1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
|
/*-------------------------------------------------------------------------
*
* hashfunc.c
* Support functions for hash access method.
*
* Portions Copyright (c) 1996-2008, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/hash/hashfunc.c,v 1.55 2008/01/01 19:45:46 momjian Exp $
*
* NOTES
* These functions are stored in pg_amproc. For each operator class
* defined for hash indexes, they compute the hash value of the argument.
*
* Additional hash functions appear in /utils/adt/ files for various
* specialized datatypes.
*
* It is expected that every bit of a hash function's 32-bit result is
* as random as every other; failure to ensure this is likely to lead
* to poor performance of hash joins, for example. In most cases a hash
* function should use hash_any() or its variant hash_uint32().
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
/* Note: this is used for both "char" and boolean datatypes */
Datum
hashchar(PG_FUNCTION_ARGS)
{
return hash_uint32((int32) PG_GETARG_CHAR(0));
}
Datum
hashint2(PG_FUNCTION_ARGS)
{
return hash_uint32((int32) PG_GETARG_INT16(0));
}
Datum
hashint4(PG_FUNCTION_ARGS)
{
return hash_uint32(PG_GETARG_INT32(0));
}
Datum
hashint8(PG_FUNCTION_ARGS)
{
/*
* The idea here is to produce a hash value compatible with the values
* produced by hashint4 and hashint2 for logically equal inputs; this is
* necessary to support cross-type hash joins across these input types.
* Since all three types are signed, we can xor the high half of the int8
* value if the sign is positive, or the complement of the high half when
* the sign is negative.
*/
#ifndef INT64_IS_BUSTED
int64 val = PG_GETARG_INT64(0);
uint32 lohalf = (uint32) val;
uint32 hihalf = (uint32) (val >> 32);
lohalf ^= (val >= 0) ? hihalf : ~hihalf;
return hash_uint32(lohalf);
#else
/* here if we can't count on "x >> 32" to work sanely */
return hash_uint32((int32) PG_GETARG_INT64(0));
#endif
}
Datum
hashoid(PG_FUNCTION_ARGS)
{
return hash_uint32((uint32) PG_GETARG_OID(0));
}
Datum
hashenum(PG_FUNCTION_ARGS)
{
return hash_uint32((uint32) PG_GETARG_OID(0));
}
Datum
hashfloat4(PG_FUNCTION_ARGS)
{
float4 key = PG_GETARG_FLOAT4(0);
float8 key8;
/*
* On IEEE-float machines, minus zero and zero have different bit patterns
* but should compare as equal. We must ensure that they have the same
* hash value, which is most reliably done this way:
*/
if (key == (float4) 0)
PG_RETURN_UINT32(0);
/*
* To support cross-type hashing of float8 and float4, we want to return
* the same hash value hashfloat8 would produce for an equal float8 value.
* So, widen the value to float8 and hash that. (We must do this rather
* than have hashfloat8 try to narrow its value to float4; that could fail
* on overflow.)
*/
key8 = key;
return hash_any((unsigned char *) &key8, sizeof(key8));
}
Datum
hashfloat8(PG_FUNCTION_ARGS)
{
float8 key = PG_GETARG_FLOAT8(0);
/*
* On IEEE-float machines, minus zero and zero have different bit patterns
* but should compare as equal. We must ensure that they have the same
* hash value, which is most reliably done this way:
*/
if (key == (float8) 0)
PG_RETURN_UINT32(0);
return hash_any((unsigned char *) &key, sizeof(key));
}
Datum
hashoidvector(PG_FUNCTION_ARGS)
{
oidvector *key = (oidvector *) PG_GETARG_POINTER(0);
return hash_any((unsigned char *) key->values, key->dim1 * sizeof(Oid));
}
Datum
hashint2vector(PG_FUNCTION_ARGS)
{
int2vector *key = (int2vector *) PG_GETARG_POINTER(0);
return hash_any((unsigned char *) key->values, key->dim1 * sizeof(int2));
}
Datum
hashname(PG_FUNCTION_ARGS)
{
char *key = NameStr(*PG_GETARG_NAME(0));
int keylen = strlen(key);
Assert(keylen < NAMEDATALEN); /* else it's not truncated correctly */
return hash_any((unsigned char *) key, keylen);
}
Datum
hashtext(PG_FUNCTION_ARGS)
{
text *key = PG_GETARG_TEXT_PP(0);
Datum result;
/*
* Note: this is currently identical in behavior to hashvarlena, but keep
* it as a separate function in case we someday want to do something
* different in non-C locales. (See also hashbpchar, if so.)
*/
result = hash_any((unsigned char *) VARDATA_ANY(key),
VARSIZE_ANY_EXHDR(key));
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* hashvarlena() can be used for any varlena datatype in which there are
* no non-significant bits, ie, distinct bitpatterns never compare as equal.
*/
Datum
hashvarlena(PG_FUNCTION_ARGS)
{
struct varlena *key = PG_GETARG_VARLENA_PP(0);
Datum result;
result = hash_any((unsigned char *) VARDATA_ANY(key),
VARSIZE_ANY_EXHDR(key));
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* This hash function was written by Bob Jenkins
* (bob_jenkins@burtleburtle.net), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
* hash function, see http://burtleburtle.net/bob/hash/doobs.html,
* or Bob's article in Dr. Dobb's Journal, Sept. 1997.
*/
/*----------
* mix -- mix 3 32-bit values reversibly.
* For every delta with one or two bits set, and the deltas of all three
* high bits or all three low bits, whether the original value of a,b,c
* is almost all zero or is uniformly distributed,
* - If mix() is run forward or backward, at least 32 bits in a,b,c
* have at least 1/4 probability of changing.
* - If mix() is run forward, every bit of c will change between 1/3 and
* 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
*----------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= ((c)>>13); \
b -= c; b -= a; b ^= ((a)<<8); \
c -= a; c -= b; c ^= ((b)>>13); \
a -= b; a -= c; a ^= ((c)>>12); \
b -= c; b -= a; b ^= ((a)<<16); \
c -= a; c -= b; c ^= ((b)>>5); \
a -= b; a -= c; a ^= ((c)>>3); \
b -= c; b -= a; b ^= ((a)<<10); \
c -= a; c -= b; c ^= ((b)>>15); \
}
/*
* hash_any() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
*
* Returns a uint32 value. Every bit of the key affects every bit of
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
* About 6*len+35 instructions. The best hash table sizes are powers
* of 2. There is no need to do mod a prime (mod is sooo slow!).
* If you need less than 32 bits, use a bitmask.
*/
Datum
hash_any(register const unsigned char *k, register int keylen)
{
register uint32 a,
b,
c,
len;
/* Set up the internal state */
len = keylen;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = 3923095; /* initialize with an arbitrary value */
/* handle most of the key */
while (len >= 12)
{
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
mix(a, b, c);
k += 12;
len -= 12;
}
/* handle the last 11 bytes */
c += keylen;
switch (len) /* all the case statements fall through */
{
case 11:
c += ((uint32) k[10] << 24);
case 10:
c += ((uint32) k[9] << 16);
case 9:
c += ((uint32) k[8] << 8);
/* the first byte of c is reserved for the length */
case 8:
b += ((uint32) k[7] << 24);
case 7:
b += ((uint32) k[6] << 16);
case 6:
b += ((uint32) k[5] << 8);
case 5:
b += k[4];
case 4:
a += ((uint32) k[3] << 24);
case 3:
a += ((uint32) k[2] << 16);
case 2:
a += ((uint32) k[1] << 8);
case 1:
a += k[0];
/* case 0: nothing left to add */
}
mix(a, b, c);
/* report the result */
return UInt32GetDatum(c);
}
/*
* hash_uint32() -- hash a 32-bit value
*
* This has the same result (at least on little-endian machines) as
* hash_any(&k, sizeof(uint32))
* but is faster and doesn't force the caller to store k into memory.
*/
Datum
hash_uint32(uint32 k)
{
register uint32 a,
b,
c;
a = 0x9e3779b9 + k;
b = 0x9e3779b9;
c = 3923095 + (uint32) sizeof(uint32);
mix(a, b, c);
/* report the result */
return UInt32GetDatum(c);
}
|