aboutsummaryrefslogtreecommitdiff
path: root/doc/src/sgml/gin.sgml
blob: 0e9365cce2765edd08d9b8e59855eea2ab48aa90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
<!-- $PostgreSQL: pgsql/doc/src/sgml/gin.sgml,v 2.3 2006/09/14 21:15:07 tgl Exp $ -->

<chapter id="GIN">
<title>GIN Indexes</title>

   <indexterm>
    <primary>index</primary>
    <secondary>GIN</secondary>
   </indexterm>

<sect1 id="gin-intro">
 <title>Introduction</title>

 <para>
   <acronym>GIN</acronym> stands for Generalized Inverted Index.  It is
   an index structure storing a set of (key, posting list) pairs, where
   'posting list' is a set of rows in which the key occurs. The
   row may contain many keys.
 </para>

 <para>
   It is generalized in the sense that a <acronym>GIN</acronym> index
   does not need to be aware of the operation that it accelerates.
   Instead, it uses custom strategies defined for particular data types.
 </para>

 <para>
  One advantage of <acronym>GIN</acronym> is that it allows the development
  of custom data types with the appropriate access methods, by
  an expert in the domain of the data type, rather than a database expert.
  This is much the same advantage as using <acronym>GiST</acronym>.
 </para>

  <para>
   The <acronym>GIN</acronym>
    implementation in <productname>PostgreSQL</productname> is primarily
    maintained by Teodor Sigaev and Oleg Bartunov, and there is more
    information on their
    <ulink url="http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin">website</ulink>.
  </para>

</sect1>

<sect1 id="gin-extensibility">
 <title>Extensibility</title>

 <para>
   The <acronym>GIN</acronym> interface has a high level of abstraction,
   requiring the access method implementer to only implement the semantics of
   the data type being accessed.  The <acronym>GIN</acronym> layer itself
   takes care of concurrency, logging and searching the tree structure.
 </para>

 <para>
   All it takes to get a <acronym>GIN</acronym> access method working
   is to implement four user-defined methods, which define the behavior of
   keys in the tree. In short, <acronym>GIN</acronym> combines extensibility
   along with generality, code reuse, and a clean interface.
 </para>

</sect1>

<sect1 id="gin-implementation">
 <title>Implementation</title>

 <para>
  Internally, <acronym>GIN</acronym> consists of a B-tree index constructed 
  over keys, where each key is an element of the indexed value 
  (element of array, for example) and where each tuple in a leaf page is 
  either a pointer to a B-tree over heap pointers (PT, posting tree), or a 
  list of heap pointers (PL, posting list) if the tuple is small enough.
 </para>

 <para>
   There are four methods that an index operator class for
   <acronym>GIN</acronym> must provide (prototypes are in pseudocode):
 </para>

 <variablelist>
    <varlistentry>
     <term>int compare( Datum a, Datum b )</term>
     <listitem>
      <para>
	   Compares keys (not indexed values!) and returns an integer less than 
	   zero, zero, or greater than zero, indicating whether the first key is 
	   less than, equal to, or greater than the second.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term>Datum* extractValue(Datum inputValue, uint32 *nkeys)</term>
     <listitem>
      <para>
	   Returns an array of keys of value to be indexed, nkeys should
	   contain the number of returned keys.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term>Datum* extractQuery(Datum query, uint32 nkeys, 
		StrategyNumber n)</term>
     <listitem>
      <para>
	   Returns an array of keys of the query to be executed. n contains
	   strategy number of operation (see <xref linkend="xindex-strategies">).
	   Depending on n, query may be different type.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term>bool consistent( bool check[], StrategyNumber n, Datum query)</term>
     <listitem>
      <para>
	   Returns TRUE if indexed value satisfies query qualifier with strategy n 
	   (or may satisfy in case of RECHECK mark in operator class). 
	   Each element of the check array is TRUE if indexed value has a 
	   corresponding key in the query: if (check[i] == TRUE ) the i-th key of 
	   the query is present in the indexed value.
      </para>
     </listitem>
    </varlistentry>

  </variablelist>

</sect1>

<sect1 id="gin-tips">
<title>GIN tips and trics</title>

 <variablelist>
  <varlistentry>
   <term>Create vs insert</term>
   <listitem>
	<para>
	 In most cases, insertion into <acronym>GIN</acronym> index is slow because
	 many GIN keys may be inserted for each table row. So, when loading data
	 in bulk it may be useful to drop index and recreate it
	 after the data is loaded in the table.
	</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term>gin_fuzzy_search_limit</term>
   <listitem>
	<para>
	 The primary goal of development <acronym>GIN</acronym> indices was 
	 support for highly scalable, full-text search in 
	 <productname>PostgreSQL</productname> and there are often situations when 
	 a full-text search returns a very large set of results.  Since reading 
	 tuples from the disk and sorting them could take a lot of time, this is 
	 unacceptable for production.  (Note that the index search itself is very 
	 fast.) 
    </para>
	<para>
	 Such queries usually contain very frequent words, so the results are not 
	 very helpful. To facilitate execution of such queries 
	 <acronym>GIN</acronym> has a configurable  soft upper limit of the size 
	 of the returned set, determined by the 
	 <varname>gin_fuzzy_search_limit</varname> GUC variable.  It is set to 0 by
	 default (no limit).
	</para>
	<para>
	 If a non-zero search limit is set, then the returned set is a subset of 
	 the whole result set, chosen at random.
	</para>
	<para>
	 "Soft" means that the actual number of returned results could slightly 
	 differ from the specified limit, depending on the query and the quality 
	 of the system's random number generator.
	</para>
   </listitem>
  </varlistentry>
 </variablelist>

</sect1>

<sect1 id="gin-limit">
 <title>Limitations</title>

 <para>
  <acronym>GIN</acronym> doesn't support full scan of index due to it's 
  extremely inefficiency: because of a lot of keys per value, 
  each heap pointer will returned several times.
 </para>

 <para>
  When extractQuery returns zero number of keys, <acronym>GIN</acronym> will 
  emit a error: for different opclass and strategy semantic meaning of void 
  query may be different (for example, any array contains void array, 
  but they aren't overlapped with void one), and <acronym>GIN</acronym> can't 
  suggest reasonable answer.
 </para>

 <para>
  <acronym>GIN</acronym> searches keys only by equality matching.  This may 
  be improved in future.
 </para>
</sect1>

<sect1 id="gin-examples">
 <title>Examples</title>

 <para>
  The <productname>PostgreSQL</productname> source distribution includes
  <acronym>GIN</acronym> classes for one-dimensional arrays of all internal 
  types.  The following
  <filename>contrib</> modules also contain <acronym>GIN</acronym>
  operator classes: 
 </para>
 
 <variablelist>
  <varlistentry>
   <term>intarray</term>
   <listitem>
    <para>Enhanced support for int4[]</para>
   </listitem>
  </varlistentry>

  <varlistentry>
   <term>tsearch2</term>
   <listitem>
    <para>Support for inverted text indexing.  This is much faster for very
     large, mostly-static sets of documents.
    </para>
   </listitem>
  </varlistentry>
 </variablelist>
</sect1>

</chapter>