aboutsummaryrefslogtreecommitdiff
path: root/doc/src/sgml/ref/create_index.sgml
blob: bfca7dfee82ff94d7d6c4fd862260904729e8fe4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
<!--
$Header: /cvsroot/pgsql/doc/src/sgml/ref/create_index.sgml,v 1.37 2002/09/21 18:32:54 petere Exp $
PostgreSQL documentation
-->

<refentry id="SQL-CREATEINDEX">
 <refmeta>
  <refentrytitle id="sql-createindex-title">CREATE INDEX</refentrytitle>
  <refmiscinfo>SQL - Language Statements</refmiscinfo>
 </refmeta>
 <refnamediv>
  <refname>
   CREATE INDEX
  </refname>
  <refpurpose>
   define a new index
  </refpurpose>
 </refnamediv>
 <refsynopsisdiv>
  <refsynopsisdivinfo>
   <date>2001-07-15</date>
  </refsynopsisdivinfo>
  <synopsis>
CREATE [ UNIQUE ] INDEX <replaceable class="parameter">index_name</replaceable> ON <replaceable class="parameter">table</replaceable>
    [ USING <replaceable class="parameter">acc_method</replaceable> ] ( <replaceable class="parameter">column</replaceable> [ <replaceable class="parameter">ops_name</replaceable> ] [, ...] )
    [ WHERE <replaceable class="parameter">predicate</replaceable> ]
CREATE [ UNIQUE ] INDEX <replaceable class="parameter">index_name</replaceable> ON <replaceable class="parameter">table</replaceable>
    [ USING <replaceable class="parameter">acc_method</replaceable> ] ( <replaceable class="parameter">func_name</replaceable>( <replaceable class="parameter">column</replaceable> [, ... ]) [ <replaceable class="parameter">ops_name</replaceable> ] )
    [ WHERE <replaceable class="parameter">predicate</replaceable> ]
  </synopsis>

  <refsect2 id="R2-SQL-CREATEINDEX-1">
   <refsect2info>
    <date>1998-09-09</date>
   </refsect2info>
   <title>
    Inputs
   </title>
   <para>

    <variablelist>
     <varlistentry>
      <term>UNIQUE</term>
      <listitem>
       <para>
	Causes the system to check for
	duplicate values in the table when the index is created (if data
	already exist) and each time data is added. Attempts to
	insert or update data which would result in duplicate entries
	will generate an error.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">index_name</replaceable></term>
      <listitem>
       <para>
	The name of the index to be created.  No schema name can be included
	here; the index is always created in the same schema as its parent
	table.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">table</replaceable></term>
      <listitem>
       <para>
	The name (possibly schema-qualified) of the table to be indexed.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">acc_method</replaceable></term>
      <listitem>
       <para>
	The name of the access method to be used for the index. The
	default access method is <literal>BTREE</literal>.
	<application>PostgreSQL</application> provides four access
	methods for indexes:

	<variablelist>
	 <varlistentry>
	  <term><literal>BTREE</></term>
	  <listitem>
	   <para>
	    an implementation of Lehman-Yao
	    high-concurrency B-trees.
	   </para>
	  </listitem>
	 </varlistentry>

	 <varlistentry>
	  <term><literal>RTREE</></term>
	  <listitem>
	   <para>implements standard R-trees using Guttman's
	    quadratic split algorithm.
	   </para>
	  </listitem>
	 </varlistentry>

	 <varlistentry>
	  <term><literal>HASH</></term>
	  <listitem>
	   <para>
	    an implementation of Litwin's linear hashing.
	   </para>
	  </listitem>
	 </varlistentry>

	 <varlistentry>
	  <term><literal>GIST</></term>
	  <listitem>
	   <para>
	    Generalized Index Search Trees.
	   </para>
	  </listitem>
	 </varlistentry>
	</variablelist>
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">column</replaceable></term>
      <listitem>
       <para>
	The name of a column of the table.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">ops_name</replaceable></term>
      <listitem>
       <para>
	An associated operator class. See below for details.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">func_name</replaceable></term>
      <listitem>
       <para>
	A function, which returns a value that can be indexed.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><replaceable class="parameter">predicate</replaceable></term>
      <listitem>
       <para>
	Defines the constraint expression for a partial index.
       </para>
      </listitem>
     </varlistentry>
    </variablelist>
   </para>
  </refsect2>

  <refsect2 id="R2-SQL-CREATEINDEX-2">
   <refsect2info>
    <date>1998-09-09</date>
   </refsect2info>
   <title>
    Outputs
   </title>
   <para>

    <variablelist>
     <varlistentry>
      <term><computeroutput>
CREATE INDEX
       </computeroutput></term>
      <listitem>
       <para>
	The message returned if the index is successfully created.
       </para>
      </listitem>
     </varlistentry>

     <varlistentry>
      <term><computeroutput>
ERROR: Cannot create index: 'index_name' already exists.
       </computeroutput></term>
      <listitem>
       <para>
	This error occurs if it is impossible to create the index.
       </para>
      </listitem>
     </varlistentry>
    </variablelist>
   </para>
  </refsect2>
 </refsynopsisdiv>

 <refsect1 id="R1-SQL-CREATEINDEX-1">
  <refsect1info>
   <date>1998-09-09</date>
  </refsect1info>
  <title>
   Description
  </title>
  <para>
   <command>CREATE INDEX</command> constructs an index 
   <replaceable class="parameter">index_name</replaceable>
   on the specified <replaceable class="parameter">table</replaceable>.

   <tip>
    <para>
     Indexes are primarily used to enhance database performance.
     But inappropriate use will result in slower performance.
    </para>
   </tip>
  </para>

  <para>
   In the first syntax shown above, the key field(s) for the
   index are specified as column names.
   Multiple fields can be specified if the index access method supports
   multicolumn indexes.
  </para>

  <para>
   In the second syntax shown above, an index is defined on the result
   of a user-specified function <replaceable
   class="parameter">func_name</replaceable> applied to one or more
   columns of a single table. These <firstterm>functional
   indexes</firstterm> can be used to obtain fast access to data based
   on operators that would normally require some transformation to apply
   them to the base data. For example, a functional index on
   <literal>upper(col)</> would allow the clause
   <literal>WHERE upper(col) = 'JIM'</> to use an index.
  </para>

  <para>
   <application>PostgreSQL</application> provides B-tree, R-tree, hash,
   and GiST access methods for indexes. The B-tree access method is an
   implementation of Lehman-Yao high-concurrency B-trees. The R-tree
   access method implements standard R-trees using Guttman's quadratic
   split algorithm. The hash access method is an implementation of
   Litwin's linear hashing. We mention the algorithms used solely to
   indicate that all of these access methods are fully dynamic and do
   not have to be optimized periodically (as is the case with, for
   example, static hash access methods).
  </para>

  <para>
    When the <command>WHERE</command> clause is present, a
    <firstterm>partial index</firstterm> is created.
    A partial index is an index that contains entries for only a portion of
    a table, usually a portion that is somehow more interesting than the
    rest of the table. For example, if you have a table that contains both
    billed and unbilled orders where the unbilled orders take up a small
    fraction of the total table and yet that is an often used section, you
    can improve performance by creating an index on just that portion.
    Another possible application is to use <command>WHERE</command> with
    <command>UNIQUE</command> to enforce uniqueness over a subset of a
    table.
  </para>

  <para>
    The expression used in the <command>WHERE</command> clause may refer
    only to columns of the underlying table (but it can use all columns,
    not only the one(s) being indexed).  Presently, subqueries and
    aggregate expressions are also forbidden in <command>WHERE</command>.
  </para>

  <para>
   All functions and operators used in an index definition must be
   <firstterm>immutable</>, that is, their results must depend only on
   their input arguments and never on any outside influence (such as
   the contents of another table or the current time).  This restriction
   ensures that the behavior of the index is well-defined.  To use a
   user-defined function in an index, remember to mark the function immutable
   when you create it.
  </para>

  <para>
   Use <xref linkend="sql-dropindex" endterm="sql-dropindex-title">
   to remove an index.
  </para>

  <refsect2 id="R2-SQL-CREATEINDEX-3">
   <refsect2info>
    <date>1998-09-09</date>
   </refsect2info>
   <title>
    Notes
   </title>

   <para>
    The <productname>PostgreSQL</productname>
    query optimizer will consider using a B-tree index whenever
    an indexed attribute is involved in a comparison using one of:

    <simplelist type="inline">
     <member>&lt;</member>
     <member>&lt;=</member>
     <member>=</member>
     <member>&gt;=</member>
     <member>&gt;</member>
    </simplelist>
   </para>

   <para>
    The <productname>PostgreSQL</productname>
    query optimizer will consider using an R-tree index whenever
    an indexed attribute is involved in a comparison using one of:

    <simplelist type="inline">
     <member>&lt;&lt;</member>
     <member>&amp;&lt;</member>
     <member>&amp;&gt;</member>
     <member>&gt;&gt;</member>
     <member>@</member>
     <member>~=</member>
     <member>&amp;&amp;</member>
    </simplelist>
   </para>

   <para>
    The <productname>PostgreSQL</productname>
    query optimizer will consider using a hash index whenever
    an indexed attribute is involved in a comparison using
    the <literal>=</literal> operator.
   </para>
   <para>
     Testing has shown PostgreSQL's hash indexes to be similar or slower
     than B-tree indexes, and the index size and build time for hash
     indexes is much worse. Hash indexes also suffer poor performance
     under high concurrency. For these reasons, hash index use is
     discouraged.
   </para>

   <para>
    Currently, only the B-tree and gist access methods support multicolumn
    indexes. Up to 32 keys may be specified by default (this limit
    can be altered when building
    <application>PostgreSQL</application>).  Only B-tree currently supports
    unique indexes.
   </para>

  <para>
   An <firstterm>operator class</firstterm> can be specified for each
   column of an index. The operator class identifies the operators to be
   used by the index for that column. For example, a B-tree index on
   four-byte integers would use the <literal>int4_ops</literal> class;
   this operator class includes comparison functions for four-byte
   integers. In practice the default operator class for the field's data
   type is usually sufficient. The main point of having operator classes
   is that for some data types, there could be more than one meaningful
   ordering. For example, we might want to sort a complex-number data
   type either by absolute value or by real part. We could do this by
   defining two operator classes for the data type and then selecting
   the proper class when making an index. There are also some operator
   classes with special purposes:

   <itemizedlist>
    <listitem>
     <para>
      The operator classes <literal>box_ops</literal> and
      <literal>bigbox_ops</literal> both support R-tree indexes on the
      <literal>box</literal> data type.
      The difference between them is that <literal>bigbox_ops</literal>
      scales box coordinates down, to avoid floating-point exceptions from
      doing multiplication, addition, and subtraction on very large
      floating-point coordinates.  (Note: this was true some time ago,
      but currently the two operator classes both use floating point
      and are effectively identical.)
     </para>
    </listitem>
   </itemizedlist>
  </para>

   <para>
    The following query shows all defined operator classes:

    <programlisting>
SELECT am.amname AS acc_method,
       opc.opcname AS ops_name
    FROM pg_am am, pg_opclass opc
    WHERE opc.opcamid = am.oid
    ORDER BY acc_method, ops_name;
    </programlisting>
   </para>
  </refsect2>
 </refsect1>

 <refsect1 id="R1-SQL-CREATEINDEX-2">
  <title>
   Usage
  </title>
  <para>To create a B-tree index on the field <literal>title</literal>
   in the table <literal>films</literal>:
  </para>
  <programlisting>
CREATE UNIQUE INDEX title_idx
    ON films (title);
  </programlisting>

<!--
<comment>
Is this example correct?
</comment>
  <para>
   To create a R-tree index on a point attribute so that we
   can efficiently use box operators on the result of the
   conversion function:
  </para>
  <programlisting>
CREATE INDEX pointloc
    ON points USING RTREE (point2box(location) box_ops);
SELECT * FROM points
    WHERE point2box(points.pointloc) = boxes.box;
  </programlisting>
-->

 </refsect1>
 
 <refsect1 id="R1-SQL-CREATEINDEX-3">
  <title>
   Compatibility
  </title>
  
  <refsect2 id="R2-SQL-CREATEINDEX-4">
   <refsect2info>
    <date>1998-09-09</date>
   </refsect2info>
   <title>
    SQL92
   </title>
   <para>
    CREATE INDEX is a <productname>PostgreSQL</productname> language extension.
   </para>
   <para>
    There is no <command>CREATE INDEX</command> command in SQL92.
   </para>
  </refsect2>
 </refsect1>
</refentry>

<!-- Keep this comment at the end of the file
Local variables:
mode: sgml
sgml-omittag:nil
sgml-shorttag:t
sgml-minimize-attributes:nil
sgml-always-quote-attributes:t
sgml-indent-step:1
sgml-indent-data:t
sgml-parent-document:nil
sgml-default-dtd-file:"../reference.ced"
sgml-exposed-tags:nil
sgml-local-catalogs:"/usr/lib/sgml/catalog"
sgml-local-ecat-files:nil
End:
-->