the files in charge of
holding the C functions used for the SQLValueFunction calls (as of
transformSQLValueFunction()), which are now moved within each function's
execution path, so this reduces the dependencies between the execution
and the parsing steps. As of this change, all the SQL keywords use the
same paths for their work, relying only on COERCE_SQL_SYNTAX. Like
fb32748, no performance difference has been noticed, while the perf
profiles get reduced with ExecEvalSQLValueFunction() gone.
Bump catalog version.
Reviewed-by: Corey Huinker, Ted Yu
Discussion: https://postgr.es/m/YzaG3MoryCguUOym@paquier.xyz
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This commit changes six SQL keywords to use COERCE_SQL_SYNTAX rather
than relying on SQLValueFunction:
- CURRENT_ROLE
- CURRENT_USER
- USER
- SESSION_USER
- CURRENT_CATALOG
- CURRENT_SCHEMA
Among the six, "user", "current_role" and "current_catalog" require
specific SQL functions to allow ruleutils.c to map them to the SQL
keywords these require when using COERCE_SQL_SYNTAX. Having
pg_proc.proname match with the keyword ensures that the compatibility
remains the same when projecting any of these keywords in a FROM clause
to an attribute name when an alias is not specified. This is covered by
the tests added in 2e0d80c, making sure that a correct mapping happens
with each SQL keyword. The three others (current_schema, session_user
and current_user) already have pg_proc entries for this job, so this
brings more consistency between the way such keywords are treated in the
parser, the executor and ruleutils.c.
SQLValueFunction is reduced to half its contents after this change,
simplifying its logic a bit as there is no need to enforce a C collation
anymore for the entries returning a name as a result. I have made a few
performance tests, with a million-ish calls to these keywords without
seeing a difference in run-time or in perf profiles
(ExecEvalSQLValueFunction() is removed from the profiles). The
remaining SQLValueFunctions are now related to timestamps and dates.
Bump catalog version.
Reviewed-by: Corey Huinker
Discussion: https://postgr.es/m/YzaG3MoryCguUOym@paquier.xyz
|
|
|
|
|
|
|
|
|
|
|
|
| |
We weren't jumbling the merge action list, so wildly different commands
would be considered to use the same query ID. Add that, mention it in
the docs, and some test lines.
Backpatch to 15.
Author: Tatsu <bt22nakamorit@oss.nttdata.com>
Reviewed-by: Julien Rouhaud <rjuju123@gmail.com>
Discussion: https://postgr.es/m/d87e391694db75a038abc3b2597828e8@oss.nttdata.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
expression_tree_walker and allied functions have traditionally
declared their callback functions as, say, "bool (*walker) ()"
to allow for variation in the declared types of the callback
functions' context argument. This is apparently going to be
forbidden by the next version of the C standard, and the latest
version of clang warns about that. In any case it's always
been pretty poor for error-detection purposes, so fixing it is
a good thing to do.
What we want to do is change the callback argument declarations to
be like "bool (*walker) (Node *node, void *context)", which is
correct so far as expression_tree_walker and friends are concerned,
but not change the actual callback functions. Strict compliance with
the C standard would require changing them to declare their arguments
as "void *context" and then cast to the appropriate context struct
type internally. That'd be very invasive and it would also introduce
a bunch of opportunities for future bugs, since we'd no longer have
any check that the correct sort of context object is passed by outside
callers or internal recursion cases. Therefore, we're just going
to ignore the standard's position that "void *" isn't necessarily
compatible with struct pointers. No machine built in the last forty
or so years actually behaves that way, so it's not worth introducing
bug hazards for compatibility with long-dead hardware.
Therefore, to silence these compiler warnings, introduce a layer of
macro wrappers that cast the supplied function name to the official
argument type. Thanks to our use of -Wcast-function-type, this will
still produce a warning if the supplied function is seriously
incompatible with the required signature, without going as far as
the official spec restriction does.
This method fixes the problem without any need for source code changes
outside nodeFuncs.h/.c. However, it is an ABI break because the
physically called functions now have names ending in "_impl". Hence
we can only fix it this way in HEAD. In the back branches, we'll have
to settle for disabling -Wdeprecated-non-prototype.
Discussion: https://postgr.es/m/CA+hUKGKpHPDTv67Y+s6yiC8KH5OXeDg6a-twWo_xznKTcG0kSA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The reverts the following and makes some associated cleanups:
commit f79b803dc: Common SQL/JSON clauses
commit f4fb45d15: SQL/JSON constructors
commit 5f0adec25: Make STRING an unreserved_keyword.
commit 33a377608: IS JSON predicate
commit 1a36bc9db: SQL/JSON query functions
commit 606948b05: SQL JSON functions
commit 49082c2cc: RETURNING clause for JSON() and JSON_SCALAR()
commit 4e34747c8: JSON_TABLE
commit fadb48b00: PLAN clauses for JSON_TABLE
commit 2ef6f11b0: Reduce running time of jsonb_sqljson test
commit 14d3f24fa: Further improve jsonb_sqljson parallel test
commit a6baa4bad: Documentation for SQL/JSON features
commit b46bcf7a4: Improve readability of SQL/JSON documentation.
commit 112fdb352: Fix finalization for json_objectagg and friends
commit fcdb35c32: Fix transformJsonBehavior
commit 4cd8717af: Improve a couple of sql/json error messages
commit f7a605f63: Small cleanups in SQL/JSON code
commit 9c3d25e17: Fix JSON_OBJECTAGG uniquefying bug
commit a79153b7a: Claim SQL standard compliance for SQL/JSON features
commit a1e7616d6: Rework SQL/JSON documentation
commit 8d9f9634e: Fix errors in copyfuncs/equalfuncs support for JSON node types.
commit 3c633f32b: Only allow returning string types or bytea from json_serialize
commit 67b26703b: expression eval: Fix EEOP_JSON_CONSTRUCTOR and EEOP_JSONEXPR size.
The release notes are also adjusted.
Backpatch to release 15.
Discussion: https://postgr.es/m/40d2c882-bcac-19a9-754d-4299e1d87ac7@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit fac1b470a thought we could check for set-returning functions
by testing only the top-level node in an expression tree. This is
wrong in itself, and to make matters worse it encouraged others
to make the same mistake, by exporting tlist.c's special-purpose
IS_SRF_CALL() as a widely-visible macro. I can't find any evidence
that anyone's taken the bait, but it was only a matter of time.
Use expression_returns_set() instead, and stuff the IS_SRF_CALL()
genie back in its bottle, this time with a warning label. I also
added a couple of cross-reference comments.
After a fair amount of fooling around, I've despaired of making
a robust test case that exposes the bug reliably, so no test case
here. (Note that the test case added by fac1b470a is itself
broken, in that it doesn't notice if you remove the code change.
The repro given by the bug submitter currently doesn't fail either
in v15 or HEAD, though I suspect that may indicate an unrelated bug.)
Per bug #17564 from Martijn van Oosterhout. Back-patch to v13,
as the faulty patch was.
Discussion: https://postgr.es/m/17564-c7472c2f90ef2da3@postgresql.org
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Commit 64919aaab made pull_up_simple_subquery set rte->subquery = NULL
after doing the deed, so that we don't waste cycles copying a
now-useless subquery tree around. This turns out to create a core dump
hazard in range_table_mutator, which supposes that that field is never
NULL. Apparently none of our own code invokes query_tree_mutator or
range_table_mutator on the top Query after subquery pullup; but it
wouldn't be surprising if outside code does, and anyway I'm working
on a v16 patch that will need it.
We can fix this cleanly by just getting rid of the special-case
handling of this field and treating it more like all the rest.
I think the special case might be left over from a time when
QTW_DONT_COPY_QUERY was the default behavior, but that was eons ago.
Thanks to Dean Rasheed for review.
Discussion: https://postgr.es/m/545569.1656107045@sss.pgh.pa.us
|
|
|
|
|
| |
Run pgindent, pgperltidy, and reformat-dat-files.
I manually fixed a couple of comments that pgindent uglified.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This feature allows jsonb data to be treated as a table and thus used in
a FROM clause like other tabular data. Data can be selected from the
jsonb using jsonpath expressions, and hoisted out of nested structures
in the jsonb to form multiple rows, more or less like an outer join.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zhihong Yu (whose
name I previously misspelled), Himanshu Upadhyaya, Daniel Gustafsson,
Justin Pryzby.
Discussion: https://postgr.es/m/7e2cb85d-24cf-4abb-30a5-1a33715959bd@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch is extracted from a larger patch that allowed setting the
default returned value from these functions to json or jsonb. That had
problems, but this piece of it is fine. For these functions only json or
jsonb can be specified in the RETURNING clause.
Extracted from an original patch from Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This Patch introduces three SQL standard JSON functions:
JSON() (incorrectly mentioned in my commit message for f4fb45d15c)
JSON_SCALAR()
JSON_SERIALIZE()
JSON() produces json values from text, bytea, json or jsonb values, and
has facilitites for handling duplicate keys.
JSON_SCALAR() produces a json value from any scalar sql value, including
json and jsonb.
JSON_SERIALIZE() produces text or bytea from input which containis or
represents json or jsonb;
For the most part these functions don't add any significant new
capabilities, but they will be of use to users wanting standard
compliant JSON handling.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces the SQL/JSON functions for querying JSON data using
jsonpath expressions. The functions are:
JSON_EXISTS()
JSON_QUERY()
JSON_VALUE()
All of these functions only operate on jsonb. The workaround for now is
to cast the argument to jsonb.
JSON_EXISTS() tests if the jsonpath expression applied to the jsonb
value yields any values. JSON_VALUE() must return a single value, and an
error occurs if it tries to return multiple values. JSON_QUERY() must
return a json object or array, and there are various WRAPPER options for
handling scalar or multi-value results. Both these functions have
options for handling EMPTY and ERROR conditions.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch intrdocuces the SQL standard IS JSON predicate. It operates
on text and bytea values representing JSON as well as on the json and
jsonb types. Each test has an IS and IS NOT variant. The tests are:
IS JSON [VALUE]
IS JSON ARRAY
IS JSON OBJECT
IS JSON SCALAR
IS JSON WITH | WITHOUT UNIQUE KEYS
These are mostly self-explanatory, but note that IS JSON WITHOUT UNIQUE
KEYS is true whenever IS JSON is true, and IS JSON WITH UNIQUE KEYS is
true whenever IS JSON is true except it IS JSON OBJECT is true and there
are duplicate keys (which is never the case when applied to jsonb values).
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
MERGE performs actions that modify rows in the target table using a
source table or query. MERGE provides a single SQL statement that can
conditionally INSERT/UPDATE/DELETE rows -- a task that would otherwise
require multiple PL statements. For example,
MERGE INTO target AS t
USING source AS s
ON t.tid = s.sid
WHEN MATCHED AND t.balance > s.delta THEN
UPDATE SET balance = t.balance - s.delta
WHEN MATCHED THEN
DELETE
WHEN NOT MATCHED AND s.delta > 0 THEN
INSERT VALUES (s.sid, s.delta)
WHEN NOT MATCHED THEN
DO NOTHING;
MERGE works with regular tables, partitioned tables and inheritance
hierarchies, including column and row security enforcement, as well as
support for row and statement triggers and transition tables therein.
MERGE is optimized for OLTP and is parameterizable, though also useful
for large scale ETL/ELT. MERGE is not intended to be used in preference
to existing single SQL commands for INSERT, UPDATE or DELETE since there
is some overhead. MERGE can be used from PL/pgSQL.
MERGE does not support targetting updatable views or foreign tables, and
RETURNING clauses are not allowed either. These limitations are likely
fixable with sufficient effort. Rewrite rules are also not supported,
but it's not clear that we'd want to support them.
Author: Pavan Deolasee <pavan.deolasee@gmail.com>
Author: Álvaro Herrera <alvherre@alvh.no-ip.org>
Author: Amit Langote <amitlangote09@gmail.com>
Author: Simon Riggs <simon.riggs@enterprisedb.com>
Reviewed-by: Peter Eisentraut <peter.eisentraut@enterprisedb.com>
Reviewed-by: Andres Freund <andres@anarazel.de> (earlier versions)
Reviewed-by: Peter Geoghegan <pg@bowt.ie> (earlier versions)
Reviewed-by: Robert Haas <robertmhaas@gmail.com> (earlier versions)
Reviewed-by: Japin Li <japinli@hotmail.com>
Reviewed-by: Justin Pryzby <pryzby@telsasoft.com>
Reviewed-by: Tomas Vondra <tomas.vondra@enterprisedb.com>
Reviewed-by: Zhihong Yu <zyu@yugabyte.com>
Discussion: https://postgr.es/m/CANP8+jKitBSrB7oTgT9CY2i1ObfOt36z0XMraQc+Xrz8QB0nXA@mail.gmail.com
Discussion: https://postgr.es/m/CAH2-WzkJdBuxj9PO=2QaO9-3h3xGbQPZ34kJH=HukRekwM-GZg@mail.gmail.com
Discussion: https://postgr.es/m/20201231134736.GA25392@alvherre.pgsql
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch introduces the SQL/JSON standard constructors for JSON:
JSON()
JSON_ARRAY()
JSON_ARRAYAGG()
JSON_OBJECT()
JSON_OBJECTAGG()
For the most part these functions provide facilities that mimic
existing json/jsonb functions. However, they also offer some useful
additional functionality. In addition to text input, the JSON() function
accepts bytea input, which it will decode and constuct a json value from.
The other functions provide useful options for handling duplicate keys
and null values.
This series of patches will be followed by a consolidated documentation
patch.
Nikita Glukhov
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup, Erik Rijkers, Zihong Yu,
Himanshu Upadhyaya, Daniel Gustafsson, Justin Pryzby.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
| |
This reverts commit 865fe4d5df560a6f5353da652018ff876978ad2d.
This has caused issues with a significant number of buildfarm members
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This introduces some of the building blocks used by the SQL/JSON
constructor and query functions. Specifically, it provides node
executor and grammar support for the FORMAT JSON [ENCODING foo]
clause, and values decorated with it, and for the RETURNING clause.
The following SQL/JSON patches will leverage these.
Nikita Glukhov (who probably deserves an award for perseverance).
Reviewers have included (in no particular order) Andres Freund, Alexander
Korotkov, Pavel Stehule, Andrew Alsup. Erik Rijkers, Zihong Yu and
Himanshu Upadhyaya.
Discussion: https://postgr.es/m/cd0bb935-0158-78a7-08b5-904886deac4b@postgrespro.ru
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The planner needs to treat GroupingFunc like Aggref for many purposes,
in particular with respect to processing of the argument expressions,
which are not to be evaluated at runtime. A few places hadn't gotten
that memo, notably including subselect.c's processing of outer-level
aggregates. This resulted in assertion failures or wrong plans for
cases in which a GROUPING() construct references an outer aggregation
level.
Also fix missing special cases for GroupingFunc in cost_qual_eval
(resulting in wrong cost estimates for GROUPING(), although it's
not clear that that would affect plan shapes in practice) and in
ruleutils.c (resulting in excess parentheses in pretty-print mode).
Per bug #17088 from Yaoguang Chen. Back-patch to all supported
branches.
Richard Guo, Tom Lane
Discussion: https://postgr.es/m/17088-e33882b387de7f5c@postgresql.org
|
|
|
|
|
|
|
|
|
|
| |
Before, SQL-level boolean constants were represented by a string with
a cast, and internal Boolean values in DDL commands were usually
represented by Integer nodes. This takes the place of both of these
uses, making the intent clearer and having some amount of type safety.
Reviewed-by: Pavel Stehule <pavel.stehule@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/8c1a2e37-c68d-703c-5a83-7a6077f4f997@enterprisedb.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Since this function is defined to accept pg_node_tree values, it could
get applied to any nodetree that can appear in a cataloged pg_node_tree
column. Some such cases can't be supported --- for example, its API
doesn't allow providing referents for more than one relation --- but
we should try to throw a user-facing error rather than an internal
error when encountering such a case.
In support of this, extend expression_tree_walker/mutator to be sure
they'll work on any such node tree (which basically means adding
support for relpartbound node types). That allows us to run pull_varnos
and check for the case of multiple relations before we start processing
the tree. The alternative of changing the low-level error thrown for an
out-of-range varno isn't appealing, because that could mask actual bugs
in other usages of ruleutils.
Per report from Justin Pryzby. This is basically cosmetic, so no
back-patch.
Discussion: https://postgr.es/m/20211219205422.GT17618@telsasoft.com
|
|
|
|
| |
Backpatch-through: 10
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
The Value node struct is a weird construct. It is its own node type,
but most of the time, it actually has a node type of Integer, Float,
String, or BitString. As a consequence, the struct name and the node
type don't match most of the time, and so it has to be treated
specially a lot. There doesn't seem to be any value in the special
construct. There is very little code that wants to accept all Value
variants but nothing else (and even if it did, this doesn't provide
any convenient way to check it), and most code wants either just one
particular node type (usually String), or it accepts a broader set of
node types besides just Value.
This change removes the Value struct and node type and replaces them
by separate Integer, Float, String, and BitString node types that are
proper node types and structs of their own and behave mostly like
normal node types.
Also, this removes the T_Null node tag, which was previously also a
possible variant of Value but wasn't actually used outside of the
Value contained in A_Const. Replace that by an isnull field in
A_Const.
Reviewed-by: Dagfinn Ilmari Mannsåker <ilmari@ilmari.org>
Reviewed-by: Kyotaro Horiguchi <horikyota.ntt@gmail.com>
Discussion: https://www.postgresql.org/message-id/flat/5ba6bc5b-3f95-04f2-2419-f8ddb4c046fb@enterprisedb.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
There were some comments in nodeFuncs.c that, depending on your
interpretation of the word "result", could lead you to believe that the
comments were badly copied and pasted from somewhere else. If you thought
of "result" as the return value of the function that the comment is
written in, then you'd be misled. However, if you'd correctly
interpreted "result" to mean the result type of the given node type,
you'd not have seen any issues.
Here we do a small cleanup to try to prevent any future
misinterpretations. Per wording suggestion from Tom Lane.
Reviewed-by: Tom Lane
Discussion: https://postgr.es/m/CAApHDvp+Bw=2Qiu5=uXMKfC7gd0+B=4JvexVgGJU=am2g9a1CA@mail.gmail.com
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
This patch makes two closely related sets of changes:
1. For UPDATE, the subplan of the ModifyTable node now only delivers
the new values of the changed columns (i.e., the expressions computed
in the query's SET clause) plus row identity information such as CTID.
ModifyTable must re-fetch the original tuple to merge in the old
values of any unchanged columns. The core advantage of this is that
the changed columns are uniform across all tables of an inherited or
partitioned target relation, whereas the other columns might not be.
A secondary advantage, when the UPDATE involves joins, is that less
data needs to pass through the plan tree. The disadvantage of course
is an extra fetch of each tuple to be updated. However, that seems to
be very nearly free in context; even worst-case tests don't show it to
add more than a couple percent to the total query cost. At some point
it might be interesting to combine the re-fetch with the tuple access
that ModifyTable must do anyway to mark the old tuple dead; but that
would require a good deal of refactoring and it seems it wouldn't buy
all that much, so this patch doesn't attempt it.
2. For inherited UPDATE/DELETE, instead of generating a separate
subplan for each target relation, we now generate a single subplan
that is just exactly like a SELECT's plan, then stick ModifyTable
on top of that. To let ModifyTable know which target relation a
given incoming row refers to, a tableoid junk column is added to
the row identity information. This gets rid of the horrid hack
that was inheritance_planner(), eliminating O(N^2) planning cost
and memory consumption in cases where there were many unprunable
target relations.
Point 2 of course requires point 1, so that there is a uniform
definition of the non-junk columns to be returned by the subplan.
We can't insist on uniform definition of the row identity junk
columns however, if we want to keep the ability to have both
plain and foreign tables in a partitioning hierarchy. Since
it wouldn't scale very far to have every child table have its
own row identity column, this patch includes provisions to merge
similar row identity columns into one column of the subplan result.
In particular, we can merge the whole-row Vars typically used as
row identity by FDWs into one column by pretending they are type
RECORD. (It's still okay for the actual composite Datums to be
labeled with the table's rowtype OID, though.)
There is more that can be done to file down residual inefficiencies
in this patch, but it seems to be committable now.
FDW authors should note several API changes:
* The argument list for AddForeignUpdateTargets() has changed, and so
has the method it must use for adding junk columns to the query. Call
add_row_identity_var() instead of manipulating the parse tree directly.
You might want to reconsider exactly what you're adding, too.
* PlanDirectModify() must now work a little harder to find the
ForeignScan plan node; if the foreign table is part of a partitioning
hierarchy then the ForeignScan might not be the direct child of
ModifyTable. See postgres_fdw for sample code.
* To check whether a relation is a target relation, it's no
longer sufficient to compare its relid to root->parse->resultRelation.
Instead, check it against all_result_relids or leaf_result_relids,
as appropriate.
Amit Langote and Tom Lane
Discussion: https://postgr.es/m/CA+HiwqHpHdqdDn48yCEhynnniahH78rwcrv1rEX65-fsZGBOLQ@mail.gmail.com
|