aboutsummaryrefslogtreecommitdiff
path: root/doc/src/sgml/plsql.sgml
blob: 4e6ea830862fbbe2a4f3026842fd51ef4fbff123 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
<!--
$Header: /cvsroot/pgsql/doc/src/sgml/Attic/plsql.sgml,v 2.35 2001/05/28 19:33:24 tgl Exp $
-->

<chapter id="plpgsql"> 
  <title>PL/pgSQL - <acronym>SQL</acronym> Procedural Language</title>

 <indexterm zone="plpgsql">
  <primary>PL/pgSQL</primary>
 </indexterm>

 <para>
  PL/pgSQL is a loadable procedural language for the
  <productname>Postgres</productname> database system.
 </para>
   
 <para>
  This package was originally written by Jan Wieck. This
  documentation was in part written 
  by Roberto Mello (<email>rmello@fslc.usu.edu</email>).
 </para>

  <sect1 id="plpgsql-overview">
   <title>Overview</title>

   <para>
    The design goals of PL/pgSQL were to create a loadable procedural
    language that
    <itemizedlist>
     <listitem>
      <para>
       can be used to create functions and trigger procedures,
      </para>
     </listitem>
     <listitem>
      <para>
       adds control structures to the <acronym>SQL</acronym> language,
      </para>
     </listitem>
     <listitem>
      <para>
       can perform complex computations,
      </para>
     </listitem>
     <listitem>
      <para>
       inherits all user defined types, functions and operators,
      </para>
     </listitem>
     <listitem>
      <para>
       can be defined to be trusted by the server,
      </para>
     </listitem>
     <listitem>
      <para>
       is easy to use.
      </para>
     </listitem>
    </itemizedlist>
   </para>
   <para>
    The PL/pgSQL call handler parses the function's source text and
    produces an internal binary instruction tree the first time the
    function is called. The produced bytecode is identified
    in the call handler by the object ID of the function. This ensures
    that changing a function by a DROP/CREATE sequence will take effect
    without establishing a new database connection. 
   </para>
   <para>
    For all expressions and <acronym>SQL</acronym> statements used in
    the function, the PL/pgSQL bytecode interpreter creates a
    prepared execution plan using the <acronym>SPI</acronym> manager's 
    <function>SPI_prepare()</function> and
    <function>SPI_saveplan()</function> functions. This is done the 
    first time the individual
    statement is processed in the PL/pgSQL function. Thus, a function with
    conditional code that contains many statements for which execution
    plans would be required, will only prepare and save those plans
    that are really used during the lifetime of the database
    connection.
   </para>
  <para>
  This means that you have to be careful about your user-defined
  functions. For example:

<programlisting>
CREATE FUNCTION populate() RETURNS INTEGER AS '
DECLARE
    -- Declarations
BEGIN
    PERFORM my_function();
END;
' LANGUAGE 'plpgsql';
</programlisting>
    If you create the above function, it will reference the OID for
    <function>my_function()</function> in its bytecode. Later, if you
    drop and re-create <function>my_function()</function>, then
    <function>populate()</function> will not be able to find
    <function>my_function()</function> anymore. You would then have to
    re-create <function>populate()</function>.
   </para>

   <para>
    Because PL/pgSQL saves execution plans in this way, queries that appear
    directly in a PL/pgSQL function must refer to the same tables and fields
    on every execution; that is, you cannot use a parameter as the name of
    a table or field in a query.  To get around
    this restriction, you can construct dynamic queries using the PL/pgSQL
    EXECUTE statement --- at the price of constructing a new query plan
    on every execution.
   </para>
   <para>
    Except for input/output conversion and calculation functions
    for user defined types, anything that can be defined in C language
    functions can also be done with PL/pgSQL. It is possible to
    create complex conditional computation functions and later use
    them to define operators or use them in functional indexes.
   </para>
  <sect2 id="plpgsql-advantages">
   <title>Advantages of Using PL/pgSQL</title>

   <itemizedlist>
    <listitem>
     <para>
      Better performance (see <xref linkend="plpgsql-advantages-performance">)
     </para>
    </listitem>

    <listitem>
     <para>
      SQL support (see <xref linkend="plpgsql-advantages-sqlsupport">)
     </para>
    </listitem> 

    <listitem>
     <para>
      Portability (see <xref linkend="plpgsql-advantages-portability">)
     </para>
    </listitem>
   </itemizedlist>

   <sect3 id="plpgsql-advantages-performance">
    <title>Better Performance</title>

    <para>
     <acronym>SQL</acronym> is the language PostgreSQL (and
     most other Relational Databases) use as query
     language. It's portable and easy to learn. But every
     <acronym>SQL</acronym> statement must be executed
     individually by the database server.
    </para>

    <para>
     That means that your client application must send each
     query to the database server, wait for it to process it,
     receive the results, do some computation, then send
     other queries to the server. All this incurs inter
     process communication and may also incur network
     overhead if your client is on a different machine than
     the database server.
    </para>

    <para>
     With PL/pgSQL you can group a block of computation and a
     series of queries <emphasis>inside</emphasis> the
     database server, thus having the power of a procedural
     language and the ease of use of SQL, but saving lots of
     time because you don't have the whole client/server
     communication overhead. Your application will enjoy a
     considerable performance increase by using PL/pgSQL. 
    </para>
   </sect3>

   <sect3 id="plpgsql-advantages-sqlsupport">
    <title>SQL Support</title>

    <para>
     PL/pgSQL adds the power of a procedural language to the
     flexibility and ease of <acronym>SQL</acronym>. With
     PL/pgSQL you can use all the datatypes, columns, operators
     and functions of SQL.    
    </para>
   </sect3>

   <sect3 id="plpgsql-advantages-portability">
    <title>Portability</title>

    <para>
     Because PL/pgSQL functions run inside PostgreSQL, these
     functions will run on any platform where PostgreSQL
     runs. Thus you can reuse code and have less development costs.
    </para>
   </sect3>
  </sect2>

  <sect2 id="plpgsql-overview-developing-in-plpgsql">
   <title>Developing in PL/pgSQL</title>

   <para>
    Developing in PL/pgSQL is pretty straight forward, especially
    if you have developed in other database procedural languages,
    such as Oracle's PL/SQL. Two good ways of developing in
    PL/pgSQL are:

    <itemizedlist>
     <listitem>
      <para>
       Using a text editor and reloading the file with <command>psql</command>
      </para>
     </listitem>

     <listitem>
      <para>
       Using PostgreSQL's GUI Tool: pgaccess
      </para>
     </listitem>
    </itemizedlist>
   </para>

   <para>
    One good way to develop in PL/pgSQL is to simply use the text
    editor of your choice to create your functions, and in another
    console, use <command>psql</command> (PostgreSQL's interactive monitor) to load
    those functions. If you are doing it this way (and if you are
    a PL/pgSQL novice or in debugging stage), it is a good idea to 
    always <command>DROP</command> your function before creating it. That way
    when you reload the file, it'll drop your functions and then
    re-create them. For example:
<programlisting>
drop function testfunc(integer);
create function testfunc(integer) return integer as '
    ....
end;
' language 'plpgsql';
</programlisting>
   </para>

   <para>
    When you load the file for the first time,
    <productname>PostgreSQL</> will raise a warning saying this
    function doesn't exist and go on to create it. To load an SQL
    file (filename.sql) into a database named "dbname", use the command:
<programlisting>
psql -f filename.sql dbname
</programlisting>
   </para>

   <para>
    Another good way to develop in PL/pgSQL is using
    <productname>PostgreSQL</>'s GUI tool: pgaccess. It does some
    nice things for you, like escaping single-quotes, and making
    it easy to recreate and debug functions.
   </para>
  </sect2>
 </sect1>

  <!-- **** PL/pgSQL Description **** -->

  <sect1 id="plpgsql-description">
   <title>Description</title>

   <!-- **** PL/pgSQL structure **** -->

   <sect2>
    <title>Structure of PL/pgSQL</title>

    <para>
     PL/pgSQL is a <emphasis>block structured</emphasis> language. All
     keywords and identifiers can be used in mixed upper and
     lower-case. A block is defined as:

<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
<optional>DECLARE
    <replaceable>declarations</replaceable></optional>
BEGIN
    <replaceable>statements</replaceable>
END;
</synopsis>
    </para>

    <para>
     There can be any number of sub-blocks in the statement section
     of a block. Sub-blocks can be used to hide variables from outside a
     block of statements.
    </para>

    <para>
     The variables declared in the declarations section preceding a
     block are initialized to their default values every time the
     block is entered, not only once per function call. For example:
<programlisting>
CREATE FUNCTION somefunc() RETURNS INTEGER AS '
DECLARE
   quantity INTEGER := 30;
BEGIN
   RAISE NOTICE ''Quantity here is %'',quantity;  -- Quantity here is 30
   quantity := 50;
   --
   -- Create a sub-block
   --
   DECLARE
      quantity INTEGER := 80;
   BEGIN
      RAISE NOTICE ''Quantity here is %'',quantity;  -- Quantity here is 80
   END;

   RAISE NOTICE ''Quantity here is %'',quantity;  -- Quantity here is 50
END;
' LANGUAGE 'plpgsql';
</programlisting>
    </para>

    <para>
     It is important not to confuse the use of BEGIN/END for
     grouping statements in PL/pgSQL with the database commands for
     transaction control.  PL/pgSQL's BEGIN/END are only for grouping;
     they do not start or end a transaction.  Functions and trigger procedures
     are always executed within a transaction established by an outer query
     --- they cannot start or commit transactions, since
     <productname>Postgres</productname> does not have nested transactions.
    </para>
   </sect2>

   <sect2>
    <title>Comments</title>

    <para>
     There are two types of comments in PL/pgSQL. A double dash <literal>--</literal>
     starts a comment that extends to the end of the line. A <literal>/*</literal>
     starts a block comment that extends to the next occurrence of <literal>*/</literal>.
     Block comments cannot be nested, but double dash comments can be
     enclosed into a block comment and a double dash can hide
     the block comment delimiters <literal>/*</literal> and <literal>*/</literal>.
    </para>
   </sect2>

   <!-- **** PL/pgSQL Variables and Constants **** -->
   <sect2>
    <title>Variables and Constants</title>

    <para>
     All variables, rows and records used in a block or its
     sub-blocks must be declared in the declarations section of a block.
     The exception being the loop variable of a FOR loop iterating over a range
     of integer values. 
    </para>

    <para>
     PL/pgSQL variables can have any SQL datatype, such as
     <type>INTEGER</type>, <type>VARCHAR</type> and
     <type>CHAR</type>. All variables have as default value the
     <acronym>SQL</acronym> NULL value. 
    </para>

    <para>
     Here are some examples of variable declarations:
<programlisting>
user_id INTEGER;
quantity NUMBER(5);
url VARCHAR;
</programlisting>
    </para>

    <sect3 id="plpgsql-description-default-vars">
     <title>Constants and Variables With Default Values</title>

     <para>
      The declarations have the following syntax:
<synopsis>
<replaceable>name</replaceable> <optional> CONSTANT </optional> <replaceable>type</replaceable> <optional> NOT NULL </optional> <optional> { DEFAULT | := } <replaceable>value</replaceable> </optional>;
</synopsis>
     </para>

     <para>
      The value of variables declared as CONSTANT cannot be changed. If NOT NULL
      is specified, an assignment of a NULL value results in a runtime
      error. Since the default value of all variables is the
      <acronym>SQL</acronym> NULL value, all variables declared as NOT NULL
      must also have a default value specified.
     </para>

     <para>
      The default value is evaluated every time the function is called. So
      assigning '<literal>now</literal>' to a variable of type
      <type>timestamp</type> causes the variable to have the
      time of the actual function call, not when the function was
      precompiled into its bytecode.
     </para>

     <para>
      Examples:
<programlisting>
quantity INTEGER := 32;
url varchar := ''http://mysite.com'';
user_id CONSTANT INTEGER := 10;
</programlisting>
     </para>
    </sect3>

    <sect3 id="plpgsql-description-passed-vars">
     <title>Parameters Passed to Functions</title>

     <para>
      Parameters passed to functions are named with the identifiers
      <literal>$1</literal>, <literal>$2</literal>,
      etc.  Optionally, aliases can be declared for the <literal>$n</literal>
      parameter names for increased readability.  Some examples:
<programlisting>
CREATE FUNCTION sales_tax(REAL) RETURNS REAL AS '
DECLARE
    subtotal ALIAS FOR $1;
BEGIN
    return subtotal * 0.06;
END;
' LANGUAGE 'plpgsql';


CREATE FUNCTION instr(VARCHAR,INTEGER) RETURNS INTEGER AS '
DECLARE
    v_string ALIAS FOR $1;
    index ALIAS FOR $2;
BEGIN
    -- Some computations here
END;
' LANGUAGE 'plpgsql';
</programlisting>
     </para>
    </sect3>

    <sect3 id="plpgsql-description-attributes">
     <title>Attributes</title>

     <para>
      Using the <type>%TYPE</type> and <type>%ROWTYPE</type>
      attributes, you can declare variables with the same
      datatype or structure of another database item (e.g: a
      table field).
     </para>

     <variablelist>
      <varlistentry>
       <term>
        <replaceable>variable</replaceable>%TYPE
       </term>
       <listitem>
        <para>
         <type>%TYPE</type> provides the datatype of a
         variable or database column. You can use this to
         declare variables that will hold database
         values. For example, let's say you have a column
         named <type>user_id</type> in your
         <type>users</type> table. To declare a variable with
         the same datatype as users.user_id you write:
<programlisting>
user_id   users.user_id%TYPE;
</programlisting>
        </para>

        <para>
         By using <type>%TYPE</type> you don't need to know
         the datatype of the structure you are referencing,
         and most important, if the datatype of the
         referenced item changes in the future (e.g: you
         change your table definition of user_id to become a
         REAL), you won't need to change your function
         definition.
        </para>
       </listitem>
      </varlistentry>

      <varlistentry>
       <term>
        <replaceable>table</replaceable>%ROWTYPE
       </term>
       <listitem>
        <para>
	 <type>%ROWTYPE</type> provides the composite datatype corresponding
	 to a whole row of the specified table.
	 <replaceable>table</replaceable> must be an existing
	 table or view name of the database. The fields of the row are
	 accessed in the dot notation. Parameters to a function can be
	 composite types (complete table rows). In that case, the
	 corresponding identifier $n will be a rowtype, and fields can
	 be selected from it, for example <literal>$1.user_id</literal>.
        </para>

        <para>
         Only the user-defined attributes of a table row are accessible in a
	 rowtype variable, not OID or other system attributes (because the
	 row could be from a view).  The fields of the rowtype inherit the
	 table's field sizes or precision for <type>char()</type>
	 etc. data types.
        </para>
<programlisting>
DECLARE
    users_rec users%ROWTYPE;
    user_id users.user_id%TYPE;
BEGIN
    user_id := users_rec.user_id;
    ...

create function cs_refresh_one_mv(integer) returns integer as '
   DECLARE
        key ALIAS FOR $1;
        table_data cs_materialized_views%ROWTYPE;
   BEGIN
        SELECT INTO table_data * FROM cs_materialized_views
               WHERE sort_key=key;

        IF NOT FOUND THEN
           RAISE EXCEPTION ''View '' || key || '' not found'';
           RETURN 0;
        END IF;

        -- The mv_name column of cs_materialized_views stores view
        -- names.
 
        TRUNCATE TABLE table_data.mv_name;
        INSERT INTO table_data.mv_name || '' '' || table_data.mv_query;

        return 1;
end;
' LANGUAGE 'plpgsql';
</programlisting>
       </listitem>
      </varlistentry>
     </variablelist>
    </sect3>

    <sect3 id="plpgsql-description-remaning-vars">
     <title>
      RENAME
     </title>

     <para>
      Using RENAME you can change the name of a variable, record
      or row. This is useful if NEW or OLD should be referenced
      by another name inside a trigger procedure.
     </para>

     <para>
      Syntax and examples:
<programlisting>
RENAME <replaceable>oldname</replaceable> TO <replaceable>newname</replaceable>;

RENAME id TO user_id;
RENAME this_var TO that_var;
</programlisting>
     </para>
    </sect3>
   </sect2>

   <!-- **** PL/pgSQL expressions **** -->

   <sect2>
    <title>Expressions</title>

    <para>
     All expressions used in PL/pgSQL statements are processed using
     the backend's executor. Expressions that appear to contain
     constants may in fact require run-time evaluation
     (e.g. <literal>'now'</literal>  for the 
     <type>timestamp</type> type) so
     it is impossible for the PL/pgSQL parser
     to identify real constant values other than the NULL keyword. All
     expressions are evaluated internally by executing a query
<synopsis>
SELECT <replaceable>expression</replaceable>
</synopsis>
     using the <acronym>SPI</acronym> manager. In the expression, occurrences of variable
     identifiers are substituted by parameters and the actual values from
     the variables are passed to the executor in the parameter array. All
     expressions used in a PL/pgSQL function are only prepared and
     saved once.  The only exception to this rule is an EXECUTE statement
     if parsing of a query is needed each time it is encountered.
    </para>

    <para>
     The type checking done by the <productname>Postgres</productname>
     main parser has some side
     effects to the interpretation of constant values. In detail there
     is a difference between what these two functions do:

<programlisting>
CREATE FUNCTION logfunc1 (text) RETURNS timestamp AS '
    DECLARE
        logtxt ALIAS FOR $1;
    BEGIN
        INSERT INTO logtable VALUES (logtxt, ''now'');
        RETURN ''now'';
    END;
' LANGUAGE 'plpgsql';
</programlisting>

     and

<programlisting>
CREATE FUNCTION logfunc2 (text) RETURNS timestamp AS '
    DECLARE
        logtxt ALIAS FOR $1;
        curtime timestamp;
    BEGIN
        curtime := ''now'';
        INSERT INTO logtable VALUES (logtxt, curtime);
        RETURN curtime;
    END;
' LANGUAGE 'plpgsql';
</programlisting>

     In the case of <function>logfunc1()</function>, the 
     <productname>Postgres</productname> main parser knows when 
     preparing the plan for the INSERT, that the string 
     <literal>'now'</literal> should be interpreted as 
     <type>timestamp</type> because the target field of logtable
     is of that type. Thus, it will make a constant from it at this
     time and this constant value is then used in all invocations of 
     <function>logfunc1()</function> during the lifetime of the
     backend. Needless to say that this isn't what the
     programmer wanted.
    </para>

    <para>
     In the case of <function>logfunc2()</function>, the 
     <productname>Postgres</productname> main parser does not know
     what type <literal>'now'</literal> should become and therefore 
     it returns a data type of <type>text</type> containing the string 
     <literal>'now'</literal>. During the assignment
     to the local variable curtime, the PL/pgSQL interpreter casts this
     string to the timestamp type by calling the
     <function>text_out()</function> and <function>timestamp_in()</function>
     functions for the conversion.
    </para>

    <para>
     This type checking done by the <productname>Postgres</productname> main
     parser got implemented after PL/pgSQL was nearly done.
     It is a difference between 6.3 and 6.4 and affects all functions
     using the prepared plan feature of the <acronym>SPI</acronym> manager.
     Using a local
     variable in the above manner is currently the only way in PL/pgSQL to get
     those values interpreted correctly.
    </para>

    <para>
     If record fields are used in expressions or statements, the data types of
     fields should not change between calls of one and the same expression.
     Keep this in mind when writing trigger procedures that handle events
     for more than one table.
    </para>
   </sect2>

   <!-- **** PL/pgSQL statements **** -->

  <sect2>
   <title>Statements</title>

   <para>
    Anything not understood by the PL/pgSQL parser as specified below
    will be put into a query and sent down to the database engine
    to execute. The resulting query should not return any data.
   </para>
   
   <sect3 id="plpgsql-statements-assignment">
    <title>Assignment</title>
    <para>
     An assignment of a value to a variable or row/record field is
     written as:
<synopsis>
<replaceable>identifier</replaceable> := <replaceable>expression</replaceable>;
</synopsis>

     If the expressions result data type doesn't match the variables
     data type, or the variable has a size/precision that is known
     (as for <type>char(20)</type>), the result value will be implicitly casted by
     the PL/pgSQL bytecode interpreter using the result types output- and
     the variables type input-functions. Note that this could potentially
     result in runtime errors generated by the types input functions.
    </para>

<programlisting>
user_id := 20;
tax := subtotal * 0.06;
</programlisting>
   </sect3>

   <sect3 id="plpgsql-statements-calling-other-funcs">
    <title>Calling another function</title>

    <para>
     All functions defined in a <productname>Postgres</productname>
     database return a value. Thus, the normal way to call a function
     is to execute a SELECT query or doing an assignment (resulting
     in a PL/pgSQL internal SELECT). 
    </para>

    <para>
     But there are cases where someone is not interested in the 
     function's result. In these cases, use the PERFORM
     statement.
<synopsis>
PERFORM <replaceable>query</replaceable>
</synopsis>
     This executes a <literal>SELECT <replaceable>query</replaceable></literal> over the
     <acronym>SPI manager</acronym> and discards the result. Identifiers like local
     variables are still substituted into parameters.
    </para>
<programlisting>
PERFORM create_mv(''cs_session_page_requests_mv'',''
     select   session_id, page_id, count(*) as n_hits,
              sum(dwell_time) as dwell_time, count(dwell_time) as dwell_count
     from     cs_fact_table
     group by session_id, page_id '');
</programlisting>
   </sect3>
   
   <sect3 id="plpgsql-statements-executing-dyn-queries">
    <title>Executing dynamic queries</title>
    
    <para>
     Often times you will want to generate dynamic queries inside
     your PL/pgSQL functions. Or you have functions that will
     generate other functions. PL/pgSQL provides the EXECUTE
     statement for these occasions.
    </para>

    <para>
<synopsis>
EXECUTE <replaceable class="command">query-string</replaceable>
</synopsis>
     where <replaceable>query-string</replaceable> is a string of type
     <type>text</type> containing the <replaceable>query</replaceable>
     to be executed.
    </para>

    <para>
    When working with dynamic queries you will have to face
    escaping of single quotes in PL/pgSQL. Please refer to the
    table available at the "Porting from Oracle PL/SQL" chapter
    for a detailed explanation that will save you some effort.
    </para>
     
    <para>
     Unlike all other queries in PL/pgSQL, a
     <replaceable>query</replaceable> run by an EXECUTE statement is
     not prepared and saved just once during the life of the server.
     Instead, the <replaceable>query</replaceable> is prepared each
     time the statement is run. The
     <replaceable>query-string</replaceable> can be dynamically
     created within the procedure to perform actions on variable
     tables and fields.
    </para>
  
    <para>
     The results from SELECT queries are discarded by EXECUTE, and
     SELECT INTO is not currently supported within EXECUTE.  So, the
     only way to extract a result from a dynamically-created SELECT is
     to use the FOR ... EXECUTE form described later.
    </para>

    <para>
     An example:
<synopsis>
EXECUTE ''UPDATE tbl SET ''
        || quote_ident(fieldname)
        || '' = ''
        || quote_literal(newvalue)
        || '' WHERE ...'';
</synopsis>
    </para>

    <para>
     This example shows use of the functions
     <function>quote_ident</function>(<type>TEXT</type>) and
     <function>quote_literal</function>(<type>TEXT</type>).
     Variables containing field and table identifiers should be
     passed to function <function>quote_ident()</function>.
     Variables containing literal elements of the dynamic query
     string should be passed to
     <function>quote_literal()</function>.  Both take the
     appropriate steps to return the input text enclosed in single
     or double quotes and with any embedded special characters.
    </para>

    <para>
     Here is a much larger example of a dynamic query and EXECUTE:
<programlisting>
CREATE FUNCTION cs_update_referrer_type_proc() RETURNS INTEGER AS '
DECLARE
    referrer_keys RECORD;  -- Declare a generic record to be used in a FOR
    a_output varchar(4000);
BEGIN 
    a_output := ''CREATE FUNCTION cs_find_referrer_type(varchar,varchar,varchar) 
                  RETURNS varchar AS '''' 
                     DECLARE 
                         v_host ALIAS FOR $1; 
                         v_domain ALIAS FOR $2; 
                         v_url ALIAS FOR $3; ''; 

    -- 
    -- Notice how we scan through the results of a query in a FOR loop
    -- using the FOR &lt;record&gt; construct.
    --

    FOR referrer_keys IN select * from cs_referrer_keys order by try_order LOOP
        a_output := a_output || '' if v_'' || referrer_keys.kind || '' like '''''''''' 
                 || referrer_keys.key_string || '''''''''' then return '''''' 
                 || referrer_keys.referrer_type || ''''''; end if;''; 
    END LOOP; 
  
    a_output := a_output || '' return null; end; '''' language ''''plpgsql'''';''; 
 
    -- This works because we are not substituting any variables
    -- Otherwise it would fail. Look at PERFORM for another way to run functions
    
    EXECUTE a_output; 
end; 
' LANGUAGE 'plpgsql';
</programlisting>
    </para>
   </sect3>

   <sect3 id="plpgsql-statements-diagnostics">
    <title>Obtaining other results status</title>

    <para>
<synopsis>
GET DIAGNOSTICS <replaceable>variable</replaceable> = <replaceable>item</replaceable> <optional> , ... </optional>
</synopsis>

     This command allows retrieval of system status indicators.  Each
     <replaceable>item</replaceable> is a keyword identifying a state
     value to be assigned to the specified variable (which should be
     of the right datatype to receive it).  The currently available
     status items are <varname>ROW_COUNT</>, the number of rows
     processed by the last <acronym>SQL</acronym> query sent down to
     the <acronym>SQL</acronym> engine; and <varname>RESULT_OID</>,
     the Oid of the last row inserted by the most recent
     <acronym>SQL</acronym> query.  Note that <varname>RESULT_OID</>
     is only useful after an INSERT query.
    </para>
   </sect3>
   
   <sect3 id="plpgsql-statements-returning">
    <title>Returning from a function</title>

    <para>
<synopsis>
RETURN <replaceable>expression</replaceable>
</synopsis>
     The function terminates and the value of
     <replaceable>expression</replaceable> will be returned to the
     upper executor. The return value of a function cannot be
     undefined. If control reaches the end of the top-level block of
     the function without hitting a RETURN statement, a runtime error
     will occur.
    </para>

    <para>
     The expressions result will be automatically casted into the
     function's return type as described for assignments.
    </para>
   </sect3>
  </sect2>

   <!-- **** PL/pgSQL Control Structures **** -->

  <sect2 id="plpgsql-description-control-structures">

   <title>Control Structures</title>
   <para>
    Control structures are probably the most useful (and
    important) part of PL/SQL. With PL/pgSQL's control structures,
    you can manipulate <productname>PostgreSQL</> data in a very
    flexible and powerful way. 
   </para>
    
   <sect3 id="plpgsql-description-conditionals">
    <title>Conditional Control: IF statements</title>

    <para>
	<function>IF</function> statements let you execute commands based on
      certain conditions. PL/PgSQL has four forms of IF: IF-THEN, IF-THEN-ELSE,
      IF-THEN-ELSE IF, IF-THEN-ELSIF-THEN-ELSE. NOTE: All PL/PgSQL IF statements need
	a corresponding <function>END IF</function> clause. With ELSE-IF statements,
      you need two: one for the first IF and one for the second (ELSE IF).
    </para>

    <variablelist>
     <varlistentry>
      <term>
       IF-THEN
      </term>

      <listitem>
       <para>
        IF-THEN statements is the simplest form of an IF. The
        statements between THEN and END IF will be executed if
        the condition is true. Otherwise, the statements
        following END IF will be executed.
<programlisting>
IF v_user_id &lt;&gt; 0 THEN
    UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;
</programlisting>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       IF-THEN-ELSE
      </term>

      <listitem>
       <para>
        IF-THEN-ELSE statements adds to IF-THEN by letting you
        specify the statements that should be executed if the
        condition evaluates to FALSE.
<programlisting>
IF parentid IS NULL or parentid = ''''
THEN 
    return fullname;
ELSE
    return hp_true_filename(parentid) || ''/'' || fullname;
END IF;


IF v_count > 0 THEN 
    INSERT INTO users_count(count) VALUES(v_count);
    return ''t'';
ELSE 
    return ''f'';
END IF;
</programlisting>
       </para>

       <para>
        IF statements can be nested and in the following
        example:
<programlisting>
IF demo_row.sex = ''m'' THEN
  pretty_sex := ''man'';
ELSE
  IF demo_row.sex = ''f'' THEN
    pretty_sex := ''woman'';
  END IF;
END IF;
</programlisting>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       IF-THEN-ELSE IF
      </term>

      <listitem>
       <para>
        When you use the "ELSE IF" statement, you are actually
        nesting an IF statement inside the ELSE
        statement. Thus you need one END IF statement for each
        nested IF and one for the parent IF-ELSE.
       </para>

       <para>
        For example:
<programlisting>
IF demo_row.sex = ''m'' THEN
   pretty_sex := ''man'';
ELSE IF demo_row.sex = ''f'' THEN
        pretty_sex := ''woman'';
     END IF;
END IF;
</programlisting>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       IF-THEN-ELSIF-ELSE
      </term>

      <listitem>
       <para>
        IF-THEN-ELSIF-ELSE allows you test multiple conditions
        in one statement. Internally it is handled as nested 
        IF-THEN-ELSE-IF-THEN commands. The optional ELSE
        branch is executed when none of the conditions are met.
       </para>

       <para>
        Here is an example:

<programlisting>
IF number = 0 THEN
    result := ''zero'';
ELSIF number &lt; 0 THEN
    result := ''negative'';
ELSIF number &gt; 0 THEN 
    result := ''negative'';
ELSE
    -- now it seems to be NULL
    result := ''NULL'';
END IF;
</programlisting>
       </para>
      </listitem>
     </varlistentry>


    </variablelist>
   </sect3>

   <sect3 id="plpgsql-description-control-structures-loops">
    <title>Iterative Control: LOOP, WHILE, FOR and EXIT</title>

    <para>
     With the LOOP, WHILE, FOR and EXIT statements, you can
     control the flow of execution of your PL/pgSQL program
     iteratively.
    </para>

    <variablelist>
     <varlistentry>
      <term>
       LOOP
      </term>

      <listitem>
       <para>
<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
LOOP
    <replaceable>statements</replaceable>
END LOOP;
</synopsis>
        An unconditional loop that must be terminated explicitly
        by an EXIT statement. The optional label can be used by
        EXIT statements of nested loops to specify which level of
        nesting should be terminated.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       EXIT
      </term>

      <listitem>
       <para>
<synopsis>
EXIT <optional> <replaceable>label</replaceable> </optional> <optional> WHEN <replaceable>expression</replaceable> </optional>;
</synopsis>
        If no <replaceable>label</replaceable> is given,
        the innermost loop is terminated and the
        statement following END LOOP is executed next.
        If <replaceable>label</replaceable> is given, it
        must be the label of the current or an upper level of nested loop
        blocks. Then the named loop or block is terminated and control
        continues with the statement after the loops/blocks corresponding
        END.
       </para>

       <para>
        Examples:
<programlisting>
LOOP
    -- some computations
    IF count > 0 THEN
        EXIT;  -- exit loop
    END IF;
END LOOP;

LOOP
    -- some computations
    EXIT WHEN count > 0;
END LOOP;

BEGIN
    -- some computations
    IF stocks > 100000 THEN
        EXIT;  -- illegal. Can't use EXIT outside of a LOOP
    END IF;
END;
</programlisting>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       WHILE
      </term>

      <listitem>
       <para>
        With the WHILE statement, you can loop through a
        sequence of statements as long as the evaluation of
        the condition expression is true.
<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
WHILE <replaceable>expression</replaceable> LOOP
    <replaceable>statements</replaceable>
END LOOP;
</synopsis>
        For example:
<programlisting>
WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
    -- some computations here
END LOOP;

WHILE NOT boolean_expression LOOP
    -- some computations here
END LOOP;
</programlisting>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term>
       FOR
      </term>

      <listitem>
       <para>
<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
FOR <replaceable>name</replaceable> IN <optional> REVERSE </optional> <replaceable>expression</replaceable> .. <replaceable>expression</replaceable> LOOP
    <replaceable>statements</replaceable>
END LOOP;
</synopsis>
        A loop that iterates over a range of integer values. The variable
        <replaceable>name</replaceable> is automatically created as type
        integer and exists only inside the loop. The two expressions giving
        the lower and upper bound of the range are evaluated only when entering
        the loop. The iteration step is always 1.
       </para>

       <para>
        Some examples of FOR loops (see <xref
        linkend="plpgsql-description-records"> for iterating over
        records in FOR loops):
<programlisting>
FOR i IN 1..10 LOOP
  -- some expressions here

    RAISE NOTICE 'i is %',i;
END LOOP;

FOR i IN REVERSE 1..10 LOOP
    -- some expressions here
END LOOP;
</programlisting>
       </para>
      </listitem>
     </varlistentry>
    </variablelist>
      </sect3>
   </sect2>

   <!-- **** PL/pgSQL records **** -->

  <sect2 id="plpgsql-description-records">
   <title>Working with RECORDs</title>

   <para>
    Records are similar to rowtypes, but they have no predefined structure.
    They are used in selections and FOR loops to hold one actual
    database row from a SELECT operation.
   </para>

   <sect3 id="plpgsql-description-records-declaration">
    <title>Declaration</title>

    <para>
     One variables of type RECORD can be used for different
     selections. Accessing a record or an attempt to assign
     a value to a record field when there is no actual row in it results
     in a runtime error. They can be declared like this:
    </para>

    <para>
<synopsis>
<replaceable>name</replaceable> RECORD;
</synopsis>
    </para>
   </sect3>

   <sect3 id="plpgsql-description-records-assignment">
    <title>Assignments</title>

    <para>
     An assignment of a complete selection into a record or row can
     be done by:
<synopsis>
SELECT  INTO <replaceable>target</replaceable> <replaceable>expressions</replaceable> FROM ...;
</synopsis>
     <replaceable>target</replaceable> can be a record, a row variable
     or a comma separated list of variables and
     record-/row-fields. Note that this is quite different from
     Postgres' normal interpretation of SELECT INTO, which is that the
     INTO target is a newly created table.  (If you want to create a
     table from a SELECT result inside a PL/pgSQL function, use the
     equivalent syntax <command>CREATE TABLE AS SELECT</command>.)
    </para>

    <para>
     If a row or a variable list is used as target, the selected values
     must exactly match the structure of the target(s) or a runtime error
     occurs. The FROM keyword can be followed by any valid qualification,
     grouping, sorting etc. that can be given for a SELECT statement.
    </para>

    <para>
     Once a record or row has been assigned to a RECORD variable,
     you can use the "." (dot) notation to access fields in that
     record:
<programlisting>
DECLARE
    users_rec RECORD;
    full_name varchar;
BEGIN
    SELECT INTO users_rec * FROM users WHERE user_id=3;

  full_name := users_rec.first_name || '' '' || users_rec.last_name;
</programlisting>
    </para>

    <para>
     There is a special variable named FOUND of type
     <type>boolean</type> that can be used immediately after a SELECT
     INTO to check if an assignment had success.
  
<programlisting>
SELECT INTO myrec * FROM EMP WHERE empname = myname;
IF NOT FOUND THEN
    RAISE EXCEPTION ''employee % not found'', myname;
END IF;
</programlisting>

     You can also use the IS NULL (or ISNULL) conditionals to
     test for NULLity of a RECORD/ROW. If the selection returns
     multiple rows, only the first is moved into the target
     fields. All others are silently discarded.
    </para>

    <para>
<programlisting>
DECLARE
    users_rec RECORD;
    full_name varchar;
BEGIN
    SELECT INTO users_rec * FROM users WHERE user_id=3;

    IF users_rec.homepage IS NULL THEN
        -- user entered no homepage, return "http://"

        return ''http://'';
    END IF;
END;
</programlisting>
    </para>
   </sect3>

   <sect3 id="plpgsql-description-records-iterating">
    <title>Iterating Through Records</title>

    <para>
     Using a special type of FOR loop, you can iterate through
     the results of a query and manipulate that data
     accordingly. The syntax is as follow:
<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
FOR <replaceable>record | row</replaceable> IN <replaceable>select_clause</replaceable> LOOP
    <replaceable>statements</replaceable>
END LOOP;
</synopsis>
     The record or row is assigned all the rows 
     resulting from the select clause and the loop body executed 
     for each. Here is an example:
    </para>

    <para>
<programlisting>
create function cs_refresh_mviews () returns integer as '
DECLARE
     mviews RECORD;

     -- Instead, if you did:
     -- mviews  cs_materialized_views%ROWTYPE;
     -- this record would ONLY be usable for the cs_materialized_views table

BEGIN
     PERFORM cs_log(''Refreshing materialized views...'');

     FOR mviews IN SELECT * FROM cs_materialized_views ORDER BY sort_key LOOP

         -- Now "mviews" has one record from cs_materialized_views

         PERFORM cs_log(''Refreshing materialized view '' || mview.mv_name || ''...'');
         TRUNCATE TABLE mview.mv_name;
         INSERT INTO mview.mv_name || '' '' || mview.mv_query;
     END LOOP;

     PERFORM cs_log(''Done refreshing materialized views.'');
     return 1;
end;
' language 'plpgsql';
</programlisting>

     If the loop is terminated with an EXIT statement, the last
     assigned row is still accessible after the loop.
    </para>

    <para>
     The FOR-IN EXECUTE statement is another way to iterate over
     records:
<synopsis>
<optional>&lt;&lt;label&gt;&gt;</optional>
FOR <replaceable>record | row</replaceable> IN EXECUTE <replaceable>text_expression</replaceable> LOOP 
    <replaceable>statements</replaceable>
END LOOP;
</synopsis>
     This is like the previous form, except that the source SELECT
     statement is specified as a string expression, which is evaluated
     and re-planned on each entry to the FOR loop.  This allows the
     programmer to choose the speed of a pre-planned query or the
     flexibility of a dynamic query, just as with a plain EXECUTE
     statement.
    </para>
   </sect3>
  </sect2>

  <sect2 id="plpgsql-description-aborting-and-messages">
   <title>Aborting and Messages</title>

   <para>
    Use the RAISE statement to throw messages into the 
    <productname>Postgres</productname> elog mechanism.

<synopsis>
RAISE <replaceable class="parameter">level</replaceable> '<replaceable class="parameter">format</replaceable>' <optional>, <replaceable class="parameter">variable</replaceable> <optional>...</optional></optional>;
</synopsis>

    Possible levels are DEBUG (write the message into the postmaster log),
    NOTICE (write the message into the postmaster log and forward it to
    the client application) and EXCEPTION (raise an error,
    aborting the transaction).
    Inside the format string, <literal>%</literal> is replaced by the next
    optional argument's external representation.
    Write <literal>%%</literal> to emit a literal <literal>%</literal>.
    Note that the optional arguments must presently
    be simple variables, not expressions, and the format must be a simple
    string literal.
   </para>

   <!--
   This example should work, but does not:
   	RAISE NOTICE ''Id number '' || key || '' not found!'';
   Put it back when we allow non-string-literal formats.
    -->

   <para>
<programlisting>
RAISE NOTICE ''Calling cs_create_job(%)'',v_job_id;
</programlisting>
    In this example, the value of v_job_id will replace the % in the
    string.
   </para>

   <para>
<programlisting>
RAISE EXCEPTION ''Inexistent ID --> %'',user_id;
</programlisting>
    This will abort the transaction with the given error message.
   </para>
  </sect2>   

   <!-- **** PL/pgSQL exceptions **** -->

   <sect2>
    <title>Exceptions</title>

    <para>
     <productname>Postgres</productname> does not have a very smart
     exception handling model. Whenever the parser, planner/optimizer
     or executor decide that a statement cannot be processed any longer,
     the whole transaction gets aborted and the system jumps back
     into the main loop to get the next query from the client application.
    </para>

    <para>
     It is possible to hook into the error mechanism to notice that this
     happens. But currently it is impossible to tell what really
     caused the abort (input/output conversion error, floating point
     error, parse error). And it is possible that the database backend
     is in an inconsistent state at this point so returning to the upper
     executor or issuing more commands might corrupt the whole database.
    </para>

    <para>
     Thus, the only thing PL/pgSQL currently does when it encounters
     an abort during execution of a function or trigger
     procedure is to write some additional NOTICE level log messages
     telling in which function and where (line number and type of
     statement) this happened.
    </para>
   </sect2>
 </sect1>


   <!-- **** PL/pgSQL trigger procedures **** -->

 <sect1 id="plpgsql-trigger">
  <title>Trigger Procedures</title>

  <para>
   PL/pgSQL can be used to define trigger procedures. They are created
   with the usual <command>CREATE FUNCTION</command> command as a function with no
   arguments and a return type of <type>OPAQUE</type>.
  </para>

  <para>
   There are some <productname>Postgres</productname> specific details
   in functions used as trigger procedures.
  </para>

  <para>
   First they have some special variables created automatically in the 
   top-level blocks declaration section. They are
   
   <variablelist>
    <varlistentry>
     <term><varname>NEW</varname></term>
     <listitem>
      <para>
       Data type <type>RECORD</type>; variable holding the new database row on INSERT/UPDATE
       operations on ROW level triggers.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>OLD</varname></term>
     <listitem>
      <para>
       Data type <type>RECORD</type>; variable holding the old database row on UPDATE/DELETE
       operations on ROW level triggers.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_NAME</varname></term>
     <listitem>
      <para>
       Data type <type>name</type>; variable that contains the name of the trigger actually
       fired.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_WHEN</varname></term>
     <listitem>
      <para>
       Data type <type>text</type>; a string of either 
              <literal>BEFORE</literal> or <literal>AFTER</literal> 
              depending on the triggers definition.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_LEVEL</varname></term>
     <listitem>
      <para>
       Data type <type>text</type>; a string of either 
              <literal>ROW</literal> or <literal>STATEMENT</literal> depending on the
       triggers definition.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_OP</varname></term>
     <listitem>
      <para>
       Data type <type>text</type>; a string of 
              <literal>INSERT</literal>, <literal>UPDATE</literal> 
              or <literal>DELETE</literal> telling
       for which operation the trigger is actually fired.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_RELID</varname></term>
     <listitem>
      <para>
       Data type <type>oid</type>; the object ID of the table that caused the
       trigger invocation.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_RELNAME</varname></term>
     <listitem>
      <para>
       Data type <type>name</type>; the name of the table that caused the trigger
       invocation.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_NARGS</varname></term>
     <listitem>
      <para>
       Data type <type>integer</type>; the number of arguments given to the trigger
       procedure in the <command>CREATE TRIGGER</command> statement.
      </para>
     </listitem>
    </varlistentry>

    <varlistentry>
     <term><varname>TG_ARGV[]</varname></term>
     <listitem>
      <para>
       Data type array of <type>text</type>; the arguments from
              the <command>CREATE TRIGGER</command> statement.
       The index counts from 0 and can be given as an expression. Invalid
       indices (&lt; 0 or &gt;= tg_nargs) result in a NULL value.
      </para>
     </listitem>
    </varlistentry>
   </variablelist>
  </para>

   <para>
    Second they must return either NULL or a record/row containing
    exactly the structure of the table the trigger was fired for.
    Triggers fired AFTER might always return a NULL value with no
    effect. Triggers fired BEFORE signal the trigger manager
    to skip the operation for this actual row when returning NULL.
    Otherwise, the returned record/row replaces the inserted/updated
    row in the operation. It is possible to replace single values directly
    in NEW and return that or to build a complete new record/row to
    return.
   </para>

   <example>
    <title>A PL/pgSQL Trigger Procedure Example</title>

    <para>
     This trigger ensures, that any time a row is inserted or updated
     in the table, the current user name and time are stamped into the
     row. And it ensures that an employees name is given and that the
     salary is a positive value.

<programlisting>
CREATE TABLE emp (
    empname text,
    salary integer,
    last_date timestamp,
    last_user text
);

CREATE FUNCTION emp_stamp () RETURNS OPAQUE AS '
    BEGIN
        -- Check that empname and salary are given
        IF NEW.empname ISNULL THEN
            RAISE EXCEPTION ''empname cannot be NULL value'';
        END IF;
        IF NEW.salary ISNULL THEN
            RAISE EXCEPTION ''% cannot have NULL salary'', NEW.empname;
        END IF;

        -- Who works for us when she must pay for?
        IF NEW.salary < 0 THEN
            RAISE EXCEPTION ''% cannot have a negative salary'', NEW.empname;
        END IF;

        -- Remember who changed the payroll when
        NEW.last_date := ''now'';
        NEW.last_user := current_user;
        RETURN NEW;
    END;
' LANGUAGE 'plpgsql';

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp
    FOR EACH ROW EXECUTE PROCEDURE emp_stamp();
</programlisting>
    </para>
   </example>
  </sect1>

  <!-- **** PL/pgSQL Examples **** -->

  <sect1 id="plpgsql-examples">
   <title>Examples</title>

   <para>
    Here are only a few functions to demonstrate how easy it is to
    write PL/pgSQL
    functions. For more complex examples the programmer
    might look at the regression test for PL/pgSQL.
   </para>

   <para>
    One painful detail in writing functions in PL/pgSQL is the handling
    of single quotes. The function's source text on <command>CREATE FUNCTION</command> must
    be a literal string. Single quotes inside of literal strings must be
    either doubled or quoted with a backslash. We are still looking for
    an elegant alternative. In the meantime, doubling the single quotes
    as in the examples below should be used. Any solution for this
    in future versions of <productname>Postgres</productname> will be
    forward compatible.
   </para>

   <para>
    For a detailed explanation and examples of how to escape single
    quotes in different situations, please see <xref linkend="plpgsql-quote">.
   </para>

   <example>
    <title>A Simple PL/pgSQL Function to Increment an Integer</title>

    <para>
     The following two PL/pgSQL functions are identical to their
     counterparts from the C language function discussion. This
     function receives an <type>integer</type> and increments it by
     one, returning the incremented value.
    </para>

<programlisting>
CREATE FUNCTION add_one (integer) RETURNS integer AS '
    BEGIN
        RETURN $1 + 1;
    END;
' LANGUAGE 'plpgsql';
</programlisting>
   </example>

   <example>
    <title>A Simple PL/pgSQL Function to Concatenate Text</title>

    <para>
     This function receives two <type>text</type> parameters and
     returns the result of concatenating them.
    </para>

<programlisting>
CREATE FUNCTION concat_text (text, text) RETURNS text AS '
    BEGIN
        RETURN $1 || $2;
    END;
' LANGUAGE 'plpgsql';
</programlisting>
   </example>

   <example>
    <title>A PL/pgSQL Function on Composite Type</title>

    <para>
     In this example, we take EMP (a table) and an
     <type>integer</type> as arguments to our function, which returns
     a <type>boolean</type>. If the "salary" field of the EMP table is
     <literal>NULL</literal>, we return "f". Otherwise we compare with
     that field with the <type>integer</type> passed to the function
     and return the <type>boolean</type> result of the comparison (t
     or f). This is the PL/pgSQL equivalent to the example from the C
     functions.
    </para>

<programlisting>
CREATE FUNCTION c_overpaid (EMP, integer) RETURNS boolean AS '
    DECLARE
        emprec ALIAS FOR $1;
        sallim ALIAS FOR $2;
    BEGIN
        IF emprec.salary ISNULL THEN
            RETURN ''f'';
        END IF;
        RETURN emprec.salary > sallim;
    END;
' LANGUAGE 'plpgsql';
</programlisting>
   </example>
  </sect1>

  <!-- **** Porting from Oracle PL/SQL **** -->

 <sect1 id="plpgsql-porting">

  <sect1info>
   <date>
    February 2001
   </date>
   <author>
    <firstname>Roberto</firstname>
    <surname>Mello</surname>
    <affiliation>
     <address>
      <email>rmello@fslc.usu.edu</email>
     </address>
    </affiliation>
   </author>

   <legalnotice>
    <para>
     Except for portions of this document quoted from other sources,
     this document is licensed under the BSD License.
    </para>
   </legalnotice>
  </sect1info> 

  <title>Porting from Oracle PL/SQL</title>

  <indexterm>
   <primary>Oracle</primary>
  </indexterm>

  <indexterm>
   <primary>PL/SQL</primary>
  </indexterm>

  <note>
   <title>Author</title>
   <para>
    Roberto Mello (<email>rmello@fslc.usu.edu</email>)
   </para>
  </note>

  <para>
   This section explains differences between Oracle's PL/SQL and
   PostgreSQL's PL/pgSQL languages in the hopes of helping developers
   port applications from Oracle to PostgreSQL.  Most of the code here
   is from the <ulink url="http://www.arsdigita.com">ArsDigita</ulink>
   <ulink url="http://www.arsdigita.com/asj/clickstream">Clickstream
   module</ulink> that I ported to PostgreSQL when I took an
   internship with <ulink url="http://www.openforce.net">OpenForce
   Inc.</ulink> in the Summer of 2000.
  </para>

  <para>
   PL/pgSQL is similar to PL/SQL in many aspects. It is a block
   structured, imperative language (all variables have to be
   declared). PL/SQL has many more features than its PostgreSQL
   counterpart, but PL/pgSQL allows for a great deal of functionality
   and it is being improved constantly.
  </para>

  <sect2>
   <title>Main Differences</title>

   <para>
    Some things you should keep in mind when porting from Oracle to PostgreSQL:

    <itemizedlist>
     <listitem>
      <para>
       No default parameters in PostgreSQL.
      </para>
     </listitem>

     <listitem>
      <para>
       You can overload functions in PostgreSQL. This is often used to work 
       around the lack of default parameters.
      </para>
     </listitem>

     <listitem>
      <para>
       Assignments, loops and conditionals are similar. 
      </para>
     </listitem>

     <listitem>
      <para>
       No need for cursors in PostgreSQL, just put the query in the FOR 
       statement (see example below)
      </para>
     </listitem>

     <listitem>
      <para>
       In PostgreSQL you <emphasis>need</emphasis> to escape single
       quotes. See <xref linkend="plpgsql-quote">.
      </para>
     </listitem>
    </itemizedlist>
   </para>

   <sect3 id="plpgsql-quote">
    <title>Quote Me on That: Escaping Single Quotes</title>

    <para>
     In PostgreSQL you need to escape single quotes inside your
     function definition. This can lead to quite amusing code at
     times, especially if you are creating a function that generates
     other function(s), as in 
     <xref linkend="plpgsql-porting-nastyquote">.  
     One thing to keep in mind
     when escaping lots of single quotes is that, except for the
     beginning/ending quotes, all the others will come in even
     quantity.
    </para>

    <para>
     <xref linkend="plpgsql-quoting-table"> gives the scoop.  (You'll
     love this little chart.)
    </para>

    <table id="plpgsql-quoting-table">
     <title>Single Quotes Escaping Chart</title>

     <tgroup cols="4">
      <thead>
       <row>
        <entry>No. of Quotes</entry>
        <entry>Usage</entry>
        <entry>Example</entry>
        <entry>Result</entry>
       </row>
      </thead>

      <tbody>
       <row>
        <entry>1</entry>
        <entry>To begin/terminate function bodies</entry>
        <entry><programlisting>
CREATE FUNCTION foo() RETURNS INTEGER AS '...'
LANGUAGE 'plpgsql';
</programlisting></entry>
        <entry>as is</entry>
       </row>

       <row>
        <entry>2</entry>
        <entry>In assignments, SELECTs, to delimit strings, etc.</entry>
        <entry><programlisting>
a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';
</programlisting></entry>
        <entry><literal>SELECT * FROM users WHERE f_name='foobar';</literal></entry>
       </row>

       <row>
        <entry>4</entry>
        <entry>
         When you need two single quotes in your resulting string
         without terminating that string.
        </entry>
        <entry><programlisting>
a_output := a_output || '' AND name 
    LIKE ''''foobar'''' AND ...''
</programlisting></entry>
        <entry><literal>AND name LIKE 'foobar' AND ...</literal></entry>
       </row>

       <row>
        <entry>6</entry>
        <entry>
         When you want double quotes in your resulting string
         <emphasis>and</emphasis> terminate that string.
        </entry>
        <entry><programlisting>
a_output := a_output || '' AND name 
    LIKE ''''foobar''''''
</programlisting></entry>
        <entry>
         <literal>AND name LIKE 'foobar'</literal>
        </entry>
       </row>

       <row>
        <entry>10</entry>
        <entry>
         When you want two single quotes in the resulting string
         (which accounts for 8 quotes) <emphasis>and</emphasis>
         terminate that string (2 more).  You will probably only need
         that if you were using a function to generate other functions
         (like in <xref linkend="plpgsql-porting-nastyquote">).
        </entry>
        <entry><programlisting>
a_output := a_output || '' if v_'' || 
    referrer_keys.kind || '' like '''''''''' 
    || referrer_keys.key_string || '''''''''' 
    then return ''''''  || referrer_keys.referrer_type 
    || ''''''; end if;''; 
</programlisting></entry>
        <entry>
         <literal>if v_<...> like ''<...>'' then return ''<...>''; end if;</literal>
        </entry>
       </row>
      </tbody>
     </tgroup>
    </table>
   </sect3>
  </sect2>  

  <sect2 id="plpgsql-porting-functions">
   <title>
    Porting Functions
   </title>

   <example>
    <title>
     A Simple Function
    </title>

    <para>
     Here is an Oracle function:
<programlisting>
CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name IN varchar, v_version IN varchar)
RETURN varchar IS
BEGIN
    IF v_version IS NULL THEN
        RETURN v_name;
    END IF;
    RETURN v_name || '/' || v_version;
END;
/
SHOW ERRORS;
</programlisting>
    </para>

    <para>
     Let's go through this function and see the differences to PL/pgSQL:

     <itemizedlist>
      <listitem>
       <para>
        The <literal>OR REPLACE</literal> clause is not allowed. You
        will have to explicitly drop the function before creating it
        to achieve similar results.
       </para>
      </listitem>

      <listitem>
       <para>
        <productname>PostgreSQL</productname> does not have named
        parameters. You have to explicitly alias them inside your
        function.
       </para>
      </listitem>

      <listitem>
       <para>
        Oracle can have <literal>IN</literal>, <literal>OUT</literal>,
        and <literal>INOUT</literal> parameters passed to functions.
        The <literal>INOUT</literal>, for example, means that the
        parameter will receive a value and return another. PostgreSQL
        only has <quote>IN</quote> parameters and functions can return
        only a single value.
       </para>
      </listitem>

      <listitem>
       <para>
        The <literal>RETURN</literal> key word in the function
        prototype (not the function body) becomes
        <literal>RETURNS</literal> in PostgreSQL.
       </para>
      </listitem>

      <listitem>
       <para>
        On PostgreSQL functions are created using single quotes as
        delimiters, so you have to escape single quotes inside your
        functions (which can be quite annoying at times; see <xref
        linkend="plpgsql-quote">).
       </para>
      </listitem>

      <listitem>
       <para>
        The <literal>/show errors</literal> command does not exist in
        PostgreSQL.
       </para>
      </listitem>
     </itemizedlist>
    </para>

    <para>
     So let's see how this function would be look like ported to
     PostgreSQL:

<programlisting>
DROP FUNCTION cs_fmt_browser_version(varchar, varchar);
CREATE FUNCTION cs_fmt_browser_version(varchar, varchar)
RETRUNS varchar AS '
DECLARE
    v_name ALIAS FOR $1;
    v_version ALIAS FOR $2;
BEGIN
    IF v_version IS NULL THEN
        return v_name;
    END IF;
    RETURN v_name || ''/'' || v_version;
END;
' LANGUAGE 'plpgsql';
</programlisting>
    </para>
   </example>
 
   <example id="plpgsql-porting-nastyquote">
    <title>
     A Function that Creates Another Function
    </title>

    <para>
     The following procedure grabs rows from a
     <literal>SELECT</literal> statement and builds a large function
     with the results in <literal>IF</literal> statements, for the
     sake of efficiency. Notice particularly the differences in
     cursors, <literal>FOR</literal> loops, and the need to escape
     single quotes in PostgreSQL.

<programlisting>
create or replace procedure cs_update_referrer_type_proc is 
    cursor referrer_keys is 
        select * from cs_referrer_keys 
        order by try_order;

    a_output varchar(4000); 
begin 
    a_output := 'create or replace function cs_find_referrer_type(v_host IN varchar, v_domain IN varchar, 
v_url IN varchar) return varchar is begin'; 

    for referrer_key in referrer_keys loop 
        a_output := a_output || ' if v_' || referrer_key.kind || ' like ''' || 
referrer_key.key_string || ''' then return ''' || referrer_key.referrer_type || 
'''; end if;'; 
    end loop; 

    a_output := a_output || ' return null; end;'; 
    execute immediate a_output; 
end; 
/ 
show errors
</programlisting>
    </para>

    <para>
     Here is how this function would end up in PostgreSQL:

<programlisting>
CREATE FUNCTION cs_update_referrer_type_proc() RETURNS integer AS '
DECLARE
    referrer_keys RECORD;  -- Declare a generic record to be used in a FOR
    a_output varchar(4000);
BEGIN 
    a_output := ''CREATE FUNCTION cs_find_referrer_type(varchar,varchar,varchar) 
                  RETURNS varchar AS '''' 
                     DECLARE 
                         v_host ALIAS FOR $1; 
                         v_domain ALIAS FOR $2; 
                         v_url ALIAS FOR $3; ''; 

    -- 
    -- Notice how we scan through the results of a query in a FOR loop
    -- using the FOR &lt;record&gt; construct.
    --

    FOR referrer_keys IN select * from cs_referrer_keys order by try_order LOOP
        a_output := a_output || '' if v_'' || referrer_keys.kind || '' like '''''''''' 
                 || referrer_keys.key_string || '''''''''' then return '''''' 
                 || referrer_keys.referrer_type || ''''''; end if;''; 
    END LOOP; 
  
    a_output := a_output || '' return null; end; '''' language ''''plpgsql'''';''; 
 
    -- This works because we are not substituting any variables
    -- Otherwise it would fail. Look at PERFORM for another way to run functions
    
    EXECUTE a_output; 
end; 
' LANGUAGE 'plpgsql';
</programlisting>
    </para>
   </example>
 
   <example>
    <title>
     A Procedure with a lot of String Manipulation and OUT Parameters
    </title>

    <para>
     The following Oracle PL/SQL procedure is used to parse a URL and
     return several elements (host, path and query). It is an
     procedure because in PL/pgSQL functions only one value can be returned
     (see <xref linkend="plpgsql-porting-procedures">).  In
     PostgreSQL, one way to work around this is to split the procedure
     in three different functions: one to return the host, another for
     the path and another for the query.
    </para>

<programlisting>
create or replace procedure cs_parse_url(
    v_url IN varchar,
    v_host OUT varchar,  -- This will be passed back
    v_path OUT varchar,  -- This one too
    v_query OUT varchar) -- And this one
is
    a_pos1 integer;
    a_pos2 integer;
begin
    v_host := NULL;
    v_path := NULL;
    v_query := NULL;
    a_pos1 := instr(v_url, '//'); -- PostgreSQL doesn't have an instr function

    if a_pos1 = 0 then
        return;
    end if;
    a_pos2 := instr(v_url, '/', a_pos1 + 2);
    if a_pos2 = 0 then
        v_host := substr(v_url, a_pos1 + 2);
        v_path := '/';
        return;
    end if;

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
    a_pos1 := instr(v_url, '?', a_pos2 + 1);

    if a_pos1 = 0 then
        v_path := substr(v_url, a_pos2);
        return;
    end if;

    v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
    v_query := substr(v_url, a_pos1 + 1);
end;
/
show errors;
</programlisting>

    <para>
     Here is how this procedure could be translated for PostgreSQL:

<programlisting>
drop function cs_parse_url_host(varchar); 
create function cs_parse_url_host(varchar) returns varchar as ' 
declare 
    v_url ALIAS FOR $1; 
    v_host varchar; 
    v_path varchar; 
    a_pos1 integer; 
    a_pos2 integer; 
    a_pos3 integer; 
begin 
    v_host := NULL; 
    a_pos1 := instr(v_url,''//''); 

    if a_pos1 = 0 then 
        return '''';  -- Return a blank
    end if; 

    a_pos2 := instr(v_url,''/'',a_pos1 + 2); 
    if a_pos2 = 0 then 
        v_host := substr(v_url, a_pos1 + 2); 
        v_path := ''/''; 
        return v_host; 
    end if; 

    v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2 ); 
    return v_host; 
end; 
' language 'plpgsql';
</programlisting>
    </para>
   </example>

   <note>
    <para>
     PostgreSQL does not have an <function>instr</function> function,
     so you can work around it using a combination of other functions.
     I got tired of doing this and created my own
     <function>instr</function> functions that behave exactly like
     Oracle's (it makes life easier). See the <xref
     linkend="plpgsql-porting-appendix"> for the code.
    </para>
   </note>
  </sect2>

  <sect2 id="plpgsql-porting-procedures">
   <title>
    Procedures
   </title>

   <para>
    Oracle procedures give a little more flexibility to the developer
    because nothing needs to be explicitly returned, but it can be
    through the use of INOUT or OUT parameters.
   </para>

   <para>
    An example:

<programlisting>
create or replace procedure cs_create_job(v_job_id in integer)
is
    a_running_job_count integer;
    pragma autonomous_transaction;<co id="co.plpgsql-porting-pragma">
begin
    lock table cs_jobs in exclusive mode;<co id="co.plpgsql-porting-locktable">

    select count(*) into a_running_job_count from cs_jobs
    where end_stamp is null;

    if a_running_job_count > 0 then
        commit; -- free lock<co id="co.plpgsql-porting-commit">
        raise_application_error(-20000, 'Unable to create a new job: a job is currently running.');
    end if;

    delete from cs_active_job;
    insert into cs_active_job(job_id) values(v_job_id);

    begin
        insert into cs_jobs(job_id, start_stamp) values(v_job_id, sysdate);
        exception when dup_val_on_index then null; -- don't worry if it already exists<co id="co.plpgsql-porting-exception">
    end;
    commit;
end;
/
show errors
</programlisting>
   </para>

   <para>
    Procedures like this can be easily converted into PostgreSQL
    functions returning an <type>INTEGER</type>. This procedure in
    particular is interesting because it can teach us some things:

    <calloutlist>
     <callout arearefs="co.plpgsql-porting-pragma">
      <para>
       There is no <literal>pragma</literal> statement in PostgreSQL.
      </para>
     </callout>

     <callout arearefs="co.plpgsql-porting-locktable">
      <para>
       If you do a <literal>LOCK TABLE</literal> in PL/pgSQL, the lock
       will not be released until the calling transaction is finished.
      </para>
     </callout>

     <callout arearefs="co.plpgsql-porting-commit">
      <para>
       You also cannot have transactions in PL/pgSQL procedures. The
       entire function (and other functions called from therein) is
       executed in a transaction and PostgreSQL rolls back the results if
       something goes wrong. Therefore only one
       <literal>BEGIN</literal> statement is allowed.
      </para>
     </callout>

     <callout arearefs="co.plpgsql-porting-exception">
      <para>
       The exception when would have to be replaced by an
       <literal>IF</literal> statement.
      </para>
     </callout>
    </calloutlist>
   </para>

   <para>
    So let's see one of the ways we could port this procedure to PL/pgSQL:

<programlisting>
drop function cs_create_job(integer);
create function cs_create_job(integer) returns integer as ' declare
    v_job_id alias for $1;
    a_running_job_count integer;
    a_num integer;
    -- pragma autonomous_transaction;
begin
    lock table cs_jobs in exclusive mode;
    select count(*) into a_running_job_count from cs_jobs where end_stamp is null;

    if a_running_job_count > 0 then
        -- commit; -- free lock
        raise exception ''Unable to create a new job: a job is currently running.'';
    end if;

    delete from cs_active_job;
    insert into cs_active_job(job_id) values(v_job_id);

    SELECT count(*) into a_num FROM cs_jobs WHERE job_id=v_job_id;
    IF NOT FOUND THEN  -- If nothing was returned in the last query
        -- This job is not in the table so lets insert it.
        insert into cs_jobs(job_id, start_stamp) values(v_job_id, sysdate());
        return 1;
    ELSE
        raise NOTICE ''Job already running.'';<co id="co.plpgsql-porting-raise">
    END IF;

    return 0;
end;
' language 'plpgsql';
</programlisting>

    <calloutlist>
     <callout arearefs="co.plpgsql-porting-raise">
      <para>
       Notice how you can raise notices (or errors) in PL/pgSQL.
      </para>
     </callout>
    </calloutlist>
   </para>
  </sect2>

  <sect2 id="plpgsql-porting-packages">
   <title>
    Packages
   </title>

   <note>
    <para>
     I haven't done much with packages myself, so if there are
     mistakes here, please let me know.
    </para>
   </note>

   <para>
    Packages are a way Oracle gives you to encapsulate PL/SQL
    statements and functions into one entity, like Java classes, where
    you define methods and objects. You can access these
    objects/methods with a <quote><literal>.</literal></quote>
    (dot). Here is an example of an Oracle package from ACS 4 (the
    <ulink url="http://www.arsdigita.com/doc/">ArsDigita Community
    System</ulink>):

<programlisting>
create or replace package body acs
as
  function add_user (
    user_id     in users.user_id%TYPE default null,
    object_type     in acs_objects.object_type%TYPE
               default 'user',
    creation_date   in acs_objects.creation_date%TYPE
               default sysdate,
    creation_user   in acs_objects.creation_user%TYPE
               default null,
    creation_ip     in acs_objects.creation_ip%TYPE default null,
  ...
  ) return users.user_id%TYPE
  is
    v_user_id       users.user_id%TYPE;
    v_rel_id        membership_rels.rel_id%TYPE;
  begin
    v_user_id := acs_user.new (user_id, object_type, creation_date,
                creation_user, creation_ip, email,
    ...
    return v_user_id;
  end;
end acs;
/
show errors
</programlisting>
   </para>

   <para>
    We port this to PostgreSQL by creating the different objects of
    the Oracle package as functions with a standard naming
    convention. We have to pay attention to some other details, like
    the lack of default parameters in PostgreSQL functions. The above
    package would become something like this:
 
<programlisting>
CREATE FUNCTION acs__add_user(integer,integer,varchar,datetime,integer,integer,...)
RETURNS integer AS '
DECLARE
    user_id ALIAS FOR $1;
    object_type ALIAS FOR $2;
    creation_date ALIAS FOR $3;
    creation_user ALIAS FOR $4;
    creation_ip ALIAS FOR $5;
    ...
    v_user_id users.user_id%TYPE;
    v_rel_id membership_rels.rel_id%TYPE;
BEGIN
    v_user_id := acs_user__new(user_id,object_type,creation_date,creation_user,creation_ip, ...);
    ...

    return v_user_id;
END;
' LANGUAGE 'plpgsql';
</programlisting>
   </para>
  </sect2>

  <sect2 id="plpgsql-porting-other">
   <title>
    Other Things to Watch For
   </title>

   <sect3>
    <title>EXECUTE</title>

    <para>
     The PostgreSQL version of <literal>EXECUTE</literal> works
     nicely, but you have to remember to use
     <function>quote_literal(TEXT)</function> and
     <function>quote_string(TEXT)</function> as described in <xref
     linkend="plpgsql-statements-executing-dyn-queries">.  Constructs of the type
     <literal>EXECUTE ''SELECT * from $1'';</literal> will not work
     unless you use these functions.
    </para>
   </sect3>

   <sect3 id="plpgsql-porting-optimization">
    <title>Optimizing PL/pgSQL Functions</title>

    <para>
     PostgreSQL gives you two function creation modifiers to optimize
     execution: <literal>iscachable</literal> (function always returns
     the same result when given the same arguments) and
     <literal>isstrict</literal> (function returns NULL if any
     argument is NULL).  Consult the <command>CREATE
     FUNCTION</command> reference for details.
    </para>

    <para>
     To make use of these optimization attributes, you have to use the
     <literal>WITH</literal> modifier in your <command>CREATE
     FUNCTION</command> statement.  Something like:

<programlisting>
CREATE FUNCTION foo(...) RETURNS integer AS '
...
' LANGUAGE 'plpgsql'
WITH (isstrict, iscachable);
</programlisting>
    </para>
   </sect3>
  </sect2>

  <sect2 id="plpgsql-porting-appendix">
   <title>
    Appendix
   </title>

   <sect3>
    <title>
     Code for my <function>instr</function> functions
    </title>

    <comment>
     This function should probably be integrated into the core.
    </comment>

<programlisting>
--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1,string2,[n],[m]) where [] denotes optional params.
-- 
-- Searches string1 beginning at the nth character for the mth
-- occurrence of string2. If n is negative, search backwards. If m is
-- not passed, assume 1 (search starts at first character).
--
-- by Roberto Mello (rmello@fslc.usu.edu)
-- modified by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--

DROP FUNCTION instr(varchar,varchar);
CREATE FUNCTION instr(varchar,varchar) RETURNS integer AS '
DECLARE
    pos integer;
BEGIN
    pos:= instr($1,$2,1);
    RETURN pos;
END;
' language 'plpgsql';


DROP FUNCTION instr(varchar,varchar,integer);
CREATE FUNCTION instr(varchar,varchar,integer) RETURNS integer AS '
DECLARE
    string ALIAS FOR $1;
    string_to_search ALIAS FOR $2;
    beg_index ALIAS FOR $3;
    pos integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    length integer;
    ss_length integer;
BEGIN
    IF beg_index > 0 THEN

       temp_str := substring(string FROM beg_index);
       pos := position(string_to_search IN temp_str);

       IF pos = 0 THEN
	         RETURN 0;
	     ELSE
	         RETURN pos + beg_index - 1;
	     END IF;
    ELSE
       ss_length := char_length(string_to_search);
       length := char_length(string);
       beg := length + beg_index - ss_length + 2;

       WHILE beg > 0 LOOP

           temp_str := substring(string FROM beg FOR ss_length);
	         pos := position(string_to_search IN temp_str);

	         IF pos > 0 THEN
		           RETURN beg;
	         END IF;

	         beg := beg - 1;
       END LOOP;
       RETURN 0;
    END IF;
END;
' language 'plpgsql';

--
-- Written by Robert Gaszewski (graszew@poland.com)
-- Licensed under the GPL v2 or later.
--
DROP FUNCTION instr(varchar,varchar,integer,integer);
CREATE FUNCTION instr(varchar,varchar,integer,integer) RETURNS integer AS '
DECLARE
    string ALIAS FOR $1;
    string_to_search ALIAS FOR $2;
    beg_index ALIAS FOR $3;
    occur_index ALIAS FOR $4;
    pos integer NOT NULL DEFAULT 0;
    occur_number integer NOT NULL DEFAULT 0;
    temp_str varchar;
    beg integer;
    i integer;
    length integer;
    ss_length integer;
BEGIN
    IF beg_index > 0 THEN
        beg := beg_index;
        temp_str := substring(string FROM beg_index);

        FOR i IN 1..occur_index LOOP
            pos := position(string_to_search IN temp_str);

            IF i = 1 THEN
                beg := beg + pos - 1;
            ELSE
                beg := beg + pos;
            END IF;

            temp_str := substring(string FROM beg + 1);
        END LOOP;

        IF pos = 0 THEN
            RETURN 0;
        ELSE
            RETURN beg;
        END IF;
    ELSE
        ss_length := char_length(string_to_search);
        length := char_length(string);
        beg := length + beg_index - ss_length + 2;

        WHILE beg > 0 LOOP
            temp_str := substring(string FROM beg FOR ss_length);
            pos := position(string_to_search IN temp_str);

            IF pos > 0 THEN
                occur_number := occur_number + 1;

                IF occur_number = occur_index THEN
                    RETURN beg;
                END IF;
            END IF;

            beg := beg - 1;
        END LOOP;

        RETURN 0;
    END IF;
END;
' language 'plpgsql';
</programlisting>
   </sect3>
  </sect2>
  
 </sect1>

</chapter>

<!-- Keep this comment at the end of the file
Local variables:
mode:sgml
sgml-omittag:nil
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"./reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:("/usr/lib/sgml/catalog")
sgml-local-ecat-files:nil
End:
-->