1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
|
<!-- $PostgreSQL: pgsql/doc/src/sgml/gin.sgml,v 2.3 2006/09/14 21:15:07 tgl Exp $ -->
<chapter id="GIN">
<title>GIN Indexes</title>
<indexterm>
<primary>index</primary>
<secondary>GIN</secondary>
</indexterm>
<sect1 id="gin-intro">
<title>Introduction</title>
<para>
<acronym>GIN</acronym> stands for Generalized Inverted Index. It is
an index structure storing a set of (key, posting list) pairs, where
'posting list' is a set of rows in which the key occurs. The
row may contain many keys.
</para>
<para>
It is generalized in the sense that a <acronym>GIN</acronym> index
does not need to be aware of the operation that it accelerates.
Instead, it uses custom strategies defined for particular data types.
</para>
<para>
One advantage of <acronym>GIN</acronym> is that it allows the development
of custom data types with the appropriate access methods, by
an expert in the domain of the data type, rather than a database expert.
This is much the same advantage as using <acronym>GiST</acronym>.
</para>
<para>
The <acronym>GIN</acronym>
implementation in <productname>PostgreSQL</productname> is primarily
maintained by Teodor Sigaev and Oleg Bartunov, and there is more
information on their
<ulink url="http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin">website</ulink>.
</para>
</sect1>
<sect1 id="gin-extensibility">
<title>Extensibility</title>
<para>
The <acronym>GIN</acronym> interface has a high level of abstraction,
requiring the access method implementer to only implement the semantics of
the data type being accessed. The <acronym>GIN</acronym> layer itself
takes care of concurrency, logging and searching the tree structure.
</para>
<para>
All it takes to get a <acronym>GIN</acronym> access method working
is to implement four user-defined methods, which define the behavior of
keys in the tree. In short, <acronym>GIN</acronym> combines extensibility
along with generality, code reuse, and a clean interface.
</para>
</sect1>
<sect1 id="gin-implementation">
<title>Implementation</title>
<para>
Internally, <acronym>GIN</acronym> consists of a B-tree index constructed
over keys, where each key is an element of the indexed value
(element of array, for example) and where each tuple in a leaf page is
either a pointer to a B-tree over heap pointers (PT, posting tree), or a
list of heap pointers (PL, posting list) if the tuple is small enough.
</para>
<para>
There are four methods that an index operator class for
<acronym>GIN</acronym> must provide (prototypes are in pseudocode):
</para>
<variablelist>
<varlistentry>
<term>int compare( Datum a, Datum b )</term>
<listitem>
<para>
Compares keys (not indexed values!) and returns an integer less than
zero, zero, or greater than zero, indicating whether the first key is
less than, equal to, or greater than the second.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Datum* extractValue(Datum inputValue, uint32 *nkeys)</term>
<listitem>
<para>
Returns an array of keys of value to be indexed, nkeys should
contain the number of returned keys.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>Datum* extractQuery(Datum query, uint32 nkeys,
StrategyNumber n)</term>
<listitem>
<para>
Returns an array of keys of the query to be executed. n contains
strategy number of operation (see <xref linkend="xindex-strategies">).
Depending on n, query may be different type.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>bool consistent( bool check[], StrategyNumber n, Datum query)</term>
<listitem>
<para>
Returns TRUE if indexed value satisfies query qualifier with strategy n
(or may satisfy in case of RECHECK mark in operator class).
Each element of the check array is TRUE if indexed value has a
corresponding key in the query: if (check[i] == TRUE ) the i-th key of
the query is present in the indexed value.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="gin-tips">
<title>GIN tips and trics</title>
<variablelist>
<varlistentry>
<term>Create vs insert</term>
<listitem>
<para>
In most cases, insertion into <acronym>GIN</acronym> index is slow because
many GIN keys may be inserted for each table row. So, when loading data
in bulk it may be useful to drop index and recreate it
after the data is loaded in the table.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term>gin_fuzzy_search_limit</term>
<listitem>
<para>
The primary goal of development <acronym>GIN</acronym> indices was
support for highly scalable, full-text search in
<productname>PostgreSQL</productname> and there are often situations when
a full-text search returns a very large set of results. Since reading
tuples from the disk and sorting them could take a lot of time, this is
unacceptable for production. (Note that the index search itself is very
fast.)
</para>
<para>
Such queries usually contain very frequent words, so the results are not
very helpful. To facilitate execution of such queries
<acronym>GIN</acronym> has a configurable soft upper limit of the size
of the returned set, determined by the
<varname>gin_fuzzy_search_limit</varname> GUC variable. It is set to 0 by
default (no limit).
</para>
<para>
If a non-zero search limit is set, then the returned set is a subset of
the whole result set, chosen at random.
</para>
<para>
"Soft" means that the actual number of returned results could slightly
differ from the specified limit, depending on the query and the quality
of the system's random number generator.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
<sect1 id="gin-limit">
<title>Limitations</title>
<para>
<acronym>GIN</acronym> doesn't support full scan of index due to it's
extremely inefficiency: because of a lot of keys per value,
each heap pointer will returned several times.
</para>
<para>
When extractQuery returns zero number of keys, <acronym>GIN</acronym> will
emit a error: for different opclass and strategy semantic meaning of void
query may be different (for example, any array contains void array,
but they aren't overlapped with void one), and <acronym>GIN</acronym> can't
suggest reasonable answer.
</para>
<para>
<acronym>GIN</acronym> searches keys only by equality matching. This may
be improved in future.
</para>
</sect1>
<sect1 id="gin-examples">
<title>Examples</title>
<para>
The <productname>PostgreSQL</productname> source distribution includes
<acronym>GIN</acronym> classes for one-dimensional arrays of all internal
types. The following
<filename>contrib</> modules also contain <acronym>GIN</acronym>
operator classes:
</para>
<variablelist>
<varlistentry>
<term>intarray</term>
<listitem>
<para>Enhanced support for int4[]</para>
</listitem>
</varlistentry>
<varlistentry>
<term>tsearch2</term>
<listitem>
<para>Support for inverted text indexing. This is much faster for very
large, mostly-static sets of documents.
</para>
</listitem>
</varlistentry>
</variablelist>
</sect1>
</chapter>
|