1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
|
/*-------------------------------------------------------------------------
*
* hashfunc.c
* Comparison functions for hash access method.
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $PostgreSQL: pgsql/src/backend/access/hash/hashfunc.c,v 1.39 2003/11/29 19:51:40 pgsql Exp $
*
* NOTES
* These functions are stored in pg_amproc. For each operator class
* defined on hash tables, they compute the hash value of the argument.
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/hash.h"
/* Note: this is used for both "char" and boolean datatypes */
Datum
hashchar(PG_FUNCTION_ARGS)
{
PG_RETURN_UINT32(~((uint32) PG_GETARG_CHAR(0)));
}
Datum
hashint2(PG_FUNCTION_ARGS)
{
PG_RETURN_UINT32(~((uint32) PG_GETARG_INT16(0)));
}
Datum
hashint4(PG_FUNCTION_ARGS)
{
PG_RETURN_UINT32(~PG_GETARG_UINT32(0));
}
Datum
hashint8(PG_FUNCTION_ARGS)
{
/* we just use the low 32 bits... */
PG_RETURN_UINT32(~((uint32) PG_GETARG_INT64(0)));
}
Datum
hashoid(PG_FUNCTION_ARGS)
{
PG_RETURN_UINT32(~((uint32) PG_GETARG_OID(0)));
}
Datum
hashfloat4(PG_FUNCTION_ARGS)
{
float4 key = PG_GETARG_FLOAT4(0);
/*
* On IEEE-float machines, minus zero and zero have different bit
* patterns but should compare as equal. We must ensure that they
* have the same hash value, which is most easily done this way:
*/
if (key == (float4) 0)
PG_RETURN_UINT32(0);
return hash_any((unsigned char *) &key, sizeof(key));
}
Datum
hashfloat8(PG_FUNCTION_ARGS)
{
float8 key = PG_GETARG_FLOAT8(0);
/*
* On IEEE-float machines, minus zero and zero have different bit
* patterns but should compare as equal. We must ensure that they
* have the same hash value, which is most easily done this way:
*/
if (key == (float8) 0)
PG_RETURN_UINT32(0);
return hash_any((unsigned char *) &key, sizeof(key));
}
Datum
hashoidvector(PG_FUNCTION_ARGS)
{
Oid *key = (Oid *) PG_GETARG_POINTER(0);
return hash_any((unsigned char *) key, INDEX_MAX_KEYS * sizeof(Oid));
}
Datum
hashint2vector(PG_FUNCTION_ARGS)
{
int16 *key = (int16 *) PG_GETARG_POINTER(0);
return hash_any((unsigned char *) key, INDEX_MAX_KEYS * sizeof(int16));
}
Datum
hashname(PG_FUNCTION_ARGS)
{
char *key = NameStr(*PG_GETARG_NAME(0));
int keylen = strlen(key);
Assert(keylen < NAMEDATALEN); /* else it's not truncated
* correctly */
return hash_any((unsigned char *) key, keylen);
}
Datum
hashtext(PG_FUNCTION_ARGS)
{
text *key = PG_GETARG_TEXT_P(0);
Datum result;
/*
* Note: this is currently identical in behavior to hashvarlena, but
* it seems likely that we may need to do something different in non-C
* locales. (See also hashbpchar, if so.)
*/
result = hash_any((unsigned char *) VARDATA(key),
VARSIZE(key) - VARHDRSZ);
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* hashvarlena() can be used for any varlena datatype in which there are
* no non-significant bits, ie, distinct bitpatterns never compare as equal.
*/
Datum
hashvarlena(PG_FUNCTION_ARGS)
{
struct varlena *key = PG_GETARG_VARLENA_P(0);
Datum result;
result = hash_any((unsigned char *) VARDATA(key),
VARSIZE(key) - VARHDRSZ);
/* Avoid leaking memory for toasted inputs */
PG_FREE_IF_COPY(key, 0);
return result;
}
/*
* This hash function was written by Bob Jenkins
* (bob_jenkins@burtleburtle.net), and superficially adapted
* for PostgreSQL by Neil Conway. For more information on this
* hash function, see http://burtleburtle.net/bob/hash/doobs.html,
* or Bob's article in Dr. Dobb's Journal, Sept. 1997.
*/
/*----------
* mix -- mix 3 32-bit values reversibly.
* For every delta with one or two bits set, and the deltas of all three
* high bits or all three low bits, whether the original value of a,b,c
* is almost all zero or is uniformly distributed,
* - If mix() is run forward or backward, at least 32 bits in a,b,c
* have at least 1/4 probability of changing.
* - If mix() is run forward, every bit of c will change between 1/3 and
* 2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
*----------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<<8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/*
* hash_any() -- hash a variable-length key into a 32-bit value
* k : the key (the unaligned variable-length array of bytes)
* len : the length of the key, counting by bytes
*
* Returns a uint32 value. Every bit of the key affects every bit of
* the return value. Every 1-bit and 2-bit delta achieves avalanche.
* About 6*len+35 instructions. The best hash table sizes are powers
* of 2. There is no need to do mod a prime (mod is sooo slow!).
* If you need less than 32 bits, use a bitmask.
*/
Datum
hash_any(register const unsigned char *k, register int keylen)
{
register uint32 a,
b,
c,
len;
/* Set up the internal state */
len = keylen;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = 3923095; /* initialize with an arbitrary value */
/* handle most of the key */
while (len >= 12)
{
a += (k[0] + ((uint32) k[1] << 8) + ((uint32) k[2] << 16) + ((uint32) k[3] << 24));
b += (k[4] + ((uint32) k[5] << 8) + ((uint32) k[6] << 16) + ((uint32) k[7] << 24));
c += (k[8] + ((uint32) k[9] << 8) + ((uint32) k[10] << 16) + ((uint32) k[11] << 24));
mix(a, b, c);
k += 12;
len -= 12;
}
/* handle the last 11 bytes */
c += keylen;
switch (len) /* all the case statements fall through */
{
case 11:
c += ((uint32) k[10] << 24);
case 10:
c += ((uint32) k[9] << 16);
case 9:
c += ((uint32) k[8] << 8);
/* the first byte of c is reserved for the length */
case 8:
b += ((uint32) k[7] << 24);
case 7:
b += ((uint32) k[6] << 16);
case 6:
b += ((uint32) k[5] << 8);
case 5:
b += k[4];
case 4:
a += ((uint32) k[3] << 24);
case 3:
a += ((uint32) k[2] << 16);
case 2:
a += ((uint32) k[1] << 8);
case 1:
a += k[0];
/* case 0: nothing left to add */
}
mix(a, b, c);
/* report the result */
return UInt32GetDatum(c);
}
|