1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
|
/*
* contrib/pgcrypto/crypt-sha.c
*
* This implements shacrypt password hash functions and follows the
* public available reference implementation from
*
* https://www.akkadia.org/drepper/SHA-crypt.txt
*
* This code is public domain.
*
* Please see the inline comments for details about the algorithm.
*
* Basically the following code implements password hashing with sha256 and
* sha512 digest via OpenSSL. Additionally, an extended salt generation (see
* crypt-gensalt.c for details) is provided, which generates a salt suitable
* for either sha256crypt and sha512crypt password hash generation.
*
* Official identifiers for suitable password hashes used in salts are
* 5 : sha256crypt and
* 6 : sha512crypt
*
* The hashing code below supports and uses salt length up to 16 bytes. Longer
* input is possible, but any additional byte of the input is disregarded.
* gen_salt(), when called with a sha256crypt or sha512crypt identifier will
* always generate a 16 byte long salt string.
*
* Output is compatible with any sha256crypt and sha512crypt output
* generated by e.g. OpenSSL or libc crypt().
*
* The described algorithm uses default computing rounds of 5000. Currently,
* even when no specific rounds specification is used, we always explicitly
* print out the rounds option flag with the final hash password string.
*
* The length of the specific password hash (without magic bytes and salt
* string) is:
*
* sha256crypt: 43 bytes and
* sha512crypt: 86 bytes.
*
* Overall hashed password length is:
*
* sha256crypt: 80 bytes and
* sha512crypt: 123 bytes
*
*/
#include "postgres.h"
#include "common/string.h"
#include "mb/pg_wchar.h"
#include "miscadmin.h"
#include "px-crypt.h"
#include "px.h"
typedef enum
{
PGCRYPTO_SHA256CRYPT = 0,
PGCRYPTO_SHA512CRYPT = 1,
PGCRYPTO_SHA_UNKOWN
} PGCRYPTO_SHA_t;
static const char _crypt_itoa64[64 + 1] =
"./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz";
/*
* Modern UNIX password, based on SHA crypt hashes
*/
char *
px_crypt_shacrypt(const char *pw, const char *salt, char *passwd, unsigned dstlen)
{
static const char rounds_prefix[] = "rounds=";
static const char *magic_bytes[2] = {"$5$", "$6$"};
/* Used to create the password hash string */
StringInfo out_buf = NULL;
PGCRYPTO_SHA_t type = PGCRYPTO_SHA_UNKOWN;
PX_MD *digestA = NULL;
PX_MD *digestB = NULL;
int err;
const char *dec_salt_binary; /* pointer into the real salt string */
StringInfo decoded_salt = NULL; /* decoded salt string */
unsigned char sha_buf[PX_SHACRYPT_DIGEST_MAX_LEN];
/* temporary buffer for digests */
unsigned char sha_buf_tmp[PX_SHACRYPT_DIGEST_MAX_LEN];
char rounds_custom = 0;
char *p_bytes = NULL;
char *s_bytes = NULL;
char *cp = NULL;
const char *fp = NULL; /* intermediate pointer within salt string */
const char *ep = NULL; /* holds pointer to the end of the salt string */
size_t buf_size = 0; /* buffer size for sha256crypt/sha512crypt */
unsigned int block; /* number of bytes processed */
uint32 rounds = PX_SHACRYPT_ROUNDS_DEFAULT;
unsigned int len,
salt_len = 0;
/* Sanity checks */
if (!passwd)
return NULL;
if (pw == NULL)
elog(ERROR, "null value for password rejected");
if (salt == NULL)
elog(ERROR, "null value for salt rejected");
/*
* Make sure result buffers are large enough.
*/
if (dstlen < PX_SHACRYPT_BUF_LEN)
elog(ERROR, "insufficient result buffer size to encrypt password");
/* Init result buffer */
out_buf = makeStringInfoExt(PX_SHACRYPT_BUF_LEN);
decoded_salt = makeStringInfoExt(PX_SHACRYPT_SALT_MAX_LEN);
/* Init contents of buffers properly */
memset(&sha_buf, '\0', sizeof(sha_buf));
memset(&sha_buf_tmp, '\0', sizeof(sha_buf_tmp));
/*
* Decode the salt string. We need to know how many rounds and which
* digest we have to use to hash the password.
*/
len = strlen(pw);
dec_salt_binary = salt;
/*
* Analyze and prepare the salt string
*
* The magic string should be specified in the first three bytes of the
* salt string. Do some sanity checks first.
*/
if (strlen(dec_salt_binary) < 3)
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid salt"));
/*
* Check format of magic bytes. These should define either 5=sha256crypt
* or 6=sha512crypt in the second byte, enclosed by ascii dollar signs.
*/
if ((dec_salt_binary[0] != '$') || (dec_salt_binary[2] != '$'))
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid format of salt"),
errhint("magic byte format for shacrypt is either \"$5$\" or \"$6$\""));
/*
* Check magic byte for supported shacrypt digest.
*
* We're just interested in the very first 3 bytes of the salt string,
* since this defines the digest length to use.
*/
if (strncmp(dec_salt_binary, magic_bytes[0], strlen(magic_bytes[0])) == 0)
{
type = PGCRYPTO_SHA256CRYPT;
dec_salt_binary += strlen(magic_bytes[0]);
}
else if (strncmp(dec_salt_binary, magic_bytes[1], strlen(magic_bytes[1])) == 0)
{
type = PGCRYPTO_SHA512CRYPT;
dec_salt_binary += strlen(magic_bytes[1]);
}
/*
* dec_salt_binary pointer is positioned after the magic bytes now
*
* We extract any options in the following code branch. The only optional
* setting we need to take care of is the "rounds" option. Note that the
* salt generator already checked for invalid settings before, but we need
* to do it here again to protect against injection of wrong values when
* called without the generator.
*
* If there is any garbage added after the magic byte and the options/salt
* string, we don't treat this special: This is just absorbed as part of
* the salt with up to PX_SHACRYPT_SALT_LEN_MAX.
*
* Unknown magic byte is handled further below.
*/
if (strncmp(dec_salt_binary,
rounds_prefix, sizeof(rounds_prefix) - 1) == 0)
{
const char *num = dec_salt_binary + sizeof(rounds_prefix) - 1;
char *endp;
int srounds = strtoint(num, &endp, 10);
if (*endp != '$')
ereport(ERROR,
errcode(ERRCODE_SYNTAX_ERROR),
errmsg("could not parse salt options"));
dec_salt_binary = endp + 1;
/*
* We violate supported lower or upper bound of rounds, but in this
* case we change this value to the supported lower or upper value. We
* don't do this silently and print a NOTICE in such a case.
*
* Note that a salt string generated with gen_salt() would never
* generated such a salt string, since it would error out.
*
* But Drepper's upstream reference implementation supports this when
* passing the salt string directly, so we maintain compatibility.
*/
if (srounds > PX_SHACRYPT_ROUNDS_MAX)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d exceeds maximum supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MAX,
PX_SHACRYPT_ROUNDS_MAX));
srounds = PX_SHACRYPT_ROUNDS_MAX;
}
else if (srounds < PX_SHACRYPT_ROUNDS_MIN)
{
ereport(NOTICE,
errcode(ERRCODE_NUMERIC_VALUE_OUT_OF_RANGE),
errmsg("rounds=%d is below supported value (%d), using %d instead",
srounds, PX_SHACRYPT_ROUNDS_MIN,
PX_SHACRYPT_ROUNDS_MIN));
srounds = PX_SHACRYPT_ROUNDS_MIN;
}
rounds = (uint32) srounds;
rounds_custom = 1;
}
/*
* Choose the correct digest length and add the magic bytes to the result
* buffer. Also handle possible invalid magic byte we've extracted above.
*/
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha256", &digestA);
if (err)
goto error;
err = px_find_digest("sha256", &digestB);
if (err)
goto error;
/* digest buffer length is 32 for sha256 */
buf_size = 32;
appendStringInfoString(out_buf, magic_bytes[0]);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
/* Two PX_MD objects required */
err = px_find_digest("sha512", &digestA);
if (err)
goto error;
err = px_find_digest("sha512", &digestB);
if (err)
goto error;
buf_size = PX_SHACRYPT_DIGEST_MAX_LEN;
appendStringInfoString(out_buf, magic_bytes[1]);
break;
}
case PGCRYPTO_SHA_UNKOWN:
elog(ERROR, "unknown crypt identifier \"%c\"", salt[1]);
}
if (rounds_custom > 0)
appendStringInfo(out_buf, "rounds=%u$", rounds);
/*
* We need the real decoded salt string from salt input, this is every
* character before the last '$' in the preamble. Append every compatible
* character up to PX_SHACRYPT_SALT_MAX_LEN to the result buffer. Note
* that depending on the input, there might be no '$' marker after the
* salt, when there is no password hash attached at the end.
*
* We try hard to recognize mistakes, but since we might get an input
* string which might also have the password hash after the salt string
* section we give up as soon we reach the end of the input or if there
* are any bytes consumed for the salt string until we reach the first '$'
* marker thereafter.
*/
for (ep = dec_salt_binary;
*ep && ep < (dec_salt_binary + PX_SHACRYPT_SALT_MAX_LEN);
ep++)
{
/*
* Filter out any string which shouldn't be here.
*
* First check for accidentally embedded magic strings here. We don't
* support '$' in salt strings anyways and seeing a magic byte trying
* to identify shacrypt hashes might indicate that something went
* wrong when generating this salt string. Note that we later check
* for non-supported literals anyways, but any '$' here confuses us at
* this point.
*/
fp = strstr(dec_salt_binary, magic_bytes[0]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
fp = strstr(dec_salt_binary, magic_bytes[1]);
if (fp != NULL)
elog(ERROR, "bogus magic byte found in salt string");
/*
* This looks very strict, but we assume the caller did something
* wrong when we see a "rounds=" option here.
*/
fp = strstr(dec_salt_binary, rounds_prefix);
if (fp != NULL)
elog(ERROR, "invalid rounds option specified in salt string");
if (*ep != '$')
{
if (strchr(_crypt_itoa64, *ep) != NULL)
appendStringInfoCharMacro(decoded_salt, *ep);
else
ereport(ERROR,
errcode(ERRCODE_INVALID_PARAMETER_VALUE),
errmsg("invalid character in salt string: \"%.*s\"",
pg_mblen(ep), ep));
}
else
{
/*
* We encountered a '$' marker. Check if we already absorbed some
* bytes from input. If true, we are optimistic and terminate at
* this stage. If not, we try further.
*
* If we already consumed enough bytes for the salt string,
* everything that is after this marker is considered to be part
* of an optionally specified password hash and ignored.
*/
if (decoded_salt->len > 0)
break;
}
}
salt_len = decoded_salt->len;
appendStringInfoString(out_buf, decoded_salt->data);
elog(DEBUG1, "using salt \"%s\", salt len = %d, rounds = %u",
decoded_salt->data, decoded_salt->len, rounds);
/*
* Sanity check: at this point the salt string buffer must not exceed
* expected size.
*/
if (out_buf->len > (3 + 17 * rounds_custom + salt_len))
elog(ERROR, "unexpected length of salt string");
/*-
* 1. Start digest A
* 2. Add the password string to digest A
* 3. Add the salt to digest A
*/
px_md_update(digestA, (const unsigned char *) pw, len);
px_md_update(digestA, (const unsigned char *) decoded_salt->data, salt_len);
/*-
* 4. Create digest B
* 5. Add password to digest B
* 6. Add the salt string to digest B
* 7. Add the password again to digest B
* 8. Finalize digest B
*/
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
px_md_update(digestB, (const unsigned char *) pw, len);
px_md_finish(digestB, sha_buf);
/*
* 9. For each block (excluding the NULL byte), add digest B to digest A.
*/
for (block = len; block > buf_size; block -= buf_size)
px_md_update(digestA, sha_buf, buf_size);
/*-
* 10. For the remaining N bytes of the password string, add the first N
* bytes of digest B to A.
*/
px_md_update(digestA, sha_buf, block);
/*-
* 11. For each bit of the binary representation of the length of the
* password string up to and including the highest 1-digit, starting from
* to lowest bit position (numeric value 1)
*
* a) for a 1-digit add digest B (sha_buf) to digest A
* b) for a 0-digit add the password string
*/
block = len;
while (block)
{
px_md_update(digestA,
(block & 1) ? sha_buf : (const unsigned char *) pw,
(block & 1) ? buf_size : len);
/* right shift to next byte */
block >>= 1;
}
/* 12. Finalize digest A */
px_md_finish(digestA, sha_buf);
/* 13. Start digest DP */
px_md_reset(digestB);
/*-
* 14 Add every byte of the password string (excluding trailing NULL)
* to the digest DP
*/
for (block = len; block > 0; block--)
px_md_update(digestB, (const unsigned char *) pw, len);
/* 15. Finalize digest DP */
px_md_finish(digestB, sha_buf_tmp);
/*-
* 16. produce byte sequence P with same length as password.
* a) for each block of 32 or 64 bytes of length of the password
* string the entire digest DP is used
* b) for the remaining N (up to 31 or 63) bytes use the
* first N bytes of digest DP
*/
if ((p_bytes = palloc0(len)) == NULL)
{
goto error;
}
/* N step of 16, copy over the bytes from password */
for (cp = p_bytes, block = len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/*
* 17. Start digest DS
*/
px_md_reset(digestB);
/*-
* 18. Repeat the following 16+A[0] times, where A[0] represents the first
* byte in digest A interpreted as an 8-bit unsigned value
* add the salt to digest DS
*/
for (block = 16 + sha_buf[0]; block > 0; block--)
px_md_update(digestB, (const unsigned char *) dec_salt_binary, salt_len);
/*
* 19. Finalize digest DS
*/
px_md_finish(digestB, sha_buf_tmp);
/*-
* 20. Produce byte sequence S of the same length as the salt string where
*
* a) for each block of 32 or 64 bytes of length of the salt string the
* entire digest DS is used
*
* b) for the remaining N (up to 31 or 63) bytes use the first N
* bytes of digest DS
*/
if ((s_bytes = palloc0(salt_len)) == NULL)
goto error;
for (cp = s_bytes, block = salt_len; block > buf_size; block -= buf_size, cp += buf_size)
memcpy(cp, sha_buf_tmp, buf_size);
memcpy(cp, sha_buf_tmp, block);
/* Make sure we don't leave something important behind */
px_memset(&sha_buf_tmp, 0, sizeof sha_buf);
/*-
* 21. Repeat a loop according to the number specified in the rounds=<N>
* specification in the salt (or the default value if none is
* present). Each round is numbered, starting with 0 and up to N-1.
*
* The loop uses a digest as input. In the first round it is the
* digest produced in step 12. In the latter steps it is the digest
* produced in step 21.h of the previous round. The following text
* uses the notation "digest A/B" to describe this behavior.
*/
for (block = 0; block < rounds; block++)
{
/*
* Make it possible to abort in case large values for "rounds" are
* specified.
*/
CHECK_FOR_INTERRUPTS();
/* a) start digest B */
px_md_reset(digestB);
/*-
* b) for odd round numbers add the byte sequence P to digest B
* c) for even round numbers add digest A/B
*/
px_md_update(digestB,
(block & 1) ? (const unsigned char *) p_bytes : sha_buf,
(block & 1) ? len : buf_size);
/* d) for all round numbers not divisible by 3 add the byte sequence S */
if ((block % 3) != 0)
px_md_update(digestB, (const unsigned char *) s_bytes, salt_len);
/* e) for all round numbers not divisible by 7 add the byte sequence P */
if ((block % 7) != 0)
px_md_update(digestB, (const unsigned char *) p_bytes, len);
/*-
* f) for odd round numbers add digest A/C
* g) for even round numbers add the byte sequence P
*/
px_md_update(digestB,
(block & 1) ? sha_buf : (const unsigned char *) p_bytes,
(block & 1) ? buf_size : len);
/* h) finish digest C. */
px_md_finish(digestB, sha_buf);
}
px_md_free(digestA);
px_md_free(digestB);
digestA = NULL;
digestB = NULL;
pfree(s_bytes);
pfree(p_bytes);
s_bytes = NULL;
p_bytes = NULL;
/* prepare final result buffer */
appendStringInfoCharMacro(out_buf, '$');
#define b64_from_24bit(B2, B1, B0, N) \
do { \
unsigned int w = ((B2) << 16) | ((B1) << 8) | (B0); \
int i = (N); \
while (i-- > 0) \
{ \
appendStringInfoCharMacro(out_buf, _crypt_itoa64[w & 0x3f]); \
w >>= 6; \
} \
} while (0)
switch (type)
{
case PGCRYPTO_SHA256CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[10], sha_buf[20], 4);
b64_from_24bit(sha_buf[21], sha_buf[1], sha_buf[11], 4);
b64_from_24bit(sha_buf[12], sha_buf[22], sha_buf[2], 4);
b64_from_24bit(sha_buf[3], sha_buf[13], sha_buf[23], 4);
b64_from_24bit(sha_buf[24], sha_buf[4], sha_buf[14], 4);
b64_from_24bit(sha_buf[15], sha_buf[25], sha_buf[5], 4);
b64_from_24bit(sha_buf[6], sha_buf[16], sha_buf[26], 4);
b64_from_24bit(sha_buf[27], sha_buf[7], sha_buf[17], 4);
b64_from_24bit(sha_buf[18], sha_buf[28], sha_buf[8], 4);
b64_from_24bit(sha_buf[9], sha_buf[19], sha_buf[29], 4);
b64_from_24bit(0, sha_buf[31], sha_buf[30], 3);
break;
}
case PGCRYPTO_SHA512CRYPT:
{
b64_from_24bit(sha_buf[0], sha_buf[21], sha_buf[42], 4);
b64_from_24bit(sha_buf[22], sha_buf[43], sha_buf[1], 4);
b64_from_24bit(sha_buf[44], sha_buf[2], sha_buf[23], 4);
b64_from_24bit(sha_buf[3], sha_buf[24], sha_buf[45], 4);
b64_from_24bit(sha_buf[25], sha_buf[46], sha_buf[4], 4);
b64_from_24bit(sha_buf[47], sha_buf[5], sha_buf[26], 4);
b64_from_24bit(sha_buf[6], sha_buf[27], sha_buf[48], 4);
b64_from_24bit(sha_buf[28], sha_buf[49], sha_buf[7], 4);
b64_from_24bit(sha_buf[50], sha_buf[8], sha_buf[29], 4);
b64_from_24bit(sha_buf[9], sha_buf[30], sha_buf[51], 4);
b64_from_24bit(sha_buf[31], sha_buf[52], sha_buf[10], 4);
b64_from_24bit(sha_buf[53], sha_buf[11], sha_buf[32], 4);
b64_from_24bit(sha_buf[12], sha_buf[33], sha_buf[54], 4);
b64_from_24bit(sha_buf[34], sha_buf[55], sha_buf[13], 4);
b64_from_24bit(sha_buf[56], sha_buf[14], sha_buf[35], 4);
b64_from_24bit(sha_buf[15], sha_buf[36], sha_buf[57], 4);
b64_from_24bit(sha_buf[37], sha_buf[58], sha_buf[16], 4);
b64_from_24bit(sha_buf[59], sha_buf[17], sha_buf[38], 4);
b64_from_24bit(sha_buf[18], sha_buf[39], sha_buf[60], 4);
b64_from_24bit(sha_buf[40], sha_buf[61], sha_buf[19], 4);
b64_from_24bit(sha_buf[62], sha_buf[20], sha_buf[41], 4);
b64_from_24bit(0, 0, sha_buf[63], 2);
break;
}
case PGCRYPTO_SHA_UNKOWN:
/* we shouldn't land here ... */
elog(ERROR, "unsupported digest length");
}
/*
* Copy over result to specified buffer.
*
* The passwd character buffer should have at least PX_SHACRYPT_BUF_LEN
* allocated, since we checked above if dstlen is smaller than
* PX_SHACRYPT_BUF_LEN (which also includes the NULL byte).
*
* In that case we would have failed above already.
*/
memcpy(passwd, out_buf->data, out_buf->len);
/* make sure nothing important is left behind */
px_memset(&sha_buf, 0, sizeof sha_buf);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
/* ...and we're done */
return passwd;
error:
if (digestA != NULL)
px_md_free(digestA);
if (digestB != NULL)
px_md_free(digestB);
destroyStringInfo(out_buf);
destroyStringInfo(decoded_salt);
ereport(ERROR,
errcode(ERRCODE_INTERNAL_ERROR),
errmsg("cannot create encrypted password"));
return NULL; /* keep compiler quiet */
}
|