1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
|
/*-------------------------------------------------------------------------
*
* nbtpreprocesskeys.c
* Preprocessing for Postgres btree scan keys.
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/access/nbtree/nbtpreprocesskeys.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/nbtree.h"
#include "lib/qunique.h"
#include "utils/array.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
typedef struct BTScanKeyPreproc
{
ScanKey inkey;
int inkeyi;
int arrayidx;
} BTScanKeyPreproc;
typedef struct BTSortArrayContext
{
FmgrInfo *sortproc;
Oid collation;
bool reverse;
} BTSortArrayContext;
static bool _bt_fix_scankey_strategy(ScanKey skey, int16 *indoption);
static void _bt_mark_scankey_required(ScanKey skey);
static bool _bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
ScanKey leftarg, ScanKey rightarg,
BTArrayKeyInfo *array, FmgrInfo *orderproc,
bool *result);
static bool _bt_compare_array_scankey_args(IndexScanDesc scan,
ScanKey arraysk, ScanKey skey,
FmgrInfo *orderproc, BTArrayKeyInfo *array,
bool *qual_ok);
static bool _bt_saoparray_shrink(IndexScanDesc scan, ScanKey arraysk,
ScanKey skey, FmgrInfo *orderproc,
BTArrayKeyInfo *array, bool *qual_ok);
static bool _bt_skiparray_shrink(IndexScanDesc scan, ScanKey skey,
BTArrayKeyInfo *array, bool *qual_ok);
static void _bt_skiparray_strat_adjust(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array);
static void _bt_skiparray_strat_decrement(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array);
static void _bt_skiparray_strat_increment(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array);
static ScanKey _bt_preprocess_array_keys(IndexScanDesc scan, int *new_numberOfKeys);
static void _bt_preprocess_array_keys_final(IndexScanDesc scan, int *keyDataMap);
static int _bt_num_array_keys(IndexScanDesc scan, Oid *skip_eq_ops_out,
int *numSkipArrayKeys_out);
static Datum _bt_find_extreme_element(IndexScanDesc scan, ScanKey skey,
Oid elemtype, StrategyNumber strat,
Datum *elems, int nelems);
static void _bt_setup_array_cmp(IndexScanDesc scan, ScanKey skey, Oid elemtype,
FmgrInfo *orderproc, FmgrInfo **sortprocp);
static int _bt_sort_array_elements(ScanKey skey, FmgrInfo *sortproc,
bool reverse, Datum *elems, int nelems);
static bool _bt_merge_arrays(IndexScanDesc scan, ScanKey skey,
FmgrInfo *sortproc, bool reverse,
Oid origelemtype, Oid nextelemtype,
Datum *elems_orig, int *nelems_orig,
Datum *elems_next, int nelems_next);
static int _bt_compare_array_elements(const void *a, const void *b, void *arg);
/*
* _bt_preprocess_keys() -- Preprocess scan keys
*
* The given search-type keys (taken from scan->keyData[])
* are copied to so->keyData[] with possible transformation.
* scan->numberOfKeys is the number of input keys, so->numberOfKeys gets
* the number of output keys. Calling here a second or subsequent time
* (during the same btrescan) is a no-op.
*
* The output keys are marked with additional sk_flags bits beyond the
* system-standard bits supplied by the caller. The DESC and NULLS_FIRST
* indoption bits for the relevant index attribute are copied into the flags.
* Also, for a DESC column, we commute (flip) all the sk_strategy numbers
* so that the index sorts in the desired direction.
*
* One key purpose of this routine is to discover which scan keys must be
* satisfied to continue the scan. It also attempts to eliminate redundant
* keys and detect contradictory keys. (If the index opfamily provides
* incomplete sets of cross-type operators, we may fail to detect redundant
* or contradictory keys, but we can survive that.)
*
* The output keys must be sorted by index attribute. Presently we expect
* (but verify) that the input keys are already so sorted --- this is done
* by match_clauses_to_index() in indxpath.c. Some reordering of the keys
* within each attribute may be done as a byproduct of the processing here.
* That process must leave array scan keys (within an attribute) in the same
* order as corresponding entries from the scan's BTArrayKeyInfo array info.
* We might also construct skip array scan keys that weren't present in the
* original input keys; these are also output in standard attribute order.
*
* The output keys are marked with flags SK_BT_REQFWD and/or SK_BT_REQBKWD
* if they must be satisfied in order to continue the scan forward or backward
* respectively. _bt_checkkeys uses these flags. For example, if the quals
* are "x = 1 AND y < 4 AND z < 5", then _bt_checkkeys will reject a tuple
* (1,2,7), but we must continue the scan in case there are tuples (1,3,z).
* But once we reach tuples like (1,4,z) we can stop scanning because no
* later tuples could match. This is reflected by marking the x and y keys,
* but not the z key, with SK_BT_REQFWD. In general, the keys for leading
* attributes with "=" keys are marked both SK_BT_REQFWD and SK_BT_REQBKWD.
* For the first attribute without an "=" key, any "<" and "<=" keys are
* marked SK_BT_REQFWD while any ">" and ">=" keys are marked SK_BT_REQBKWD.
* This can be seen to be correct by considering the above example.
*
* If we never generated skip array scan keys, it would be possible for "gaps"
* to appear that make it unsafe to mark any subsequent input scan keys
* (copied from scan->keyData[]) as required to continue the scan. Prior to
* Postgres 18, a qual like "WHERE y = 4" always resulted in a full scan.
* This qual now becomes "WHERE x = ANY('{every possible x value}') and y = 4"
* on output. In other words, preprocessing now adds a skip array on "x".
* This has the potential to be much more efficient than a full index scan
* (though it behaves like a full scan when there's many distinct "x" values).
*
* If possible, redundant keys are eliminated: we keep only the tightest
* >/>= bound and the tightest </<= bound, and if there's an = key then
* that's the only one returned. (So, we return either a single = key,
* or one or two boundary-condition keys for each attr.) However, if we
* cannot compare two keys for lack of a suitable cross-type operator,
* we cannot eliminate either. If there are two such keys of the same
* operator strategy, the second one is just pushed into the output array
* without further processing here. We may also emit both >/>= or both
* </<= keys if we can't compare them. The logic about required keys still
* works if we don't eliminate redundant keys.
*
* Note that one reason we need direction-sensitive required-key flags is
* precisely that we may not be able to eliminate redundant keys. Suppose
* we have "x > 4::int AND x > 10::bigint", and we are unable to determine
* which key is more restrictive for lack of a suitable cross-type operator.
* _bt_first will arbitrarily pick one of the keys to do the initial
* positioning with. If it picks x > 4, then the x > 10 condition will fail
* until we reach index entries > 10; but we can't stop the scan just because
* x > 10 is failing. On the other hand, if we are scanning backwards, then
* failure of either key is indeed enough to stop the scan. (In general, when
* inequality keys are present, the initial-positioning code only promises to
* position before the first possible match, not exactly at the first match,
* for a forward scan; or after the last match for a backward scan.)
*
* As a byproduct of this work, we can detect contradictory quals such
* as "x = 1 AND x > 2". If we see that, we return so->qual_ok = false,
* indicating the scan need not be run at all since no tuples can match.
* (In this case we do not bother completing the output key array!)
* Again, missing cross-type operators might cause us to fail to prove the
* quals contradictory when they really are, but the scan will work correctly.
*
* Skip array = keys will even be generated in the presence of "contradictory"
* inequality quals when it'll enable marking later input quals as required.
* We'll merge any such inequalities into the generated skip array by setting
* its array.low_compare or array.high_compare key field. The resulting skip
* array will generate its array elements from a range that's constrained by
* any merged input inequalities (which won't get output in so->keyData[]).
*
* Row comparison keys currently have a couple of notable limitations.
* Right now we just transfer them into the preprocessed array without any
* editorialization. We can treat them the same as an ordinary inequality
* comparison on the row's first index column, for the purposes of the logic
* about required keys. Also, we are unable to merge a row comparison key
* into a skip array (only ordinary inequalities are merged). A key that
* comes after a Row comparison key is therefore never marked as required.
*
* Note: the reason we have to copy the preprocessed scan keys into private
* storage is that we are modifying the array based on comparisons of the
* key argument values, which could change on a rescan. Therefore we can't
* overwrite the source data.
*/
void
_bt_preprocess_keys(IndexScanDesc scan)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
int numberOfKeys = scan->numberOfKeys;
int16 *indoption = scan->indexRelation->rd_indoption;
int new_numberOfKeys;
int numberOfEqualCols;
ScanKey inkeys;
BTScanKeyPreproc xform[BTMaxStrategyNumber];
bool test_result;
AttrNumber attno;
ScanKey arrayKeyData;
int *keyDataMap = NULL;
int arrayidx = 0;
if (so->numberOfKeys > 0)
{
/*
* Only need to do preprocessing once per btrescan, at most. All
* calls after the first are handled as no-ops.
*/
return;
}
/* initialize result variables */
so->qual_ok = true;
so->numberOfKeys = 0;
if (numberOfKeys < 1)
return; /* done if qual-less scan */
/* If any keys are SK_SEARCHARRAY type, set up array-key info */
arrayKeyData = _bt_preprocess_array_keys(scan, &numberOfKeys);
if (!so->qual_ok)
{
/* unmatchable array, so give up */
return;
}
/*
* Treat arrayKeyData[] (a partially preprocessed copy of scan->keyData[])
* as our input if _bt_preprocess_array_keys just allocated it, else just
* use scan->keyData[]
*/
if (arrayKeyData)
{
inkeys = arrayKeyData;
/* Also maintain keyDataMap for remapping so->orderProcs[] later */
keyDataMap = MemoryContextAlloc(so->arrayContext,
numberOfKeys * sizeof(int));
/*
* Also enlarge output array when it might otherwise not have room for
* a skip array's scan key
*/
if (numberOfKeys > scan->numberOfKeys)
so->keyData = repalloc(so->keyData,
numberOfKeys * sizeof(ScanKeyData));
}
else
inkeys = scan->keyData;
/* we check that input keys are correctly ordered */
if (inkeys[0].sk_attno < 1)
elog(ERROR, "btree index keys must be ordered by attribute");
/* We can short-circuit most of the work if there's just one key */
if (numberOfKeys == 1)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(&inkeys[0], indoption))
so->qual_ok = false;
memcpy(&so->keyData[0], &inkeys[0], sizeof(ScanKeyData));
so->numberOfKeys = 1;
/* We can mark the qual as required if it's for first index col */
if (inkeys[0].sk_attno == 1)
_bt_mark_scankey_required(&so->keyData[0]);
if (arrayKeyData)
{
/*
* Don't call _bt_preprocess_array_keys_final in this fast path
* (we'll miss out on the single value array transformation, but
* that's not nearly as important when there's only one scan key)
*/
Assert(so->keyData[0].sk_flags & SK_SEARCHARRAY);
Assert(so->keyData[0].sk_strategy != BTEqualStrategyNumber ||
(so->arrayKeys[0].scan_key == 0 &&
!(so->keyData[0].sk_flags & SK_BT_SKIP) &&
OidIsValid(so->orderProcs[0].fn_oid)));
}
return;
}
/*
* Otherwise, do the full set of pushups.
*/
new_numberOfKeys = 0;
numberOfEqualCols = 0;
/*
* Initialize for processing of keys for attr 1.
*
* xform[i] points to the currently best scan key of strategy type i+1; it
* is NULL if we haven't yet found such a key for this attr.
*/
attno = 1;
memset(xform, 0, sizeof(xform));
/*
* Loop iterates from 0 to numberOfKeys inclusive; we use the last pass to
* handle after-last-key processing. Actual exit from the loop is at the
* "break" statement below.
*/
for (int i = 0;; i++)
{
ScanKey inkey = inkeys + i;
int j;
if (i < numberOfKeys)
{
/* Apply indoption to scankey (might change sk_strategy!) */
if (!_bt_fix_scankey_strategy(inkey, indoption))
{
/* NULL can't be matched, so give up */
so->qual_ok = false;
return;
}
}
/*
* If we are at the end of the keys for a particular attr, finish up
* processing and emit the cleaned-up keys.
*/
if (i == numberOfKeys || inkey->sk_attno != attno)
{
int priorNumberOfEqualCols = numberOfEqualCols;
/* check input keys are correctly ordered */
if (i < numberOfKeys && inkey->sk_attno < attno)
elog(ERROR, "btree index keys must be ordered by attribute");
/*
* If = has been specified, all other keys can be eliminated as
* redundant. Note that this is no less true if the = key is
* SEARCHARRAY; the only real difference is that the inequality
* key _becomes_ redundant by making _bt_compare_scankey_args
* eliminate the subset of elements that won't need to be matched
* (with SAOP arrays and skip arrays alike).
*
* If we have a case like "key = 1 AND key > 2", we set qual_ok to
* false and abandon further processing. We'll do the same thing
* given a case like "key IN (0, 1) AND key > 2".
*
* We also have to deal with the case of "key IS NULL", which is
* unsatisfiable in combination with any other index condition. By
* the time we get here, that's been classified as an equality
* check, and we've rejected any combination of it with a regular
* equality condition; but not with other types of conditions.
*/
if (xform[BTEqualStrategyNumber - 1].inkey)
{
ScanKey eq = xform[BTEqualStrategyNumber - 1].inkey;
BTArrayKeyInfo *array = NULL;
FmgrInfo *orderproc = NULL;
if (arrayKeyData && (eq->sk_flags & SK_SEARCHARRAY))
{
int eq_in_ikey,
eq_arrayidx;
eq_in_ikey = xform[BTEqualStrategyNumber - 1].inkeyi;
eq_arrayidx = xform[BTEqualStrategyNumber - 1].arrayidx;
array = &so->arrayKeys[eq_arrayidx - 1];
orderproc = so->orderProcs + eq_in_ikey;
Assert(array->scan_key == eq_in_ikey);
Assert(OidIsValid(orderproc->fn_oid));
}
for (j = BTMaxStrategyNumber; --j >= 0;)
{
ScanKey chk = xform[j].inkey;
if (!chk || j == (BTEqualStrategyNumber - 1))
continue;
if (eq->sk_flags & SK_SEARCHNULL)
{
/* IS NULL is contradictory to anything else */
so->qual_ok = false;
return;
}
if (_bt_compare_scankey_args(scan, chk, eq, chk,
array, orderproc,
&test_result))
{
if (!test_result)
{
/* keys proven mutually contradictory */
so->qual_ok = false;
return;
}
/* else discard the redundant non-equality key */
xform[j].inkey = NULL;
xform[j].inkeyi = -1;
}
/* else, cannot determine redundancy, keep both keys */
}
/* track number of attrs for which we have "=" keys */
numberOfEqualCols++;
}
/* try to keep only one of <, <= */
if (xform[BTLessStrategyNumber - 1].inkey &&
xform[BTLessEqualStrategyNumber - 1].inkey)
{
ScanKey lt = xform[BTLessStrategyNumber - 1].inkey;
ScanKey le = xform[BTLessEqualStrategyNumber - 1].inkey;
if (_bt_compare_scankey_args(scan, le, lt, le, NULL, NULL,
&test_result))
{
if (test_result)
xform[BTLessEqualStrategyNumber - 1].inkey = NULL;
else
xform[BTLessStrategyNumber - 1].inkey = NULL;
}
}
/* try to keep only one of >, >= */
if (xform[BTGreaterStrategyNumber - 1].inkey &&
xform[BTGreaterEqualStrategyNumber - 1].inkey)
{
ScanKey gt = xform[BTGreaterStrategyNumber - 1].inkey;
ScanKey ge = xform[BTGreaterEqualStrategyNumber - 1].inkey;
if (_bt_compare_scankey_args(scan, ge, gt, ge, NULL, NULL,
&test_result))
{
if (test_result)
xform[BTGreaterEqualStrategyNumber - 1].inkey = NULL;
else
xform[BTGreaterStrategyNumber - 1].inkey = NULL;
}
}
/*
* Emit the cleaned-up keys into the so->keyData[] array, and then
* mark them if they are required. They are required (possibly
* only in one direction) if all attrs before this one had "=".
*
* In practice we'll rarely output non-required scan keys here;
* typically, _bt_preprocess_array_keys has already added "=" keys
* sufficient to form an unbroken series of "=" constraints on all
* attrs prior to the attr from the final scan->keyData[] key.
*/
for (j = BTMaxStrategyNumber; --j >= 0;)
{
if (xform[j].inkey)
{
ScanKey outkey = &so->keyData[new_numberOfKeys++];
memcpy(outkey, xform[j].inkey, sizeof(ScanKeyData));
if (arrayKeyData)
keyDataMap[new_numberOfKeys - 1] = xform[j].inkeyi;
if (priorNumberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
}
}
/*
* Exit loop here if done.
*/
if (i == numberOfKeys)
break;
/* Re-initialize for new attno */
attno = inkey->sk_attno;
memset(xform, 0, sizeof(xform));
}
/* check strategy this key's operator corresponds to */
j = inkey->sk_strategy - 1;
/* if row comparison, push it directly to the output array */
if (inkey->sk_flags & SK_ROW_HEADER)
{
ScanKey outkey = &so->keyData[new_numberOfKeys++];
memcpy(outkey, inkey, sizeof(ScanKeyData));
if (arrayKeyData)
keyDataMap[new_numberOfKeys - 1] = i;
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
/*
* We don't support RowCompare using equality; such a qual would
* mess up the numberOfEqualCols tracking.
*/
Assert(j != (BTEqualStrategyNumber - 1));
continue;
}
if (inkey->sk_strategy == BTEqualStrategyNumber &&
(inkey->sk_flags & SK_SEARCHARRAY))
{
/* must track how input scan keys map to arrays */
Assert(arrayKeyData);
arrayidx++;
}
/*
* have we seen a scan key for this same attribute and using this same
* operator strategy before now?
*/
if (xform[j].inkey == NULL)
{
/* nope, so this scan key wins by default (at least for now) */
xform[j].inkey = inkey;
xform[j].inkeyi = i;
xform[j].arrayidx = arrayidx;
}
else
{
FmgrInfo *orderproc = NULL;
BTArrayKeyInfo *array = NULL;
/*
* Seen one of these before, so keep only the more restrictive key
* if possible
*/
if (j == (BTEqualStrategyNumber - 1) && arrayKeyData)
{
/*
* Have to set up array keys
*/
if (inkey->sk_flags & SK_SEARCHARRAY)
{
array = &so->arrayKeys[arrayidx - 1];
orderproc = so->orderProcs + i;
Assert(array->scan_key == i);
Assert(OidIsValid(orderproc->fn_oid));
Assert(!(inkey->sk_flags & SK_BT_SKIP));
}
else if (xform[j].inkey->sk_flags & SK_SEARCHARRAY)
{
array = &so->arrayKeys[xform[j].arrayidx - 1];
orderproc = so->orderProcs + xform[j].inkeyi;
Assert(array->scan_key == xform[j].inkeyi);
Assert(OidIsValid(orderproc->fn_oid));
Assert(!(xform[j].inkey->sk_flags & SK_BT_SKIP));
}
/*
* Both scan keys might have arrays, in which case we'll
* arbitrarily pass only one of the arrays. That won't
* matter, since _bt_compare_scankey_args is aware that two
* SEARCHARRAY scan keys mean that _bt_preprocess_array_keys
* failed to eliminate redundant arrays through array merging.
* _bt_compare_scankey_args just returns false when it sees
* this; it won't even try to examine either array.
*/
}
if (_bt_compare_scankey_args(scan, inkey, inkey, xform[j].inkey,
array, orderproc, &test_result))
{
/* Have all we need to determine redundancy */
if (test_result)
{
/*
* New key is more restrictive, and so replaces old key...
*/
if (j != (BTEqualStrategyNumber - 1) ||
!(xform[j].inkey->sk_flags & SK_SEARCHARRAY))
{
xform[j].inkey = inkey;
xform[j].inkeyi = i;
xform[j].arrayidx = arrayidx;
}
else
{
/*
* ...unless we have to keep the old key because it's
* an array that rendered the new key redundant. We
* need to make sure that we don't throw away an array
* scan key. _bt_preprocess_array_keys_final expects
* us to keep all of the arrays that weren't already
* eliminated by _bt_preprocess_array_keys earlier on.
*/
Assert(!(inkey->sk_flags & SK_SEARCHARRAY));
}
}
else if (j == (BTEqualStrategyNumber - 1))
{
/* key == a && key == b, but a != b */
so->qual_ok = false;
return;
}
/* else old key is more restrictive, keep it */
}
else
{
/*
* We can't determine which key is more restrictive. Push
* xform[j] directly to the output array, then set xform[j] to
* the new scan key.
*
* Note: We do things this way around so that our arrays are
* always in the same order as their corresponding scan keys,
* even with incomplete opfamilies. _bt_advance_array_keys
* depends on this.
*/
ScanKey outkey = &so->keyData[new_numberOfKeys++];
memcpy(outkey, xform[j].inkey, sizeof(ScanKeyData));
if (arrayKeyData)
keyDataMap[new_numberOfKeys - 1] = xform[j].inkeyi;
if (numberOfEqualCols == attno - 1)
_bt_mark_scankey_required(outkey);
xform[j].inkey = inkey;
xform[j].inkeyi = i;
xform[j].arrayidx = arrayidx;
}
}
}
so->numberOfKeys = new_numberOfKeys;
/*
* Now that we've built a temporary mapping from so->keyData[] (output
* scan keys) to arrayKeyData[] (our input scan keys), fix array->scan_key
* references. Also consolidate the so->orderProcs[] array such that it
* can be subscripted using so->keyData[]-wise offsets.
*/
if (arrayKeyData)
_bt_preprocess_array_keys_final(scan, keyDataMap);
/* Could pfree arrayKeyData/keyDataMap now, but not worth the cycles */
}
/*
* Adjust a scankey's strategy and flags setting as needed for indoptions.
*
* We copy the appropriate indoption value into the scankey sk_flags
* (shifting to avoid clobbering system-defined flag bits). Also, if
* the DESC option is set, commute (flip) the operator strategy number.
*
* A secondary purpose is to check for IS NULL/NOT NULL scankeys and set up
* the strategy field correctly for them.
*
* Lastly, for ordinary scankeys (not IS NULL/NOT NULL), we check for a
* NULL comparison value. Since all btree operators are assumed strict,
* a NULL means that the qual cannot be satisfied. We return true if the
* comparison value isn't NULL, or false if the scan should be abandoned.
*
* This function is applied to the *input* scankey structure; therefore
* on a rescan we will be looking at already-processed scankeys. Hence
* we have to be careful not to re-commute the strategy if we already did it.
* It's a bit ugly to modify the caller's copy of the scankey but in practice
* there shouldn't be any problem, since the index's indoptions are certainly
* not going to change while the scankey survives.
*/
static bool
_bt_fix_scankey_strategy(ScanKey skey, int16 *indoption)
{
int addflags;
addflags = indoption[skey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
/*
* We treat all btree operators as strict (even if they're not so marked
* in pg_proc). This means that it is impossible for an operator condition
* with a NULL comparison constant to succeed, and we can reject it right
* away.
*
* However, we now also support "x IS NULL" clauses as search conditions,
* so in that case keep going. The planner has not filled in any
* particular strategy in this case, so set it to BTEqualStrategyNumber
* --- we can treat IS NULL as an equality operator for purposes of search
* strategy.
*
* Likewise, "x IS NOT NULL" is supported. We treat that as either "less
* than NULL" in a NULLS LAST index, or "greater than NULL" in a NULLS
* FIRST index.
*
* Note: someday we might have to fill in sk_collation from the index
* column's collation. At the moment this is a non-issue because we'll
* never actually call the comparison operator on a NULL.
*/
if (skey->sk_flags & SK_ISNULL)
{
/* SK_ISNULL shouldn't be set in a row header scankey */
Assert(!(skey->sk_flags & SK_ROW_HEADER));
/* Set indoption flags in scankey (might be done already) */
skey->sk_flags |= addflags;
/* Set correct strategy for IS NULL or NOT NULL search */
if (skey->sk_flags & SK_SEARCHNULL)
{
skey->sk_strategy = BTEqualStrategyNumber;
skey->sk_subtype = InvalidOid;
skey->sk_collation = InvalidOid;
}
else if (skey->sk_flags & SK_SEARCHNOTNULL)
{
if (skey->sk_flags & SK_BT_NULLS_FIRST)
skey->sk_strategy = BTGreaterStrategyNumber;
else
skey->sk_strategy = BTLessStrategyNumber;
skey->sk_subtype = InvalidOid;
skey->sk_collation = InvalidOid;
}
else
{
/* regular qual, so it cannot be satisfied */
return false;
}
/* Needn't do the rest */
return true;
}
/* Adjust strategy for DESC, if we didn't already */
if ((addflags & SK_BT_DESC) && !(skey->sk_flags & SK_BT_DESC))
skey->sk_strategy = BTCommuteStrategyNumber(skey->sk_strategy);
skey->sk_flags |= addflags;
/* If it's a row header, fix row member flags and strategies similarly */
if (skey->sk_flags & SK_ROW_HEADER)
{
ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
if (subkey->sk_flags & SK_ISNULL)
{
/* First row member is NULL, so RowCompare is unsatisfiable */
Assert(subkey->sk_flags & SK_ROW_MEMBER);
return false;
}
for (;;)
{
Assert(subkey->sk_flags & SK_ROW_MEMBER);
addflags = indoption[subkey->sk_attno - 1] << SK_BT_INDOPTION_SHIFT;
if ((addflags & SK_BT_DESC) && !(subkey->sk_flags & SK_BT_DESC))
subkey->sk_strategy = BTCommuteStrategyNumber(subkey->sk_strategy);
subkey->sk_flags |= addflags;
if (subkey->sk_flags & SK_ROW_END)
break;
subkey++;
}
}
return true;
}
/*
* Mark a scankey as "required to continue the scan".
*
* Depending on the operator type, the key may be required for both scan
* directions or just one. Also, if the key is a row comparison header,
* we have to mark its first subsidiary ScanKey as required. (Subsequent
* subsidiary ScanKeys are normally for lower-order columns, and thus
* cannot be required, since they're after the first non-equality scankey.)
*
* Note: when we set required-key flag bits in a subsidiary scankey, we are
* scribbling on a data structure belonging to the index AM's caller, not on
* our private copy. This should be OK because the marking will not change
* from scan to scan within a query, and so we'd just re-mark the same way
* anyway on a rescan. Something to keep an eye on though.
*/
static void
_bt_mark_scankey_required(ScanKey skey)
{
int addflags;
switch (skey->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
addflags = SK_BT_REQFWD;
break;
case BTEqualStrategyNumber:
addflags = SK_BT_REQFWD | SK_BT_REQBKWD;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
addflags = SK_BT_REQBKWD;
break;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) skey->sk_strategy);
addflags = 0; /* keep compiler quiet */
break;
}
skey->sk_flags |= addflags;
if (skey->sk_flags & SK_ROW_HEADER)
{
ScanKey subkey = (ScanKey) DatumGetPointer(skey->sk_argument);
/* First subkey should be same column/operator as the header */
Assert(subkey->sk_flags & SK_ROW_MEMBER);
Assert(subkey->sk_attno == skey->sk_attno);
Assert(subkey->sk_strategy == skey->sk_strategy);
subkey->sk_flags |= addflags;
}
}
/*
* Compare two scankey values using a specified operator.
*
* The test we want to perform is logically "leftarg op rightarg", where
* leftarg and rightarg are the sk_argument values in those ScanKeys, and
* the comparison operator is the one in the op ScanKey. However, in
* cross-data-type situations we may need to look up the correct operator in
* the index's opfamily: it is the one having amopstrategy = op->sk_strategy
* and amoplefttype/amoprighttype equal to the two argument datatypes.
*
* If the opfamily doesn't supply a complete set of cross-type operators we
* may not be able to make the comparison. If we can make the comparison
* we store the operator result in *result and return true. We return false
* if the comparison could not be made.
*
* If either leftarg or rightarg are an array, we'll apply array-specific
* rules to determine which array elements are redundant on behalf of caller.
* It is up to our caller to save whichever of the two scan keys is the array,
* and discard the non-array scan key (the non-array scan key is guaranteed to
* be redundant with any complete opfamily). Caller isn't expected to call
* here with a pair of array scan keys provided we're dealing with a complete
* opfamily (_bt_preprocess_array_keys will merge array keys together to make
* sure of that).
*
* Note: we'll also shrink caller's array as needed to eliminate redundant
* array elements. One reason why caller should prefer to discard non-array
* scan keys is so that we'll have the opportunity to shrink the array
* multiple times, in multiple calls (for each of several other scan keys on
* the same index attribute).
*
* Note: op always points at the same ScanKey as either leftarg or rightarg.
* Since we don't scribble on the scankeys themselves, this aliasing should
* cause no trouble.
*
* Note: this routine needs to be insensitive to any DESC option applied
* to the index column. For example, "x < 4" is a tighter constraint than
* "x < 5" regardless of which way the index is sorted.
*/
static bool
_bt_compare_scankey_args(IndexScanDesc scan, ScanKey op,
ScanKey leftarg, ScanKey rightarg,
BTArrayKeyInfo *array, FmgrInfo *orderproc,
bool *result)
{
Relation rel = scan->indexRelation;
Oid lefttype,
righttype,
optype,
opcintype,
cmp_op;
StrategyNumber strat;
Assert(!((leftarg->sk_flags | rightarg->sk_flags) &
(SK_ROW_HEADER | SK_ROW_MEMBER)));
/*
* First, deal with cases where one or both args are NULL. This should
* only happen when the scankeys represent IS NULL/NOT NULL conditions.
*/
if ((leftarg->sk_flags | rightarg->sk_flags) & SK_ISNULL)
{
bool leftnull,
rightnull;
/* Handle skip array comparison with IS NOT NULL scan key */
if ((leftarg->sk_flags | rightarg->sk_flags) & SK_BT_SKIP)
{
/* Shouldn't generate skip array in presence of IS NULL key */
Assert(!((leftarg->sk_flags | rightarg->sk_flags) & SK_SEARCHNULL));
Assert((leftarg->sk_flags | rightarg->sk_flags) & SK_SEARCHNOTNULL);
/* Skip array will have no NULL element/IS NULL scan key */
Assert(array->num_elems == -1);
array->null_elem = false;
/* IS NOT NULL key (could be leftarg or rightarg) now redundant */
*result = true;
return true;
}
if (leftarg->sk_flags & SK_ISNULL)
{
Assert(leftarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
leftnull = true;
}
else
leftnull = false;
if (rightarg->sk_flags & SK_ISNULL)
{
Assert(rightarg->sk_flags & (SK_SEARCHNULL | SK_SEARCHNOTNULL));
rightnull = true;
}
else
rightnull = false;
/*
* We treat NULL as either greater than or less than all other values.
* Since true > false, the tests below work correctly for NULLS LAST
* logic. If the index is NULLS FIRST, we need to flip the strategy.
*/
strat = op->sk_strategy;
if (op->sk_flags & SK_BT_NULLS_FIRST)
strat = BTCommuteStrategyNumber(strat);
switch (strat)
{
case BTLessStrategyNumber:
*result = (leftnull < rightnull);
break;
case BTLessEqualStrategyNumber:
*result = (leftnull <= rightnull);
break;
case BTEqualStrategyNumber:
*result = (leftnull == rightnull);
break;
case BTGreaterEqualStrategyNumber:
*result = (leftnull >= rightnull);
break;
case BTGreaterStrategyNumber:
*result = (leftnull > rightnull);
break;
default:
elog(ERROR, "unrecognized StrategyNumber: %d", (int) strat);
*result = false; /* keep compiler quiet */
break;
}
return true;
}
/*
* If either leftarg or rightarg are equality-type array scankeys, we need
* specialized handling (since by now we know that IS NULL wasn't used)
*/
if (array)
{
bool leftarray,
rightarray;
leftarray = ((leftarg->sk_flags & SK_SEARCHARRAY) &&
leftarg->sk_strategy == BTEqualStrategyNumber);
rightarray = ((rightarg->sk_flags & SK_SEARCHARRAY) &&
rightarg->sk_strategy == BTEqualStrategyNumber);
/*
* _bt_preprocess_array_keys is responsible for merging together array
* scan keys, and will do so whenever the opfamily has the required
* cross-type support. If it failed to do that, we handle it just
* like the case where we can't make the comparison ourselves.
*/
if (leftarray && rightarray)
{
/* Can't make the comparison */
*result = false; /* suppress compiler warnings */
Assert(!((leftarg->sk_flags | rightarg->sk_flags) & SK_BT_SKIP));
return false;
}
/*
* Otherwise we need to determine if either one of leftarg or rightarg
* uses an array, then pass this through to a dedicated helper
* function.
*/
if (leftarray)
return _bt_compare_array_scankey_args(scan, leftarg, rightarg,
orderproc, array, result);
else if (rightarray)
return _bt_compare_array_scankey_args(scan, rightarg, leftarg,
orderproc, array, result);
/* FALL THRU */
}
/*
* The opfamily we need to worry about is identified by the index column.
*/
Assert(leftarg->sk_attno == rightarg->sk_attno);
opcintype = rel->rd_opcintype[leftarg->sk_attno - 1];
/*
* Determine the actual datatypes of the ScanKey arguments. We have to
* support the convention that sk_subtype == InvalidOid means the opclass
* input type; this is a hack to simplify life for ScanKeyInit().
*/
lefttype = leftarg->sk_subtype;
if (lefttype == InvalidOid)
lefttype = opcintype;
righttype = rightarg->sk_subtype;
if (righttype == InvalidOid)
righttype = opcintype;
optype = op->sk_subtype;
if (optype == InvalidOid)
optype = opcintype;
/*
* If leftarg and rightarg match the types expected for the "op" scankey,
* we can use its already-looked-up comparison function.
*/
if (lefttype == opcintype && righttype == optype)
{
*result = DatumGetBool(FunctionCall2Coll(&op->sk_func,
op->sk_collation,
leftarg->sk_argument,
rightarg->sk_argument));
return true;
}
/*
* Otherwise, we need to go to the syscache to find the appropriate
* operator. (This cannot result in infinite recursion, since no
* indexscan initiated by syscache lookup will use cross-data-type
* operators.)
*
* If the sk_strategy was flipped by _bt_fix_scankey_strategy, we have to
* un-flip it to get the correct opfamily member.
*/
strat = op->sk_strategy;
if (op->sk_flags & SK_BT_DESC)
strat = BTCommuteStrategyNumber(strat);
cmp_op = get_opfamily_member(rel->rd_opfamily[leftarg->sk_attno - 1],
lefttype,
righttype,
strat);
if (OidIsValid(cmp_op))
{
RegProcedure cmp_proc = get_opcode(cmp_op);
if (RegProcedureIsValid(cmp_proc))
{
*result = DatumGetBool(OidFunctionCall2Coll(cmp_proc,
op->sk_collation,
leftarg->sk_argument,
rightarg->sk_argument));
return true;
}
}
/* Can't make the comparison */
*result = false; /* suppress compiler warnings */
return false;
}
/*
* Compare an array scan key to a scalar scan key, eliminating contradictory
* array elements such that the scalar scan key becomes redundant.
*
* If the opfamily is incomplete we may not be able to determine which
* elements are contradictory. When we return true we'll have validly set
* *qual_ok, guaranteeing that at least the scalar scan key can be considered
* redundant. We return false if the comparison could not be made (caller
* must keep both scan keys when this happens).
*
* Note: it's up to caller to deal with IS [NOT] NULL scan keys, as well as
* row comparison scan keys. We only deal with scalar scan keys.
*/
static bool
_bt_compare_array_scankey_args(IndexScanDesc scan, ScanKey arraysk, ScanKey skey,
FmgrInfo *orderproc, BTArrayKeyInfo *array,
bool *qual_ok)
{
Assert(arraysk->sk_attno == skey->sk_attno);
Assert(!(arraysk->sk_flags & (SK_ISNULL | SK_ROW_HEADER | SK_ROW_MEMBER)));
Assert((arraysk->sk_flags & SK_SEARCHARRAY) &&
arraysk->sk_strategy == BTEqualStrategyNumber);
/* don't expect to have to deal with NULLs/row comparison scan keys */
Assert(!(skey->sk_flags & (SK_ISNULL | SK_ROW_HEADER | SK_ROW_MEMBER)));
Assert(!(skey->sk_flags & SK_SEARCHARRAY) ||
skey->sk_strategy != BTEqualStrategyNumber);
/*
* Just call the appropriate helper function based on whether it's a SAOP
* array or a skip array. Both helpers will set *qual_ok in passing.
*/
if (array->num_elems != -1)
return _bt_saoparray_shrink(scan, arraysk, skey, orderproc, array,
qual_ok);
else
return _bt_skiparray_shrink(scan, skey, array, qual_ok);
}
/*
* Preprocessing of SAOP array scan key, used to determine which array
* elements are eliminated as contradictory by a non-array scalar key.
*
* _bt_compare_array_scankey_args helper function.
*
* Array elements can be eliminated as contradictory when excluded by some
* other operator on the same attribute. For example, with an index scan qual
* "WHERE a IN (1, 2, 3) AND a < 2", all array elements except the value "1"
* are eliminated, and the < scan key is eliminated as redundant. Cases where
* every array element is eliminated by a redundant scalar scan key have an
* unsatisfiable qual, which we handle by setting *qual_ok=false for caller.
*/
static bool
_bt_saoparray_shrink(IndexScanDesc scan, ScanKey arraysk, ScanKey skey,
FmgrInfo *orderproc, BTArrayKeyInfo *array, bool *qual_ok)
{
Relation rel = scan->indexRelation;
Oid opcintype = rel->rd_opcintype[arraysk->sk_attno - 1];
int cmpresult = 0,
cmpexact = 0,
matchelem,
new_nelems = 0;
FmgrInfo crosstypeproc;
FmgrInfo *orderprocp = orderproc;
Assert(array->num_elems > 0);
Assert(!(arraysk->sk_flags & SK_BT_SKIP));
/*
* _bt_binsrch_array_skey searches an array for the entry best matching a
* datum of opclass input type for the index's attribute (on-disk type).
* We can reuse the array's ORDER proc whenever the non-array scan key's
* type is a match for the corresponding attribute's input opclass type.
* Otherwise, we have to do another ORDER proc lookup so that our call to
* _bt_binsrch_array_skey applies the correct comparator.
*
* Note: we have to support the convention that sk_subtype == InvalidOid
* means the opclass input type; this is a hack to simplify life for
* ScanKeyInit().
*/
if (skey->sk_subtype != opcintype && skey->sk_subtype != InvalidOid)
{
RegProcedure cmp_proc;
Oid arraysk_elemtype;
/*
* Need an ORDER proc lookup to detect redundancy/contradictoriness
* with this pair of scankeys.
*
* Scalar scan key's argument will be passed to _bt_compare_array_skey
* as its tupdatum/lefthand argument (rhs arg is for array elements).
*/
arraysk_elemtype = arraysk->sk_subtype;
if (arraysk_elemtype == InvalidOid)
arraysk_elemtype = rel->rd_opcintype[arraysk->sk_attno - 1];
cmp_proc = get_opfamily_proc(rel->rd_opfamily[arraysk->sk_attno - 1],
skey->sk_subtype, arraysk_elemtype,
BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
{
/* Can't make the comparison */
*qual_ok = false; /* suppress compiler warnings */
return false;
}
/* We have all we need to determine redundancy/contradictoriness */
orderprocp = &crosstypeproc;
fmgr_info(cmp_proc, orderprocp);
}
matchelem = _bt_binsrch_array_skey(orderprocp, false,
NoMovementScanDirection,
skey->sk_argument, false, array,
arraysk, &cmpresult);
switch (skey->sk_strategy)
{
case BTLessStrategyNumber:
cmpexact = 1; /* exclude exact match, if any */
/* FALL THRU */
case BTLessEqualStrategyNumber:
if (cmpresult >= cmpexact)
matchelem++;
/* Resize, keeping elements from the start of the array */
new_nelems = matchelem;
break;
case BTEqualStrategyNumber:
if (cmpresult != 0)
{
/* qual is unsatisfiable */
new_nelems = 0;
}
else
{
/* Shift matching element to the start of the array, resize */
array->elem_values[0] = array->elem_values[matchelem];
new_nelems = 1;
}
break;
case BTGreaterEqualStrategyNumber:
cmpexact = 1; /* include exact match, if any */
/* FALL THRU */
case BTGreaterStrategyNumber:
if (cmpresult >= cmpexact)
matchelem++;
/* Shift matching elements to the start of the array, resize */
new_nelems = array->num_elems - matchelem;
memmove(array->elem_values, array->elem_values + matchelem,
sizeof(Datum) * new_nelems);
break;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) skey->sk_strategy);
break;
}
Assert(new_nelems >= 0);
Assert(new_nelems <= array->num_elems);
array->num_elems = new_nelems;
*qual_ok = new_nelems > 0;
return true;
}
/*
* Preprocessing of skip array scan key, used to determine redundancy against
* a non-array scalar scan key (must be an inequality).
*
* _bt_compare_array_scankey_args helper function.
*
* Skip arrays work by procedurally generating their elements as needed, so we
* just store the inequality as the skip array's low_compare or high_compare
* (except when there's already a more restrictive low_compare/high_compare).
* The array's final elements are the range of values that still satisfy the
* array's final low_compare and high_compare.
*/
static bool
_bt_skiparray_shrink(IndexScanDesc scan, ScanKey skey, BTArrayKeyInfo *array,
bool *qual_ok)
{
bool test_result;
Assert(array->num_elems == -1);
/*
* Array's index attribute will be constrained by a strict operator/key.
* Array must not "contain a NULL element" (i.e. the scan must not apply
* "IS NULL" qual when it reaches the end of the index that stores NULLs).
*/
array->null_elem = false;
*qual_ok = true;
/*
* Consider if we should treat caller's scalar scan key as the skip
* array's high_compare or low_compare.
*
* In general the current array element must either be a copy of a value
* taken from an index tuple, or a derivative value generated by opclass's
* skip support function. That way the scan can always safely assume that
* it's okay to use the only-input-opclass-type proc from so->orderProcs[]
* (they can be cross-type with SAOP arrays, but never with skip arrays).
*
* This approach is enabled by MINVAL/MAXVAL sentinel key markings, which
* can be thought of as representing either the lowest or highest matching
* array element (excluding the NULL element, where applicable, though as
* just discussed it isn't applicable to this range skip array anyway).
* Array keys marked MINVAL/MAXVAL never have a valid datum in their
* sk_argument field. The scan directly applies the array's low_compare
* key when it encounters MINVAL in the array key proper (just as it
* applies high_compare when it sees MAXVAL set in the array key proper).
* The scan must never use the array's so->orderProcs[] proc against
* low_compare's/high_compare's sk_argument, either (so->orderProcs[] is
* only intended to be used with rhs datums from the array proper/index).
*/
switch (skey->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
if (array->high_compare)
{
/* replace existing high_compare with caller's key? */
if (!_bt_compare_scankey_args(scan, array->high_compare, skey,
array->high_compare, NULL, NULL,
&test_result))
return false; /* can't determine more restrictive key */
if (!test_result)
return true; /* no, just discard caller's key */
/* yes, replace existing high_compare with caller's key */
}
/* caller's key becomes skip array's high_compare */
array->high_compare = skey;
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
if (array->low_compare)
{
/* replace existing low_compare with caller's key? */
if (!_bt_compare_scankey_args(scan, array->low_compare, skey,
array->low_compare, NULL, NULL,
&test_result))
return false; /* can't determine more restrictive key */
if (!test_result)
return true; /* no, just discard caller's key */
/* yes, replace existing low_compare with caller's key */
}
/* caller's key becomes skip array's low_compare */
array->low_compare = skey;
break;
case BTEqualStrategyNumber:
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) skey->sk_strategy);
break;
}
return true;
}
/*
* Applies the opfamily's skip support routine to convert the skip array's >
* low_compare key (if any) into a >= key, and to convert its < high_compare
* key (if any) into a <= key. Decrements the high_compare key's sk_argument,
* and/or increments the low_compare key's sk_argument (also adjusts their
* operator strategies, while changing the operator as appropriate).
*
* This optional optimization reduces the number of descents required within
* _bt_first. Whenever _bt_first is called with a skip array whose current
* array element is the sentinel value MINVAL, using a transformed >= key
* instead of using the original > key makes it safe to include lower-order
* scan keys in the insertion scan key (there must be lower-order scan keys
* after the skip array). We will avoid an extra _bt_first to find the first
* value in the index > sk_argument -- at least when the first real matching
* value in the index happens to be an exact match for the sk_argument value
* that we produced here by incrementing the original input key's sk_argument.
* (Backwards scans derive the same benefit when they encounter the sentinel
* value MAXVAL, by converting the high_compare key from < to <=.)
*
* Note: The transformation is only correct when it cannot allow the scan to
* overlook matching tuples, but we don't have enough semantic information to
* safely make sure that can't happen during scans with cross-type operators.
* That's why we'll never apply the transformation in cross-type scenarios.
* For example, if we attempted to convert "sales_ts > '2024-01-01'::date"
* into "sales_ts >= '2024-01-02'::date" given a "sales_ts" attribute whose
* input opclass is timestamp_ops, the scan would overlook almost all (or all)
* tuples for sales that fell on '2024-01-01'.
*
* Note: We can safely modify array->low_compare/array->high_compare in place
* because they just point to copies of our scan->keyData[] input scan keys
* (namely the copies returned by _bt_preprocess_array_keys to be used as
* input into the standard preprocessing steps in _bt_preprocess_keys).
* Everything will be reset if there's a rescan.
*/
static void
_bt_skiparray_strat_adjust(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
MemoryContext oldContext;
/*
* Called last among all preprocessing steps, when the skip array's final
* low_compare and high_compare have both been chosen
*/
Assert(arraysk->sk_flags & SK_BT_SKIP);
Assert(array->num_elems == -1 && !array->null_elem && array->sksup);
oldContext = MemoryContextSwitchTo(so->arrayContext);
if (array->high_compare &&
array->high_compare->sk_strategy == BTLessStrategyNumber)
_bt_skiparray_strat_decrement(scan, arraysk, array);
if (array->low_compare &&
array->low_compare->sk_strategy == BTGreaterStrategyNumber)
_bt_skiparray_strat_increment(scan, arraysk, array);
MemoryContextSwitchTo(oldContext);
}
/*
* Convert skip array's > low_compare key into a >= key
*/
static void
_bt_skiparray_strat_decrement(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array)
{
Relation rel = scan->indexRelation;
Oid opfamily = rel->rd_opfamily[arraysk->sk_attno - 1],
opcintype = rel->rd_opcintype[arraysk->sk_attno - 1],
leop;
RegProcedure cmp_proc;
ScanKey high_compare = array->high_compare;
Datum orig_sk_argument = high_compare->sk_argument,
new_sk_argument;
bool uflow;
Assert(high_compare->sk_strategy == BTLessStrategyNumber);
/*
* Only perform the transformation when the operator type matches the
* index attribute's input opclass type
*/
if (high_compare->sk_subtype != opcintype &&
high_compare->sk_subtype != InvalidOid)
return;
/* Decrement, handling underflow by marking the qual unsatisfiable */
new_sk_argument = array->sksup->decrement(rel, orig_sk_argument, &uflow);
if (uflow)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
so->qual_ok = false;
return;
}
/* Look up <= operator (might fail) */
leop = get_opfamily_member(opfamily, opcintype, opcintype,
BTLessEqualStrategyNumber);
if (!OidIsValid(leop))
return;
cmp_proc = get_opcode(leop);
if (RegProcedureIsValid(cmp_proc))
{
/* Transform < high_compare key into <= key */
fmgr_info(cmp_proc, &high_compare->sk_func);
high_compare->sk_argument = new_sk_argument;
high_compare->sk_strategy = BTLessEqualStrategyNumber;
}
}
/*
* Convert skip array's < low_compare key into a <= key
*/
static void
_bt_skiparray_strat_increment(IndexScanDesc scan, ScanKey arraysk,
BTArrayKeyInfo *array)
{
Relation rel = scan->indexRelation;
Oid opfamily = rel->rd_opfamily[arraysk->sk_attno - 1],
opcintype = rel->rd_opcintype[arraysk->sk_attno - 1],
geop;
RegProcedure cmp_proc;
ScanKey low_compare = array->low_compare;
Datum orig_sk_argument = low_compare->sk_argument,
new_sk_argument;
bool oflow;
Assert(low_compare->sk_strategy == BTGreaterStrategyNumber);
/*
* Only perform the transformation when the operator type matches the
* index attribute's input opclass type
*/
if (low_compare->sk_subtype != opcintype &&
low_compare->sk_subtype != InvalidOid)
return;
/* Increment, handling overflow by marking the qual unsatisfiable */
new_sk_argument = array->sksup->increment(rel, orig_sk_argument, &oflow);
if (oflow)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
so->qual_ok = false;
return;
}
/* Look up >= operator (might fail) */
geop = get_opfamily_member(opfamily, opcintype, opcintype,
BTGreaterEqualStrategyNumber);
if (!OidIsValid(geop))
return;
cmp_proc = get_opcode(geop);
if (RegProcedureIsValid(cmp_proc))
{
/* Transform > low_compare key into >= key */
fmgr_info(cmp_proc, &low_compare->sk_func);
low_compare->sk_argument = new_sk_argument;
low_compare->sk_strategy = BTGreaterEqualStrategyNumber;
}
}
/*
* _bt_preprocess_array_keys() -- Preprocess SK_SEARCHARRAY scan keys
*
* If there are any SK_SEARCHARRAY scan keys, deconstruct the array(s) and
* set up BTArrayKeyInfo info for each one that is an equality-type key.
* Returns modified scan keys as input for further, standard preprocessing.
*
* Currently we perform two kinds of preprocessing to deal with redundancies.
* For inequality array keys, it's sufficient to find the extreme element
* value and replace the whole array with that scalar value. This eliminates
* all but one array element as redundant. Similarly, we are capable of
* "merging together" multiple equality array keys (from two or more input
* scan keys) into a single output scan key containing only the intersecting
* array elements. This can eliminate many redundant array elements, as well
* as eliminating whole array scan keys as redundant. It can also allow us to
* detect contradictory quals.
*
* Caller must pass *new_numberOfKeys to give us a way to change the number of
* scan keys that caller treats as input to standard preprocessing steps. The
* returned array is smaller than scan->keyData[] when we could eliminate a
* redundant array scan key (redundant with another array scan key). It is
* convenient for _bt_preprocess_keys caller to have to deal with no more than
* one equality strategy array scan key per index attribute. We'll always be
* able to set things up that way when complete opfamilies are used.
*
* We're also responsible for generating skip arrays (and their associated
* scan keys) here. This enables skip scan. We do this for index attributes
* that initially lacked an equality condition within scan->keyData[], iff
* doing so allows a later scan key (that was passed to us in scan->keyData[])
* to be marked required by our _bt_preprocess_keys caller.
*
* We set the scan key references from the scan's BTArrayKeyInfo info array to
* offsets into the temp modified input array returned to caller. Scans that
* have array keys should call _bt_preprocess_array_keys_final when standard
* preprocessing steps are complete. This will convert the scan key offset
* references into references to the scan's so->keyData[] output scan keys.
*
* Note: the reason we need to return a temp scan key array, rather than just
* modifying scan->keyData[], is that callers are permitted to call btrescan
* without supplying a new set of scankey data. Certain other preprocessing
* routines (e.g., _bt_fix_scankey_strategy) _can_ modify scan->keyData[], but
* we can't make that work here because our modifications are non-idempotent.
*/
static ScanKey
_bt_preprocess_array_keys(IndexScanDesc scan, int *new_numberOfKeys)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Relation rel = scan->indexRelation;
int16 *indoption = rel->rd_indoption;
Oid skip_eq_ops[INDEX_MAX_KEYS];
int numArrayKeys,
numSkipArrayKeys,
numArrayKeyData;
AttrNumber attno_skip = 1;
int origarrayatt = InvalidAttrNumber,
origarraykey = -1;
Oid origelemtype = InvalidOid;
MemoryContext oldContext;
ScanKey arrayKeyData; /* modified copy of scan->keyData */
/*
* Check the number of input array keys within scan->keyData[] input keys
* (also checks if we should add extra skip arrays based on input keys)
*/
numArrayKeys = _bt_num_array_keys(scan, skip_eq_ops, &numSkipArrayKeys);
/* Quit if nothing to do. */
if (numArrayKeys == 0)
return NULL;
/*
* Estimated final size of arrayKeyData[] array we'll return to our caller
* is the size of the original scan->keyData[] input array, plus space for
* any additional skip array scan keys we'll need to generate below
*/
numArrayKeyData = scan->numberOfKeys + numSkipArrayKeys;
/*
* Make a scan-lifespan context to hold array-associated data, or reset it
* if we already have one from a previous rescan cycle.
*/
if (so->arrayContext == NULL)
so->arrayContext = AllocSetContextCreate(CurrentMemoryContext,
"BTree array context",
ALLOCSET_SMALL_SIZES);
else
MemoryContextReset(so->arrayContext);
oldContext = MemoryContextSwitchTo(so->arrayContext);
/* Create output scan keys in the workspace context */
arrayKeyData = (ScanKey) palloc(numArrayKeyData * sizeof(ScanKeyData));
/* Allocate space for per-array data in the workspace context */
so->skipScan = (numSkipArrayKeys > 0);
so->arrayKeys = (BTArrayKeyInfo *) palloc(numArrayKeys * sizeof(BTArrayKeyInfo));
/* Allocate space for ORDER procs used to help _bt_checkkeys */
so->orderProcs = (FmgrInfo *) palloc(numArrayKeyData * sizeof(FmgrInfo));
numArrayKeys = 0;
numArrayKeyData = 0;
for (int input_ikey = 0; input_ikey < scan->numberOfKeys; input_ikey++)
{
ScanKey inkey = scan->keyData + input_ikey,
cur;
FmgrInfo sortproc;
FmgrInfo *sortprocp = &sortproc;
Oid elemtype;
bool reverse;
ArrayType *arrayval;
int16 elmlen;
bool elmbyval;
char elmalign;
int num_elems;
Datum *elem_values;
bool *elem_nulls;
int num_nonnulls;
/* set up next output scan key */
cur = &arrayKeyData[numArrayKeyData];
/* Backfill skip arrays for attrs < or <= input key's attr? */
while (numSkipArrayKeys && attno_skip <= inkey->sk_attno)
{
Oid opfamily = rel->rd_opfamily[attno_skip - 1];
Oid opcintype = rel->rd_opcintype[attno_skip - 1];
Oid collation = rel->rd_indcollation[attno_skip - 1];
Oid eq_op = skip_eq_ops[attno_skip - 1];
CompactAttribute *attr;
RegProcedure cmp_proc;
if (!OidIsValid(eq_op))
{
/*
* Attribute already has an = input key, so don't output a
* skip array for attno_skip. Just copy attribute's = input
* key into arrayKeyData[] once outside this inner loop.
*
* Note: When we get here there must be a later attribute that
* lacks an equality input key, and still needs a skip array
* (if there wasn't then numSkipArrayKeys would be 0 by now).
*/
Assert(attno_skip == inkey->sk_attno);
/* inkey can't be last input key to be marked required: */
Assert(input_ikey < scan->numberOfKeys - 1);
#if 0
/* Could be a redundant input scan key, so can't do this: */
Assert(inkey->sk_strategy == BTEqualStrategyNumber ||
(inkey->sk_flags & SK_SEARCHNULL));
#endif
attno_skip++;
break;
}
cmp_proc = get_opcode(eq_op);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing oprcode for skipping equals operator %u", eq_op);
ScanKeyEntryInitialize(cur,
SK_SEARCHARRAY | SK_BT_SKIP, /* flags */
attno_skip, /* skipped att number */
BTEqualStrategyNumber, /* equality strategy */
InvalidOid, /* opclass input subtype */
collation, /* index column's collation */
cmp_proc, /* equality operator's proc */
(Datum) 0); /* constant */
/* Initialize generic BTArrayKeyInfo fields */
so->arrayKeys[numArrayKeys].scan_key = numArrayKeyData;
so->arrayKeys[numArrayKeys].num_elems = -1;
/* Initialize skip array specific BTArrayKeyInfo fields */
attr = TupleDescCompactAttr(RelationGetDescr(rel), attno_skip - 1);
reverse = (indoption[attno_skip - 1] & INDOPTION_DESC) != 0;
so->arrayKeys[numArrayKeys].attlen = attr->attlen;
so->arrayKeys[numArrayKeys].attbyval = attr->attbyval;
so->arrayKeys[numArrayKeys].null_elem = true; /* for now */
so->arrayKeys[numArrayKeys].sksup =
PrepareSkipSupportFromOpclass(opfamily, opcintype, reverse);
so->arrayKeys[numArrayKeys].low_compare = NULL; /* for now */
so->arrayKeys[numArrayKeys].high_compare = NULL; /* for now */
/*
* We'll need a 3-way ORDER proc. Set that up now.
*/
_bt_setup_array_cmp(scan, cur, opcintype,
&so->orderProcs[numArrayKeyData], NULL);
numArrayKeys++;
numArrayKeyData++; /* keep this scan key/array */
/* set up next output scan key */
cur = &arrayKeyData[numArrayKeyData];
/* remember having output this skip array and scan key */
numSkipArrayKeys--;
attno_skip++;
}
/*
* Provisionally copy scan key into arrayKeyData[] array we'll return
* to _bt_preprocess_keys caller
*/
*cur = *inkey;
if (!(cur->sk_flags & SK_SEARCHARRAY))
{
numArrayKeyData++; /* keep this non-array scan key */
continue;
}
/*
* Process SAOP array scan key
*/
Assert(!(cur->sk_flags & (SK_ROW_HEADER | SK_SEARCHNULL | SK_SEARCHNOTNULL)));
/* If array is null as a whole, the scan qual is unsatisfiable */
if (cur->sk_flags & SK_ISNULL)
{
so->qual_ok = false;
break;
}
/*
* Deconstruct the array into elements
*/
arrayval = DatumGetArrayTypeP(cur->sk_argument);
/* We could cache this data, but not clear it's worth it */
get_typlenbyvalalign(ARR_ELEMTYPE(arrayval),
&elmlen, &elmbyval, &elmalign);
deconstruct_array(arrayval,
ARR_ELEMTYPE(arrayval),
elmlen, elmbyval, elmalign,
&elem_values, &elem_nulls, &num_elems);
/*
* Compress out any null elements. We can ignore them since we assume
* all btree operators are strict.
*/
num_nonnulls = 0;
for (int j = 0; j < num_elems; j++)
{
if (!elem_nulls[j])
elem_values[num_nonnulls++] = elem_values[j];
}
/* We could pfree(elem_nulls) now, but not worth the cycles */
/* If there's no non-nulls, the scan qual is unsatisfiable */
if (num_nonnulls == 0)
{
so->qual_ok = false;
break;
}
/*
* Determine the nominal datatype of the array elements. We have to
* support the convention that sk_subtype == InvalidOid means the
* opclass input type; this is a hack to simplify life for
* ScanKeyInit().
*/
elemtype = cur->sk_subtype;
if (elemtype == InvalidOid)
elemtype = rel->rd_opcintype[cur->sk_attno - 1];
/*
* If the comparison operator is not equality, then the array qual
* degenerates to a simple comparison against the smallest or largest
* non-null array element, as appropriate.
*/
switch (cur->sk_strategy)
{
case BTLessStrategyNumber:
case BTLessEqualStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur, elemtype,
BTGreaterStrategyNumber,
elem_values, num_nonnulls);
numArrayKeyData++; /* keep this transformed scan key */
continue;
case BTEqualStrategyNumber:
/* proceed with rest of loop */
break;
case BTGreaterEqualStrategyNumber:
case BTGreaterStrategyNumber:
cur->sk_argument =
_bt_find_extreme_element(scan, cur, elemtype,
BTLessStrategyNumber,
elem_values, num_nonnulls);
numArrayKeyData++; /* keep this transformed scan key */
continue;
default:
elog(ERROR, "unrecognized StrategyNumber: %d",
(int) cur->sk_strategy);
break;
}
/*
* We'll need a 3-way ORDER proc to perform binary searches for the
* next matching array element. Set that up now.
*
* Array scan keys with cross-type equality operators will require a
* separate same-type ORDER proc for sorting their array. Otherwise,
* sortproc just points to the same proc used during binary searches.
*/
_bt_setup_array_cmp(scan, cur, elemtype,
&so->orderProcs[numArrayKeyData], &sortprocp);
/*
* Sort the non-null elements and eliminate any duplicates. We must
* sort in the same ordering used by the index column, so that the
* arrays can be advanced in lockstep with the scan's progress through
* the index's key space.
*/
reverse = (indoption[cur->sk_attno - 1] & INDOPTION_DESC) != 0;
num_elems = _bt_sort_array_elements(cur, sortprocp, reverse,
elem_values, num_nonnulls);
if (origarrayatt == cur->sk_attno)
{
BTArrayKeyInfo *orig = &so->arrayKeys[origarraykey];
/*
* This array scan key is redundant with a previous equality
* operator array scan key. Merge the two arrays together to
* eliminate contradictory non-intersecting elements (or try to).
*
* We merge this next array back into attribute's original array.
*/
Assert(arrayKeyData[orig->scan_key].sk_attno == cur->sk_attno);
Assert(arrayKeyData[orig->scan_key].sk_collation ==
cur->sk_collation);
if (_bt_merge_arrays(scan, cur, sortprocp, reverse,
origelemtype, elemtype,
orig->elem_values, &orig->num_elems,
elem_values, num_elems))
{
/* Successfully eliminated this array */
pfree(elem_values);
/*
* If no intersecting elements remain in the original array,
* the scan qual is unsatisfiable
*/
if (orig->num_elems == 0)
{
so->qual_ok = false;
break;
}
/* Throw away this scan key/array */
continue;
}
/*
* Unable to merge this array with previous array due to a lack of
* suitable cross-type opfamily support. Will need to keep both
* scan keys/arrays.
*/
}
else
{
/*
* This array is the first for current index attribute.
*
* If it turns out to not be the last array (that is, if the next
* array is redundantly applied to this same index attribute),
* we'll then treat this array as the attribute's "original" array
* when merging.
*/
origarrayatt = cur->sk_attno;
origarraykey = numArrayKeys;
origelemtype = elemtype;
}
/* Initialize generic BTArrayKeyInfo fields */
so->arrayKeys[numArrayKeys].scan_key = numArrayKeyData;
so->arrayKeys[numArrayKeys].num_elems = num_elems;
/* Initialize SAOP array specific BTArrayKeyInfo fields */
so->arrayKeys[numArrayKeys].elem_values = elem_values;
so->arrayKeys[numArrayKeys].cur_elem = -1; /* i.e. invalid */
numArrayKeys++;
numArrayKeyData++; /* keep this scan key/array */
}
Assert(numSkipArrayKeys == 0 || !so->qual_ok);
/* Set final number of equality-type array keys */
so->numArrayKeys = numArrayKeys;
/* Set number of scan keys in arrayKeyData[] */
*new_numberOfKeys = numArrayKeyData;
MemoryContextSwitchTo(oldContext);
return arrayKeyData;
}
/*
* _bt_preprocess_array_keys_final() -- fix up array scan key references
*
* When _bt_preprocess_array_keys performed initial array preprocessing, it
* set each array's array->scan_key to its scankey's arrayKeyData[] offset.
* This function handles translation of the scan key references from the
* BTArrayKeyInfo info array, from input scan key references (to the keys in
* arrayKeyData[]), into output references (to the keys in so->keyData[]).
* Caller's keyDataMap[] array tells us how to perform this remapping.
*
* Also finalizes so->orderProcs[] for the scan. Arrays already have an ORDER
* proc, which might need to be repositioned to its so->keyData[]-wise offset
* (very much like the remapping that we apply to array->scan_key references).
* Non-array equality strategy scan keys (that survived preprocessing) don't
* yet have an so->orderProcs[] entry, so we set one for them here.
*
* Also converts single-element array scan keys into equivalent non-array
* equality scan keys, which decrements so->numArrayKeys. It's possible that
* this will leave this new btrescan without any arrays at all. This isn't
* necessary for correctness; it's just an optimization. Non-array equality
* scan keys are slightly faster than equivalent array scan keys at runtime.
*/
static void
_bt_preprocess_array_keys_final(IndexScanDesc scan, int *keyDataMap)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Relation rel = scan->indexRelation;
int arrayidx = 0;
int last_equal_output_ikey PG_USED_FOR_ASSERTS_ONLY = -1;
Assert(so->qual_ok);
/*
* Nothing for us to do when _bt_preprocess_array_keys only had to deal
* with array inequalities
*/
if (so->numArrayKeys == 0)
return;
for (int output_ikey = 0; output_ikey < so->numberOfKeys; output_ikey++)
{
ScanKey outkey = so->keyData + output_ikey;
int input_ikey;
bool found PG_USED_FOR_ASSERTS_ONLY = false;
Assert(outkey->sk_strategy != InvalidStrategy);
if (outkey->sk_strategy != BTEqualStrategyNumber)
continue;
input_ikey = keyDataMap[output_ikey];
Assert(last_equal_output_ikey < output_ikey);
Assert(last_equal_output_ikey < input_ikey);
last_equal_output_ikey = output_ikey;
/*
* We're lazy about looking up ORDER procs for non-array keys, since
* not all input keys become output keys. Take care of it now.
*/
if (!(outkey->sk_flags & SK_SEARCHARRAY))
{
Oid elemtype;
/* No need for an ORDER proc given an IS NULL scan key */
if (outkey->sk_flags & SK_SEARCHNULL)
continue;
/*
* A non-required scan key doesn't need an ORDER proc, either
* (unless it's associated with an array, which this one isn't)
*/
if (!(outkey->sk_flags & SK_BT_REQFWD))
continue;
elemtype = outkey->sk_subtype;
if (elemtype == InvalidOid)
elemtype = rel->rd_opcintype[outkey->sk_attno - 1];
_bt_setup_array_cmp(scan, outkey, elemtype,
&so->orderProcs[output_ikey], NULL);
continue;
}
/*
* Reorder existing array scan key so->orderProcs[] entries.
*
* Doing this in-place is safe because preprocessing is required to
* output all equality strategy scan keys in original input order
* (among each group of entries against the same index attribute).
* This is also the order that the arrays themselves appear in.
*/
so->orderProcs[output_ikey] = so->orderProcs[input_ikey];
/* Fix-up array->scan_key references for arrays */
for (; arrayidx < so->numArrayKeys; arrayidx++)
{
BTArrayKeyInfo *array = &so->arrayKeys[arrayidx];
/*
* All skip arrays must be marked required, and final column can
* never have a skip array
*/
Assert(array->num_elems > 0 || array->num_elems == -1);
Assert(array->num_elems != -1 || outkey->sk_flags & SK_BT_REQFWD);
Assert(array->num_elems != -1 ||
outkey->sk_attno < IndexRelationGetNumberOfKeyAttributes(rel));
if (array->scan_key == input_ikey)
{
/* found it */
array->scan_key = output_ikey;
found = true;
/*
* Transform array scan keys that have exactly 1 element
* remaining (following all prior preprocessing) into
* equivalent non-array scan keys.
*/
if (array->num_elems == 1)
{
outkey->sk_flags &= ~SK_SEARCHARRAY;
outkey->sk_argument = array->elem_values[0];
so->numArrayKeys--;
/* If we're out of array keys, we can quit right away */
if (so->numArrayKeys == 0)
return;
/* Shift other arrays forward */
memmove(array, array + 1,
sizeof(BTArrayKeyInfo) *
(so->numArrayKeys - arrayidx));
/*
* Don't increment arrayidx (there was an entry that was
* just shifted forward to the offset at arrayidx, which
* will still need to be matched)
*/
}
else
{
/*
* Any skip array low_compare and high_compare scan keys
* are now final. Transform the array's > low_compare key
* into a >= key (and < high_compare keys into a <= key).
*/
if (array->num_elems == -1 && array->sksup &&
!array->null_elem)
_bt_skiparray_strat_adjust(scan, outkey, array);
/* Match found, so done with this array */
arrayidx++;
}
break;
}
}
Assert(found);
}
/*
* Parallel index scans require space in shared memory to store the
* current array elements (for arrays kept by preprocessing) to schedule
* the next primitive index scan. The underlying structure is protected
* using an LWLock, so defensively limit its size. In practice this can
* only affect parallel scans that use an incomplete opfamily.
*/
if (scan->parallel_scan && so->numArrayKeys > INDEX_MAX_KEYS)
ereport(ERROR,
(errcode(ERRCODE_PROGRAM_LIMIT_EXCEEDED),
errmsg_internal("number of array scan keys left by preprocessing (%d) exceeds the maximum allowed by parallel btree index scans (%d)",
so->numArrayKeys, INDEX_MAX_KEYS)));
}
/*
* _bt_num_array_keys() -- determine # of BTArrayKeyInfo entries
*
* _bt_preprocess_array_keys helper function. Returns the estimated size of
* the scan's BTArrayKeyInfo array, which is guaranteed to be large enough to
* fit every so->arrayKeys[] entry.
*
* Also sets *numSkipArrayKeys_out to the number of skip arrays caller must
* add to the scan keys it'll output. Caller must add this many skip arrays:
* one array for each of the most significant attributes that lack a = input
* key (IS NULL keys count as = input keys here). The specific attributes
* that need skip arrays are indicated by initializing skip_eq_ops_out[] arg
* 0-based attribute offset to a valid = op strategy Oid. We'll only ever set
* skip_eq_ops_out[] entries to InvalidOid for attributes that already have an
* equality key in scan->keyData[] input keys -- and only when there's some
* later "attribute gap" for us to "fill-in" with a skip array.
*
* We're optimistic about skipping working out: we always add exactly the skip
* arrays needed to maximize the number of input scan keys that can ultimately
* be marked as required to continue the scan (but no more). Given a
* multi-column index on (a, b, c, d), we add skip arrays as follows:
*
* Input keys Output keys (after all preprocessing)
* ---------- -------------------------------------
* a = 1 a = 1 (no skip arrays)
* b = 42 skip a AND b = 42
* a = 1 AND b = 42 a = 1 AND b = 42 (no skip arrays)
* a >= 1 AND b = 42 range skip a AND b = 42
* a = 1 AND b > 42 a = 1 AND b > 42 (no skip arrays)
* a >= 1 AND a <= 3 AND b = 42 range skip a AND b = 42
* a = 1 AND c <= 27 a = 1 AND skip b AND c <= 27
* a = 1 AND d >= 1 a = 1 AND skip b AND skip c AND d >= 1
* a = 1 AND b >= 42 AND d > 1 a = 1 AND range skip b AND skip c AND d > 1
*/
static int
_bt_num_array_keys(IndexScanDesc scan, Oid *skip_eq_ops_out,
int *numSkipArrayKeys_out)
{
Relation rel = scan->indexRelation;
AttrNumber attno_skip = 1,
attno_inkey = 1;
bool attno_has_equal = false,
attno_has_rowcompare = false;
int numSAOPArrayKeys,
numSkipArrayKeys,
prev_numSkipArrayKeys;
Assert(scan->numberOfKeys);
/* Initial pass over input scan keys counts the number of SAOP arrays */
numSAOPArrayKeys = 0;
*numSkipArrayKeys_out = prev_numSkipArrayKeys = numSkipArrayKeys = 0;
for (int i = 0; i < scan->numberOfKeys; i++)
{
ScanKey inkey = scan->keyData + i;
if (inkey->sk_flags & SK_SEARCHARRAY)
numSAOPArrayKeys++;
}
#ifdef DEBUG_DISABLE_SKIP_SCAN
/* don't attempt to add skip arrays */
return numSAOPArrayKeys;
#endif
for (int i = 0;; i++)
{
ScanKey inkey = scan->keyData + i;
/*
* Backfill skip arrays for any wholly omitted attributes prior to
* attno_inkey
*/
while (attno_skip < attno_inkey)
{
Oid opfamily = rel->rd_opfamily[attno_skip - 1];
Oid opcintype = rel->rd_opcintype[attno_skip - 1];
/* Look up input opclass's equality operator (might fail) */
skip_eq_ops_out[attno_skip - 1] =
get_opfamily_member(opfamily, opcintype, opcintype,
BTEqualStrategyNumber);
if (!OidIsValid(skip_eq_ops_out[attno_skip - 1]))
{
/*
* Cannot generate a skip array for this or later attributes
* (input opclass lacks an equality strategy operator)
*/
*numSkipArrayKeys_out = prev_numSkipArrayKeys;
return numSAOPArrayKeys + prev_numSkipArrayKeys;
}
/* plan on adding a backfill skip array for this attribute */
numSkipArrayKeys++;
attno_skip++;
}
prev_numSkipArrayKeys = numSkipArrayKeys;
/*
* Stop once past the final input scan key. We deliberately never add
* a skip array for the last input scan key's attribute -- even when
* there are only inequality keys on that attribute.
*/
if (i == scan->numberOfKeys)
break;
/*
* Later preprocessing steps cannot merge a RowCompare into a skip
* array, so stop adding skip arrays once we see one. (Note that we
* can backfill skip arrays before a RowCompare, which will allow keys
* up to and including the RowCompare to be marked required.)
*
* Skip arrays work by maintaining a current array element value,
* which anchors lower-order keys via an implied equality constraint.
* This is incompatible with the current nbtree row comparison design,
* which compares all columns together, as an indivisible group.
* Alternative designs that can be used alongside skip arrays are
* possible, but it's not clear that they're really worth pursuing.
*
* A RowCompare qual "(a, b, c) > (10, 'foo', 42)" is equivalent to
* "(a=10 AND b='foo' AND c>42) OR (a=10 AND b>'foo') OR (a>10)".
* Decomposing this RowCompare into these 3 disjuncts allows each
* disjunct to be executed as a separate "single value" index scan.
* That'll give all 3 scans the ability to add skip arrays in the
* usual way (when there are any scalar keys after the RowCompare).
* Under this scheme, a qual "(a, b, c) > (10, 'foo', 42) AND d = 99"
* performs 3 separate scans, each of which can mark keys up to and
* including its "d = 99" key as required to continue the scan.
*/
if (attno_has_rowcompare)
break;
/*
* Now consider next attno_inkey (or keep going if this is an
* additional scan key against the same attribute)
*/
if (attno_inkey < inkey->sk_attno)
{
/*
* Now add skip array for previous scan key's attribute, though
* only if the attribute has no equality strategy scan keys
*/
if (attno_has_equal)
{
/* Attributes with an = key must have InvalidOid eq_op set */
skip_eq_ops_out[attno_skip - 1] = InvalidOid;
}
else
{
Oid opfamily = rel->rd_opfamily[attno_skip - 1];
Oid opcintype = rel->rd_opcintype[attno_skip - 1];
/* Look up input opclass's equality operator (might fail) */
skip_eq_ops_out[attno_skip - 1] =
get_opfamily_member(opfamily, opcintype, opcintype,
BTEqualStrategyNumber);
if (!OidIsValid(skip_eq_ops_out[attno_skip - 1]))
{
/*
* Input opclass lacks an equality strategy operator, so
* don't generate a skip array that definitely won't work
*/
break;
}
/* plan on adding a backfill skip array for this attribute */
numSkipArrayKeys++;
}
/* Set things up for this new attribute */
attno_skip++;
attno_inkey = inkey->sk_attno;
attno_has_equal = false;
}
/*
* Track if this attribute's scan keys include any equality strategy
* scan keys (IS NULL keys count as equality keys here). Also track
* if it has any RowCompare keys.
*/
if (inkey->sk_strategy == BTEqualStrategyNumber ||
(inkey->sk_flags & SK_SEARCHNULL))
attno_has_equal = true;
if (inkey->sk_flags & SK_ROW_HEADER)
attno_has_rowcompare = true;
}
*numSkipArrayKeys_out = numSkipArrayKeys;
return numSAOPArrayKeys + numSkipArrayKeys;
}
/*
* _bt_find_extreme_element() -- get least or greatest array element
*
* scan and skey identify the index column, whose opfamily determines the
* comparison semantics. strat should be BTLessStrategyNumber to get the
* least element, or BTGreaterStrategyNumber to get the greatest.
*/
static Datum
_bt_find_extreme_element(IndexScanDesc scan, ScanKey skey, Oid elemtype,
StrategyNumber strat,
Datum *elems, int nelems)
{
Relation rel = scan->indexRelation;
Oid cmp_op;
RegProcedure cmp_proc;
FmgrInfo flinfo;
Datum result;
int i;
/*
* Look up the appropriate comparison operator in the opfamily.
*
* Note: it's possible that this would fail, if the opfamily is
* incomplete, but it seems quite unlikely that an opfamily would omit
* non-cross-type comparison operators for any datatype that it supports
* at all.
*/
Assert(skey->sk_strategy != BTEqualStrategyNumber);
Assert(OidIsValid(elemtype));
cmp_op = get_opfamily_member(rel->rd_opfamily[skey->sk_attno - 1],
elemtype,
elemtype,
strat);
if (!OidIsValid(cmp_op))
elog(ERROR, "missing operator %d(%u,%u) in opfamily %u",
strat, elemtype, elemtype,
rel->rd_opfamily[skey->sk_attno - 1]);
cmp_proc = get_opcode(cmp_op);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing oprcode for operator %u", cmp_op);
fmgr_info(cmp_proc, &flinfo);
Assert(nelems > 0);
result = elems[0];
for (i = 1; i < nelems; i++)
{
if (DatumGetBool(FunctionCall2Coll(&flinfo,
skey->sk_collation,
elems[i],
result)))
result = elems[i];
}
return result;
}
/*
* _bt_setup_array_cmp() -- Set up array comparison functions
*
* Sets ORDER proc in caller's orderproc argument, which is used during binary
* searches of arrays during the index scan. Also sets a same-type ORDER proc
* in caller's *sortprocp argument, which is used when sorting the array.
*
* Preprocessing calls here with all equality strategy scan keys (when scan
* uses equality array keys), including those not associated with any array.
* See _bt_advance_array_keys for an explanation of why it'll need to treat
* simple scalar equality scan keys as degenerate single element arrays.
*
* Caller should pass an orderproc pointing to space that'll store the ORDER
* proc for the scan, and a *sortprocp pointing to its own separate space.
* When calling here for a non-array scan key, sortprocp arg should be NULL.
*
* In the common case where we don't need to deal with cross-type operators,
* only one ORDER proc is actually required by caller. We'll set *sortprocp
* to point to the same memory that caller's orderproc continues to point to.
* Otherwise, *sortprocp will continue to point to caller's own space. Either
* way, *sortprocp will point to a same-type ORDER proc (since that's the only
* safe way to sort/deduplicate the array associated with caller's scan key).
*/
static void
_bt_setup_array_cmp(IndexScanDesc scan, ScanKey skey, Oid elemtype,
FmgrInfo *orderproc, FmgrInfo **sortprocp)
{
BTScanOpaque so = (BTScanOpaque) scan->opaque;
Relation rel = scan->indexRelation;
RegProcedure cmp_proc;
Oid opcintype = rel->rd_opcintype[skey->sk_attno - 1];
Assert(skey->sk_strategy == BTEqualStrategyNumber);
Assert(OidIsValid(elemtype));
/*
* If scankey operator is not a cross-type comparison, we can use the
* cached comparison function; otherwise gotta look it up in the catalogs
*/
if (elemtype == opcintype)
{
/* Set same-type ORDER procs for caller */
*orderproc = *index_getprocinfo(rel, skey->sk_attno, BTORDER_PROC);
if (sortprocp)
*sortprocp = orderproc;
return;
}
/*
* Look up the appropriate cross-type comparison function in the opfamily.
*
* Use the opclass input type as the left hand arg type, and the array
* element type as the right hand arg type (since binary searches use an
* index tuple's attribute value to search for a matching array element).
*
* Note: it's possible that this would fail, if the opfamily is
* incomplete, but only in cases where it's quite likely that _bt_first
* would fail in just the same way (had we not failed before it could).
*/
cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
opcintype, elemtype, BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"",
BTORDER_PROC, opcintype, elemtype, skey->sk_attno,
RelationGetRelationName(rel));
/* Set cross-type ORDER proc for caller */
fmgr_info_cxt(cmp_proc, orderproc, so->arrayContext);
/* Done if caller doesn't actually have an array they'll need to sort */
if (!sortprocp)
return;
/*
* Look up the appropriate same-type comparison function in the opfamily.
*
* Note: it's possible that this would fail, if the opfamily is
* incomplete, but it seems quite unlikely that an opfamily would omit
* non-cross-type comparison procs for any datatype that it supports at
* all.
*/
cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
elemtype, elemtype, BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
elog(ERROR, "missing support function %d(%u,%u) for attribute %d of index \"%s\"",
BTORDER_PROC, elemtype, elemtype,
skey->sk_attno, RelationGetRelationName(rel));
/* Set same-type ORDER proc for caller */
fmgr_info_cxt(cmp_proc, *sortprocp, so->arrayContext);
}
/*
* _bt_sort_array_elements() -- sort and de-dup array elements
*
* The array elements are sorted in-place, and the new number of elements
* after duplicate removal is returned.
*
* skey identifies the index column whose opfamily determines the comparison
* semantics, and sortproc is a corresponding ORDER proc. If reverse is true,
* we sort in descending order.
*/
static int
_bt_sort_array_elements(ScanKey skey, FmgrInfo *sortproc, bool reverse,
Datum *elems, int nelems)
{
BTSortArrayContext cxt;
if (nelems <= 1)
return nelems; /* no work to do */
/* Sort the array elements */
cxt.sortproc = sortproc;
cxt.collation = skey->sk_collation;
cxt.reverse = reverse;
qsort_arg(elems, nelems, sizeof(Datum),
_bt_compare_array_elements, &cxt);
/* Now scan the sorted elements and remove duplicates */
return qunique_arg(elems, nelems, sizeof(Datum),
_bt_compare_array_elements, &cxt);
}
/*
* _bt_merge_arrays() -- merge next array's elements into an original array
*
* Called when preprocessing encounters a pair of array equality scan keys,
* both against the same index attribute (during initial array preprocessing).
* Merging reorganizes caller's original array (the left hand arg) in-place,
* without ever copying elements from one array into the other. (Mixing the
* elements together like this would be wrong, since they don't necessarily
* use the same underlying element type, despite all the other similarities.)
*
* Both arrays must have already been sorted and deduplicated by calling
* _bt_sort_array_elements. sortproc is the same-type ORDER proc that was
* just used to sort and deduplicate caller's "next" array. We'll usually be
* able to reuse that order PROC to merge the arrays together now. If not,
* then we'll perform a separate ORDER proc lookup.
*
* If the opfamily doesn't supply a complete set of cross-type ORDER procs we
* may not be able to determine which elements are contradictory. If we have
* the required ORDER proc then we return true (and validly set *nelems_orig),
* guaranteeing that at least the next array can be considered redundant. We
* return false if the required comparisons cannot be made (caller must keep
* both arrays when this happens).
*/
static bool
_bt_merge_arrays(IndexScanDesc scan, ScanKey skey, FmgrInfo *sortproc,
bool reverse, Oid origelemtype, Oid nextelemtype,
Datum *elems_orig, int *nelems_orig,
Datum *elems_next, int nelems_next)
{
Relation rel = scan->indexRelation;
BTScanOpaque so = (BTScanOpaque) scan->opaque;
BTSortArrayContext cxt;
int nelems_orig_start = *nelems_orig,
nelems_orig_merged = 0;
FmgrInfo *mergeproc = sortproc;
FmgrInfo crosstypeproc;
Assert(skey->sk_strategy == BTEqualStrategyNumber);
Assert(OidIsValid(origelemtype) && OidIsValid(nextelemtype));
if (origelemtype != nextelemtype)
{
RegProcedure cmp_proc;
/*
* Cross-array-element-type merging is required, so can't just reuse
* sortproc when merging
*/
cmp_proc = get_opfamily_proc(rel->rd_opfamily[skey->sk_attno - 1],
origelemtype, nextelemtype, BTORDER_PROC);
if (!RegProcedureIsValid(cmp_proc))
{
/* Can't make the required comparisons */
return false;
}
/* We have all we need to determine redundancy/contradictoriness */
mergeproc = &crosstypeproc;
fmgr_info_cxt(cmp_proc, mergeproc, so->arrayContext);
}
cxt.sortproc = mergeproc;
cxt.collation = skey->sk_collation;
cxt.reverse = reverse;
for (int i = 0, j = 0; i < nelems_orig_start && j < nelems_next;)
{
Datum *oelem = elems_orig + i,
*nelem = elems_next + j;
int res = _bt_compare_array_elements(oelem, nelem, &cxt);
if (res == 0)
{
elems_orig[nelems_orig_merged++] = *oelem;
i++;
j++;
}
else if (res < 0)
i++;
else /* res > 0 */
j++;
}
*nelems_orig = nelems_orig_merged;
return true;
}
/*
* qsort_arg comparator for sorting array elements
*/
static int
_bt_compare_array_elements(const void *a, const void *b, void *arg)
{
Datum da = *((const Datum *) a);
Datum db = *((const Datum *) b);
BTSortArrayContext *cxt = (BTSortArrayContext *) arg;
int32 compare;
compare = DatumGetInt32(FunctionCall2Coll(cxt->sortproc,
cxt->collation,
da, db));
if (cxt->reverse)
INVERT_COMPARE_RESULT(compare);
return compare;
}
|