1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
|
/*-------------------------------------------------------------------------
*
* analyze.c
* the postgres statistics generator
*
* Portions Copyright (c) 1996-2003, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* $Header: /cvsroot/pgsql/src/backend/commands/analyze.c,v 1.64 2003/10/18 15:38:06 tgl Exp $
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/heapam.h"
#include "access/tuptoaster.h"
#include "catalog/catalog.h"
#include "catalog/catname.h"
#include "catalog/indexing.h"
#include "catalog/namespace.h"
#include "catalog/pg_operator.h"
#include "catalog/pg_statistic.h"
#include "catalog/pg_type.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "parser/parse_oper.h"
#include "parser/parse_relation.h"
#include "utils/acl.h"
#include "utils/builtins.h"
#include "utils/datum.h"
#include "utils/fmgroids.h"
#include "utils/lsyscache.h"
#include "utils/syscache.h"
#include "utils/tuplesort.h"
/*
* Analysis algorithms supported
*/
typedef enum
{
ALG_MINIMAL = 1, /* Compute only most-common-values */
ALG_SCALAR /* Compute MCV, histogram, sort
* correlation */
} AlgCode;
/*
* To avoid consuming too much memory during analysis and/or too much space
* in the resulting pg_statistic rows, we ignore varlena datums that are wider
* than WIDTH_THRESHOLD (after detoasting!). This is legitimate for MCV
* and distinct-value calculations since a wide value is unlikely to be
* duplicated at all, much less be a most-common value. For the same reason,
* ignoring wide values will not affect our estimates of histogram bin
* boundaries very much.
*/
#define WIDTH_THRESHOLD 1024
/*
* We build one of these structs for each attribute (column) that is to be
* analyzed. The struct and subsidiary data are in anl_context,
* so they live until the end of the ANALYZE operation.
*/
typedef struct
{
/* These fields are set up by examine_attribute */
int attnum; /* attribute number */
AlgCode algcode; /* Which algorithm to use for this column */
int minrows; /* Minimum # of rows wanted for stats */
Form_pg_attribute attr; /* copy of pg_attribute row for column */
Form_pg_type attrtype; /* copy of pg_type row for column */
Oid eqopr; /* '=' operator for datatype, if any */
Oid eqfunc; /* and associated function */
Oid ltopr; /* '<' operator for datatype, if any */
/*
* These fields are filled in by the actual statistics-gathering
* routine
*/
bool stats_valid;
float4 stanullfrac; /* fraction of entries that are NULL */
int4 stawidth; /* average width */
float4 stadistinct; /* # distinct values */
int2 stakind[STATISTIC_NUM_SLOTS];
Oid staop[STATISTIC_NUM_SLOTS];
int numnumbers[STATISTIC_NUM_SLOTS];
float4 *stanumbers[STATISTIC_NUM_SLOTS];
int numvalues[STATISTIC_NUM_SLOTS];
Datum *stavalues[STATISTIC_NUM_SLOTS];
} VacAttrStats;
typedef struct
{
Datum value; /* a data value */
int tupno; /* position index for tuple it came from */
} ScalarItem;
typedef struct
{
int count; /* # of duplicates */
int first; /* values[] index of first occurrence */
} ScalarMCVItem;
#define swapInt(a,b) do {int _tmp; _tmp=a; a=b; b=_tmp;} while(0)
#define swapDatum(a,b) do {Datum _tmp; _tmp=a; a=b; b=_tmp;} while(0)
/* Default statistics target (GUC parameter) */
int default_statistics_target = 10;
static int elevel = -1;
static MemoryContext anl_context = NULL;
/* context information for compare_scalars() */
static FmgrInfo *datumCmpFn;
static SortFunctionKind datumCmpFnKind;
static int *datumCmpTupnoLink;
static VacAttrStats *examine_attribute(Relation onerel, int attnum);
static int acquire_sample_rows(Relation onerel, HeapTuple *rows,
int targrows, double *totalrows);
static double random_fract(void);
static double init_selection_state(int n);
static double select_next_random_record(double t, int n, double *stateptr);
static int compare_rows(const void *a, const void *b);
static int compare_scalars(const void *a, const void *b);
static int compare_mcvs(const void *a, const void *b);
static void compute_minimal_stats(VacAttrStats *stats,
TupleDesc tupDesc, double totalrows,
HeapTuple *rows, int numrows);
static void compute_scalar_stats(VacAttrStats *stats,
TupleDesc tupDesc, double totalrows,
HeapTuple *rows, int numrows);
static void update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats);
/*
* analyze_rel() -- analyze one relation
*/
void
analyze_rel(Oid relid, VacuumStmt *vacstmt)
{
Relation onerel;
int attr_cnt,
tcnt,
i;
VacAttrStats **vacattrstats;
int targrows,
numrows;
double totalrows;
HeapTuple *rows;
if (vacstmt->verbose)
elevel = INFO;
else
elevel = DEBUG2;
/*
* Use the current context for storing analysis info. vacuum.c
* ensures that this context will be cleared when I return, thus
* releasing the memory allocated here.
*/
anl_context = CurrentMemoryContext;
/*
* Check for user-requested abort. Note we want this to be inside a
* transaction, so xact.c doesn't issue useless WARNING.
*/
CHECK_FOR_INTERRUPTS();
/*
* Race condition -- if the pg_class tuple has gone away since the
* last time we saw it, we don't need to process it.
*/
if (!SearchSysCacheExists(RELOID,
ObjectIdGetDatum(relid),
0, 0, 0))
return;
/*
* Open the class, getting only a read lock on it, and check
* permissions. Permissions check should match vacuum's check!
*/
onerel = relation_open(relid, AccessShareLock);
if (!(pg_class_ownercheck(RelationGetRelid(onerel), GetUserId()) ||
(pg_database_ownercheck(MyDatabaseId, GetUserId()) && !onerel->rd_rel->relisshared)))
{
/* No need for a WARNING if we already complained during VACUUM */
if (!vacstmt->vacuum)
ereport(WARNING,
(errmsg("skipping \"%s\" --- only table or database owner can analyze it",
RelationGetRelationName(onerel))));
relation_close(onerel, AccessShareLock);
return;
}
/*
* Check that it's a plain table; we used to do this in getrels() but
* seems safer to check after we've locked the relation.
*/
if (onerel->rd_rel->relkind != RELKIND_RELATION)
{
/* No need for a WARNING if we already complained during VACUUM */
if (!vacstmt->vacuum)
ereport(WARNING,
(errmsg("skipping \"%s\" --- cannot analyze indexes, views, or special system tables",
RelationGetRelationName(onerel))));
relation_close(onerel, AccessShareLock);
return;
}
/*
* Silently ignore tables that are temp tables of other backends ---
* trying to analyze these is rather pointless, since their contents
* are probably not up-to-date on disk. (We don't throw a warning
* here; it would just lead to chatter during a database-wide
* ANALYZE.)
*/
if (isOtherTempNamespace(RelationGetNamespace(onerel)))
{
relation_close(onerel, AccessShareLock);
return;
}
/*
* We can ANALYZE any table except pg_statistic. See update_attstats
*/
if (IsSystemNamespace(RelationGetNamespace(onerel)) &&
strcmp(RelationGetRelationName(onerel), StatisticRelationName) == 0)
{
relation_close(onerel, AccessShareLock);
return;
}
ereport(elevel,
(errmsg("analyzing \"%s.%s\"",
get_namespace_name(RelationGetNamespace(onerel)),
RelationGetRelationName(onerel))));
/*
* Determine which columns to analyze
*
* Note that system attributes are never analyzed.
*/
if (vacstmt->va_cols != NIL)
{
List *le;
vacattrstats = (VacAttrStats **) palloc(length(vacstmt->va_cols) *
sizeof(VacAttrStats *));
tcnt = 0;
foreach(le, vacstmt->va_cols)
{
char *col = strVal(lfirst(le));
i = attnameAttNum(onerel, col, false);
vacattrstats[tcnt] = examine_attribute(onerel, i);
if (vacattrstats[tcnt] != NULL)
tcnt++;
}
attr_cnt = tcnt;
}
else
{
attr_cnt = onerel->rd_att->natts;
/* +1 here is just to avoid palloc(0) with zero-column table */
vacattrstats = (VacAttrStats **) palloc((attr_cnt + 1) *
sizeof(VacAttrStats *));
tcnt = 0;
for (i = 1; i <= attr_cnt; i++)
{
vacattrstats[tcnt] = examine_attribute(onerel, i);
if (vacattrstats[tcnt] != NULL)
tcnt++;
}
attr_cnt = tcnt;
}
/*
* Quit if no analyzable columns
*/
if (attr_cnt <= 0)
{
relation_close(onerel, AccessShareLock);
return;
}
/*
* Determine how many rows we need to sample, using the worst case
* from all analyzable columns. We use a lower bound of 100 rows to
* avoid possible overflow in Vitter's algorithm.
*/
targrows = 100;
for (i = 0; i < attr_cnt; i++)
{
if (targrows < vacattrstats[i]->minrows)
targrows = vacattrstats[i]->minrows;
}
/*
* Acquire the sample rows
*/
rows = (HeapTuple *) palloc(targrows * sizeof(HeapTuple));
numrows = acquire_sample_rows(onerel, rows, targrows, &totalrows);
/*
* If we are running a standalone ANALYZE, update pages/tuples stats
* in pg_class. We have the accurate page count from heap_beginscan,
* but only an approximate number of tuples; therefore, if we are part
* of VACUUM ANALYZE do *not* overwrite the accurate count already
* inserted by VACUUM.
*/
if (!vacstmt->vacuum)
vac_update_relstats(RelationGetRelid(onerel),
onerel->rd_nblocks,
totalrows,
RelationGetForm(onerel)->relhasindex);
/*
* Compute the statistics. Temporary results during the calculations
* for each column are stored in a child context. The calc routines
* are responsible to make sure that whatever they store into the
* VacAttrStats structure is allocated in anl_context.
*/
if (numrows > 0)
{
MemoryContext col_context,
old_context;
col_context = AllocSetContextCreate(anl_context,
"Analyze Column",
ALLOCSET_DEFAULT_MINSIZE,
ALLOCSET_DEFAULT_INITSIZE,
ALLOCSET_DEFAULT_MAXSIZE);
old_context = MemoryContextSwitchTo(col_context);
for (i = 0; i < attr_cnt; i++)
{
switch (vacattrstats[i]->algcode)
{
case ALG_MINIMAL:
compute_minimal_stats(vacattrstats[i],
onerel->rd_att, totalrows,
rows, numrows);
break;
case ALG_SCALAR:
compute_scalar_stats(vacattrstats[i],
onerel->rd_att, totalrows,
rows, numrows);
break;
}
MemoryContextResetAndDeleteChildren(col_context);
}
MemoryContextSwitchTo(old_context);
MemoryContextDelete(col_context);
/*
* Emit the completed stats rows into pg_statistic, replacing any
* previous statistics for the target columns. (If there are
* stats in pg_statistic for columns we didn't process, we leave
* them alone.)
*/
update_attstats(relid, attr_cnt, vacattrstats);
}
/*
* Close source relation now, but keep lock so that no one deletes it
* before we commit. (If someone did, they'd fail to clean up the
* entries we made in pg_statistic.)
*/
relation_close(onerel, NoLock);
}
/*
* examine_attribute -- pre-analysis of a single column
*
* Determine whether the column is analyzable; if so, create and initialize
* a VacAttrStats struct for it. If not, return NULL.
*/
static VacAttrStats *
examine_attribute(Relation onerel, int attnum)
{
Form_pg_attribute attr = onerel->rd_att->attrs[attnum - 1];
Operator func_operator;
HeapTuple typtuple;
Oid eqopr = InvalidOid;
Oid eqfunc = InvalidOid;
Oid ltopr = InvalidOid;
VacAttrStats *stats;
/* Don't analyze dropped columns */
if (attr->attisdropped)
return NULL;
/* Don't analyze column if user has specified not to */
if (attr->attstattarget == 0)
return NULL;
/* If column has no "=" operator, we can't do much of anything */
func_operator = equality_oper(attr->atttypid, true);
if (func_operator != NULL)
{
eqopr = oprid(func_operator);
eqfunc = oprfuncid(func_operator);
ReleaseSysCache(func_operator);
}
if (!OidIsValid(eqfunc))
return NULL;
/*
* If we have "=" then we're at least able to do the minimal
* algorithm, so start filling in a VacAttrStats struct.
*/
stats = (VacAttrStats *) palloc0(sizeof(VacAttrStats));
stats->attnum = attnum;
stats->attr = (Form_pg_attribute) palloc(ATTRIBUTE_TUPLE_SIZE);
memcpy(stats->attr, attr, ATTRIBUTE_TUPLE_SIZE);
typtuple = SearchSysCache(TYPEOID,
ObjectIdGetDatum(attr->atttypid),
0, 0, 0);
if (!HeapTupleIsValid(typtuple))
elog(ERROR, "cache lookup failed for type %u", attr->atttypid);
stats->attrtype = (Form_pg_type) palloc(sizeof(FormData_pg_type));
memcpy(stats->attrtype, GETSTRUCT(typtuple), sizeof(FormData_pg_type));
ReleaseSysCache(typtuple);
stats->eqopr = eqopr;
stats->eqfunc = eqfunc;
/* If the attstattarget column is negative, use the default value */
if (stats->attr->attstattarget < 0)
stats->attr->attstattarget = default_statistics_target;
/* Is there a "<" operator with suitable semantics? */
func_operator = ordering_oper(attr->atttypid, true);
if (func_operator != NULL)
{
ltopr = oprid(func_operator);
ReleaseSysCache(func_operator);
}
stats->ltopr = ltopr;
/*
* Determine the algorithm to use (this will get more complicated
* later)
*/
if (OidIsValid(ltopr))
{
/* Seems to be a scalar datatype */
stats->algcode = ALG_SCALAR;
/*--------------------
* The following choice of minrows is based on the paper
* "Random sampling for histogram construction: how much is enough?"
* by Surajit Chaudhuri, Rajeev Motwani and Vivek Narasayya, in
* Proceedings of ACM SIGMOD International Conference on Management
* of Data, 1998, Pages 436-447. Their Corollary 1 to Theorem 5
* says that for table size n, histogram size k, maximum relative
* error in bin size f, and error probability gamma, the minimum
* random sample size is
* r = 4 * k * ln(2*n/gamma) / f^2
* Taking f = 0.5, gamma = 0.01, n = 1 million rows, we obtain
* r = 305.82 * k
* Note that because of the log function, the dependence on n is
* quite weak; even at n = 1 billion, a 300*k sample gives <= 0.59
* bin size error with probability 0.99. So there's no real need to
* scale for n, which is a good thing because we don't necessarily
* know it at this point.
*--------------------
*/
stats->minrows = 300 * stats->attr->attstattarget;
}
else
{
/* Can't do much but the minimal stuff */
stats->algcode = ALG_MINIMAL;
/* Might as well use the same minrows as above */
stats->minrows = 300 * stats->attr->attstattarget;
}
return stats;
}
/*
* acquire_sample_rows -- acquire a random sample of rows from the table
*
* Up to targrows rows are collected (if there are fewer than that many
* rows in the table, all rows are collected). When the table is larger
* than targrows, a truly random sample is collected: every row has an
* equal chance of ending up in the final sample.
*
* We also estimate the total number of rows in the table, and return that
* into *totalrows.
*
* The returned list of tuples is in order by physical position in the table.
* (We will rely on this later to derive correlation estimates.)
*/
static int
acquire_sample_rows(Relation onerel, HeapTuple *rows, int targrows,
double *totalrows)
{
int numrows = 0;
HeapScanDesc scan;
HeapTuple tuple;
ItemPointer lasttuple;
BlockNumber lastblock,
estblock;
OffsetNumber lastoffset;
int numest;
double tuplesperpage;
double t;
double rstate;
Assert(targrows > 1);
/*
* Do a simple linear scan until we reach the target number of rows.
*/
scan = heap_beginscan(onerel, SnapshotNow, 0, NULL);
while ((tuple = heap_getnext(scan, ForwardScanDirection)) != NULL)
{
rows[numrows++] = heap_copytuple(tuple);
if (numrows >= targrows)
break;
CHECK_FOR_INTERRUPTS();
}
heap_endscan(scan);
/*
* If we ran out of tuples then we're done, no matter how few we
* collected. No sort is needed, since they're already in order.
*/
if (!HeapTupleIsValid(tuple))
{
*totalrows = (double) numrows;
ereport(elevel,
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
RelationGetRelationName(onerel),
onerel->rd_nblocks, numrows, *totalrows)));
return numrows;
}
/*
* Otherwise, start replacing tuples in the sample until we reach the
* end of the relation. This algorithm is from Jeff Vitter's paper
* (see full citation below). It works by repeatedly computing the
* number of the next tuple we want to fetch, which will replace a
* randomly chosen element of the reservoir (current set of tuples).
* At all times the reservoir is a true random sample of the tuples
* we've passed over so far, so when we fall off the end of the
* relation we're done.
*
* A slight difficulty is that since we don't want to fetch tuples or
* even pages that we skip over, it's not possible to fetch *exactly*
* the N'th tuple at each step --- we don't know how many valid tuples
* are on the skipped pages. We handle this by assuming that the
* average number of valid tuples/page on the pages already scanned
* over holds good for the rest of the relation as well; this lets us
* estimate which page the next tuple should be on and its position in
* the page. Then we fetch the first valid tuple at or after that
* position, being careful not to use the same tuple twice. This
* approach should still give a good random sample, although it's not
* perfect.
*/
lasttuple = &(rows[numrows - 1]->t_self);
lastblock = ItemPointerGetBlockNumber(lasttuple);
lastoffset = ItemPointerGetOffsetNumber(lasttuple);
/*
* If possible, estimate tuples/page using only completely-scanned
* pages.
*/
for (numest = numrows; numest > 0; numest--)
{
if (ItemPointerGetBlockNumber(&(rows[numest - 1]->t_self)) != lastblock)
break;
}
if (numest == 0)
{
numest = numrows; /* don't have a full page? */
estblock = lastblock + 1;
}
else
estblock = lastblock;
tuplesperpage = (double) numest / (double) estblock;
t = (double) numrows; /* t is the # of records processed so far */
rstate = init_selection_state(targrows);
for (;;)
{
double targpos;
BlockNumber targblock;
Buffer targbuffer;
Page targpage;
OffsetNumber targoffset,
maxoffset;
CHECK_FOR_INTERRUPTS();
t = select_next_random_record(t, targrows, &rstate);
/* Try to read the t'th record in the table */
targpos = t / tuplesperpage;
targblock = (BlockNumber) targpos;
targoffset = ((int) ((targpos - targblock) * tuplesperpage)) +
FirstOffsetNumber;
/* Make sure we are past the last selected record */
if (targblock <= lastblock)
{
targblock = lastblock;
if (targoffset <= lastoffset)
targoffset = lastoffset + 1;
}
/* Loop to find first valid record at or after given position */
pageloop:;
/*
* Have we fallen off the end of the relation? (We rely on
* heap_beginscan to have updated rd_nblocks.)
*/
if (targblock >= onerel->rd_nblocks)
break;
/*
* We must maintain a pin on the target page's buffer to ensure
* that the maxoffset value stays good (else concurrent VACUUM
* might delete tuples out from under us). Hence, pin the page
* until we are done looking at it. We don't maintain a lock on
* the page, so tuples could get added to it, but we ignore such
* tuples.
*/
targbuffer = ReadBuffer(onerel, targblock);
if (!BufferIsValid(targbuffer))
elog(ERROR, "ReadBuffer failed");
LockBuffer(targbuffer, BUFFER_LOCK_SHARE);
targpage = BufferGetPage(targbuffer);
maxoffset = PageGetMaxOffsetNumber(targpage);
LockBuffer(targbuffer, BUFFER_LOCK_UNLOCK);
for (;;)
{
HeapTupleData targtuple;
Buffer tupbuffer;
if (targoffset > maxoffset)
{
/* Fell off end of this page, try next */
ReleaseBuffer(targbuffer);
targblock++;
targoffset = FirstOffsetNumber;
goto pageloop;
}
ItemPointerSet(&targtuple.t_self, targblock, targoffset);
if (heap_fetch(onerel, SnapshotNow, &targtuple, &tupbuffer,
false, NULL))
{
/*
* Found a suitable tuple, so save it, replacing one old
* tuple at random
*/
int k = (int) (targrows * random_fract());
Assert(k >= 0 && k < targrows);
heap_freetuple(rows[k]);
rows[k] = heap_copytuple(&targtuple);
/* this releases the second pin acquired by heap_fetch: */
ReleaseBuffer(tupbuffer);
/* this releases the initial pin: */
ReleaseBuffer(targbuffer);
lastblock = targblock;
lastoffset = targoffset;
break;
}
/* this tuple is dead, so advance to next one on same page */
targoffset++;
}
}
/*
* Now we need to sort the collected tuples by position (itempointer).
*/
qsort((void *) rows, numrows, sizeof(HeapTuple), compare_rows);
/*
* Estimate total number of valid rows in relation.
*/
*totalrows = floor((double) onerel->rd_nblocks * tuplesperpage + 0.5);
/*
* Emit some interesting relation info
*/
ereport(elevel,
(errmsg("\"%s\": %u pages, %d rows sampled, %.0f estimated total rows",
RelationGetRelationName(onerel),
onerel->rd_nblocks, numrows, *totalrows)));
return numrows;
}
/* Select a random value R uniformly distributed in 0 < R < 1 */
static double
random_fract(void)
{
long z;
/* random() can produce endpoint values, try again if so */
do
{
z = random();
} while (z <= 0 || z >= MAX_RANDOM_VALUE);
return (double) z / (double) MAX_RANDOM_VALUE;
}
/*
* These two routines embody Algorithm Z from "Random sampling with a
* reservoir" by Jeffrey S. Vitter, in ACM Trans. Math. Softw. 11, 1
* (Mar. 1985), Pages 37-57. While Vitter describes his algorithm in terms
* of the count S of records to skip before processing another record,
* it is convenient to work primarily with t, the index (counting from 1)
* of the last record processed and next record to process. The only extra
* state needed between calls is W, a random state variable.
*
* Note: the original algorithm defines t, S, numer, and denom as integers.
* Here we express them as doubles to avoid overflow if the number of rows
* in the table exceeds INT_MAX. The algorithm should work as long as the
* row count does not become so large that it is not represented accurately
* in a double (on IEEE-math machines this would be around 2^52 rows).
*
* init_selection_state computes the initial W value.
*
* Given that we've already processed t records (t >= n),
* select_next_random_record determines the number of the next record to
* process.
*/
static double
init_selection_state(int n)
{
/* Initial value of W (for use when Algorithm Z is first applied) */
return exp(-log(random_fract()) / n);
}
static double
select_next_random_record(double t, int n, double *stateptr)
{
/* The magic constant here is T from Vitter's paper */
if (t <= (22.0 * n))
{
/* Process records using Algorithm X until t is large enough */
double V,
quot;
V = random_fract(); /* Generate V */
t += 1;
quot = (t - (double) n) / t;
/* Find min S satisfying (4.1) */
while (quot > V)
{
t += 1;
quot *= (t - (double) n) / t;
}
}
else
{
/* Now apply Algorithm Z */
double W = *stateptr;
double term = t - (double) n + 1;
double S;
for (;;)
{
double numer,
numer_lim,
denom;
double U,
X,
lhs,
rhs,
y,
tmp;
/* Generate U and X */
U = random_fract();
X = t * (W - 1.0);
S = floor(X); /* S is tentatively set to floor(X) */
/* Test if U <= h(S)/cg(X) in the manner of (6.3) */
tmp = (t + 1) / term;
lhs = exp(log(((U * tmp * tmp) * (term + S)) / (t + X)) / n);
rhs = (((t + X) / (term + S)) * term) / t;
if (lhs <= rhs)
{
W = rhs / lhs;
break;
}
/* Test if U <= f(S)/cg(X) */
y = (((U * (t + 1)) / term) * (t + S + 1)) / (t + X);
if ((double) n < S)
{
denom = t;
numer_lim = term + S;
}
else
{
denom = t - (double) n + S;
numer_lim = t + 1;
}
for (numer = t + S; numer >= numer_lim; numer -= 1)
{
y *= numer / denom;
denom -= 1;
}
W = exp(-log(random_fract()) / n); /* Generate W in advance */
if (exp(log(y) / n) <= (t + X) / t)
break;
}
t += S + 1;
*stateptr = W;
}
return t;
}
/*
* qsort comparator for sorting rows[] array
*/
static int
compare_rows(const void *a, const void *b)
{
HeapTuple ha = *(HeapTuple *) a;
HeapTuple hb = *(HeapTuple *) b;
BlockNumber ba = ItemPointerGetBlockNumber(&ha->t_self);
OffsetNumber oa = ItemPointerGetOffsetNumber(&ha->t_self);
BlockNumber bb = ItemPointerGetBlockNumber(&hb->t_self);
OffsetNumber ob = ItemPointerGetOffsetNumber(&hb->t_self);
if (ba < bb)
return -1;
if (ba > bb)
return 1;
if (oa < ob)
return -1;
if (oa > ob)
return 1;
return 0;
}
/*
* compute_minimal_stats() -- compute minimal column statistics
*
* We use this when we can find only an "=" operator for the datatype.
*
* We determine the fraction of non-null rows, the average width, the
* most common values, and the (estimated) number of distinct values.
*
* The most common values are determined by brute force: we keep a list
* of previously seen values, ordered by number of times seen, as we scan
* the samples. A newly seen value is inserted just after the last
* multiply-seen value, causing the bottommost (oldest) singly-seen value
* to drop off the list. The accuracy of this method, and also its cost,
* depend mainly on the length of the list we are willing to keep.
*/
static void
compute_minimal_stats(VacAttrStats *stats,
TupleDesc tupDesc, double totalrows,
HeapTuple *rows, int numrows)
{
int i;
int null_cnt = 0;
int nonnull_cnt = 0;
int toowide_cnt = 0;
double total_width = 0;
bool is_varlena = (!stats->attr->attbyval &&
stats->attr->attlen == -1);
bool is_varwidth = (!stats->attr->attbyval &&
stats->attr->attlen < 0);
FmgrInfo f_cmpeq;
typedef struct
{
Datum value;
int count;
} TrackItem;
TrackItem *track;
int track_cnt,
track_max;
int num_mcv = stats->attr->attstattarget;
/*
* We track up to 2*n values for an n-element MCV list; but at least
* 10
*/
track_max = 2 * num_mcv;
if (track_max < 10)
track_max = 10;
track = (TrackItem *) palloc(track_max * sizeof(TrackItem));
track_cnt = 0;
fmgr_info(stats->eqfunc, &f_cmpeq);
for (i = 0; i < numrows; i++)
{
HeapTuple tuple = rows[i];
Datum value;
bool isnull;
bool match;
int firstcount1,
j;
CHECK_FOR_INTERRUPTS();
value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull);
/* Check for null/nonnull */
if (isnull)
{
null_cnt++;
continue;
}
nonnull_cnt++;
/*
* If it's a variable-width field, add up widths for average width
* calculation. Note that if the value is toasted, we use the
* toasted width. We don't bother with this calculation if it's a
* fixed-width type.
*/
if (is_varlena)
{
total_width += VARSIZE(DatumGetPointer(value));
/*
* If the value is toasted, we want to detoast it just once to
* avoid repeated detoastings and resultant excess memory
* usage during the comparisons. Also, check to see if the
* value is excessively wide, and if so don't detoast at all
* --- just ignore the value.
*/
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
{
toowide_cnt++;
continue;
}
value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
else if (is_varwidth)
{
/* must be cstring */
total_width += strlen(DatumGetCString(value)) + 1;
}
/*
* See if the value matches anything we're already tracking.
*/
match = false;
firstcount1 = track_cnt;
for (j = 0; j < track_cnt; j++)
{
if (DatumGetBool(FunctionCall2(&f_cmpeq, value, track[j].value)))
{
match = true;
break;
}
if (j < firstcount1 && track[j].count == 1)
firstcount1 = j;
}
if (match)
{
/* Found a match */
track[j].count++;
/* This value may now need to "bubble up" in the track list */
while (j > 0 && track[j].count > track[j - 1].count)
{
swapDatum(track[j].value, track[j - 1].value);
swapInt(track[j].count, track[j - 1].count);
j--;
}
}
else
{
/* No match. Insert at head of count-1 list */
if (track_cnt < track_max)
track_cnt++;
for (j = track_cnt - 1; j > firstcount1; j--)
{
track[j].value = track[j - 1].value;
track[j].count = track[j - 1].count;
}
if (firstcount1 < track_cnt)
{
track[firstcount1].value = value;
track[firstcount1].count = 1;
}
}
}
/* We can only compute valid stats if we found some non-null values. */
if (nonnull_cnt > 0)
{
int nmultiple,
summultiple;
stats->stats_valid = true;
/* Do the simple null-frac and width stats */
stats->stanullfrac = (double) null_cnt / (double) numrows;
if (is_varwidth)
stats->stawidth = total_width / (double) nonnull_cnt;
else
stats->stawidth = stats->attrtype->typlen;
/* Count the number of values we found multiple times */
summultiple = 0;
for (nmultiple = 0; nmultiple < track_cnt; nmultiple++)
{
if (track[nmultiple].count == 1)
break;
summultiple += track[nmultiple].count;
}
if (nmultiple == 0)
{
/* If we found no repeated values, assume it's a unique column */
stats->stadistinct = -1.0;
}
else if (track_cnt < track_max && toowide_cnt == 0 &&
nmultiple == track_cnt)
{
/*
* Our track list includes every value in the sample, and
* every value appeared more than once. Assume the column has
* just these values.
*/
stats->stadistinct = track_cnt;
}
else
{
/*----------
* Estimate the number of distinct values using the estimator
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
* n*d / (n - f1 + f1*n/N)
* where f1 is the number of distinct values that occurred
* exactly once in our sample of n rows (from a total of N),
* and d is the total number of distinct values in the sample.
* This is their Duj1 estimator; the other estimators they
* recommend are considerably more complex, and are numerically
* very unstable when n is much smaller than N.
*
* We assume (not very reliably!) that all the multiply-occurring
* values are reflected in the final track[] list, and the other
* nonnull values all appeared but once. (XXX this usually
* results in a drastic overestimate of ndistinct. Can we do
* any better?)
*----------
*/
int f1 = nonnull_cnt - summultiple;
int d = f1 + nmultiple;
double numer,
denom,
stadistinct;
numer = (double) numrows *(double) d;
denom = (double) (numrows - f1) +
(double) f1 *(double) numrows / totalrows;
stadistinct = numer / denom;
/* Clamp to sane range in case of roundoff error */
if (stadistinct < (double) d)
stadistinct = (double) d;
if (stadistinct > totalrows)
stadistinct = totalrows;
stats->stadistinct = floor(stadistinct + 0.5);
}
/*
* If we estimated the number of distinct values at more than 10%
* of the total row count (a very arbitrary limit), then assume
* that stadistinct should scale with the row count rather than be
* a fixed value.
*/
if (stats->stadistinct > 0.1 * totalrows)
stats->stadistinct = -(stats->stadistinct / totalrows);
/*
* Decide how many values are worth storing as most-common values.
* If we are able to generate a complete MCV list (all the values
* in the sample will fit, and we think these are all the ones in
* the table), then do so. Otherwise, store only those values
* that are significantly more common than the (estimated)
* average. We set the threshold rather arbitrarily at 25% more
* than average, with at least 2 instances in the sample.
*/
if (track_cnt < track_max && toowide_cnt == 0 &&
stats->stadistinct > 0 &&
track_cnt <= num_mcv)
{
/* Track list includes all values seen, and all will fit */
num_mcv = track_cnt;
}
else
{
double ndistinct = stats->stadistinct;
double avgcount,
mincount;
if (ndistinct < 0)
ndistinct = -ndistinct * totalrows;
/* estimate # of occurrences in sample of a typical value */
avgcount = (double) numrows / ndistinct;
/* set minimum threshold count to store a value */
mincount = avgcount * 1.25;
if (mincount < 2)
mincount = 2;
if (num_mcv > track_cnt)
num_mcv = track_cnt;
for (i = 0; i < num_mcv; i++)
{
if (track[i].count < mincount)
{
num_mcv = i;
break;
}
}
}
/* Generate MCV slot entry */
if (num_mcv > 0)
{
MemoryContext old_context;
Datum *mcv_values;
float4 *mcv_freqs;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(anl_context);
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
for (i = 0; i < num_mcv; i++)
{
mcv_values[i] = datumCopy(track[i].value,
stats->attr->attbyval,
stats->attr->attlen);
mcv_freqs[i] = (double) track[i].count / (double) numrows;
}
MemoryContextSwitchTo(old_context);
stats->stakind[0] = STATISTIC_KIND_MCV;
stats->staop[0] = stats->eqopr;
stats->stanumbers[0] = mcv_freqs;
stats->numnumbers[0] = num_mcv;
stats->stavalues[0] = mcv_values;
stats->numvalues[0] = num_mcv;
}
}
/* We don't need to bother cleaning up any of our temporary palloc's */
}
/*
* compute_scalar_stats() -- compute column statistics
*
* We use this when we can find "=" and "<" operators for the datatype.
*
* We determine the fraction of non-null rows, the average width, the
* most common values, the (estimated) number of distinct values, the
* distribution histogram, and the correlation of physical to logical order.
*
* The desired stats can be determined fairly easily after sorting the
* data values into order.
*/
static void
compute_scalar_stats(VacAttrStats *stats,
TupleDesc tupDesc, double totalrows,
HeapTuple *rows, int numrows)
{
int i;
int null_cnt = 0;
int nonnull_cnt = 0;
int toowide_cnt = 0;
double total_width = 0;
bool is_varlena = (!stats->attr->attbyval &&
stats->attr->attlen == -1);
bool is_varwidth = (!stats->attr->attbyval &&
stats->attr->attlen < 0);
double corr_xysum;
RegProcedure cmpFn;
SortFunctionKind cmpFnKind;
FmgrInfo f_cmpfn;
ScalarItem *values;
int values_cnt = 0;
int *tupnoLink;
ScalarMCVItem *track;
int track_cnt = 0;
int num_mcv = stats->attr->attstattarget;
int num_bins = stats->attr->attstattarget;
values = (ScalarItem *) palloc(numrows * sizeof(ScalarItem));
tupnoLink = (int *) palloc(numrows * sizeof(int));
track = (ScalarMCVItem *) palloc(num_mcv * sizeof(ScalarMCVItem));
SelectSortFunction(stats->ltopr, &cmpFn, &cmpFnKind);
fmgr_info(cmpFn, &f_cmpfn);
/* Initial scan to find sortable values */
for (i = 0; i < numrows; i++)
{
HeapTuple tuple = rows[i];
Datum value;
bool isnull;
CHECK_FOR_INTERRUPTS();
value = heap_getattr(tuple, stats->attnum, tupDesc, &isnull);
/* Check for null/nonnull */
if (isnull)
{
null_cnt++;
continue;
}
nonnull_cnt++;
/*
* If it's a variable-width field, add up widths for average width
* calculation. Note that if the value is toasted, we use the
* toasted width. We don't bother with this calculation if it's a
* fixed-width type.
*/
if (is_varlena)
{
total_width += VARSIZE(DatumGetPointer(value));
/*
* If the value is toasted, we want to detoast it just once to
* avoid repeated detoastings and resultant excess memory
* usage during the comparisons. Also, check to see if the
* value is excessively wide, and if so don't detoast at all
* --- just ignore the value.
*/
if (toast_raw_datum_size(value) > WIDTH_THRESHOLD)
{
toowide_cnt++;
continue;
}
value = PointerGetDatum(PG_DETOAST_DATUM(value));
}
else if (is_varwidth)
{
/* must be cstring */
total_width += strlen(DatumGetCString(value)) + 1;
}
/* Add it to the list to be sorted */
values[values_cnt].value = value;
values[values_cnt].tupno = values_cnt;
tupnoLink[values_cnt] = values_cnt;
values_cnt++;
}
/* We can only compute valid stats if we found some sortable values. */
if (values_cnt > 0)
{
int ndistinct, /* # distinct values in sample */
nmultiple, /* # that appear multiple times */
num_hist,
dups_cnt;
int slot_idx = 0;
/* Sort the collected values */
datumCmpFn = &f_cmpfn;
datumCmpFnKind = cmpFnKind;
datumCmpTupnoLink = tupnoLink;
qsort((void *) values, values_cnt,
sizeof(ScalarItem), compare_scalars);
/*
* Now scan the values in order, find the most common ones, and
* also accumulate ordering-correlation statistics.
*
* To determine which are most common, we first have to count the
* number of duplicates of each value. The duplicates are
* adjacent in the sorted list, so a brute-force approach is to
* compare successive datum values until we find two that are not
* equal. However, that requires N-1 invocations of the datum
* comparison routine, which are completely redundant with work
* that was done during the sort. (The sort algorithm must at
* some point have compared each pair of items that are adjacent
* in the sorted order; otherwise it could not know that it's
* ordered the pair correctly.) We exploit this by having
* compare_scalars remember the highest tupno index that each
* ScalarItem has been found equal to. At the end of the sort, a
* ScalarItem's tupnoLink will still point to itself if and only
* if it is the last item of its group of duplicates (since the
* group will be ordered by tupno).
*/
corr_xysum = 0;
ndistinct = 0;
nmultiple = 0;
dups_cnt = 0;
for (i = 0; i < values_cnt; i++)
{
int tupno = values[i].tupno;
corr_xysum += ((double) i) * ((double) tupno);
dups_cnt++;
if (tupnoLink[tupno] == tupno)
{
/* Reached end of duplicates of this value */
ndistinct++;
if (dups_cnt > 1)
{
nmultiple++;
if (track_cnt < num_mcv ||
dups_cnt > track[track_cnt - 1].count)
{
/*
* Found a new item for the mcv list; find its
* position, bubbling down old items if needed.
* Loop invariant is that j points at an empty/
* replaceable slot.
*/
int j;
if (track_cnt < num_mcv)
track_cnt++;
for (j = track_cnt - 1; j > 0; j--)
{
if (dups_cnt <= track[j - 1].count)
break;
track[j].count = track[j - 1].count;
track[j].first = track[j - 1].first;
}
track[j].count = dups_cnt;
track[j].first = i + 1 - dups_cnt;
}
}
dups_cnt = 0;
}
}
stats->stats_valid = true;
/* Do the simple null-frac and width stats */
stats->stanullfrac = (double) null_cnt / (double) numrows;
if (is_varwidth)
stats->stawidth = total_width / (double) nonnull_cnt;
else
stats->stawidth = stats->attrtype->typlen;
if (nmultiple == 0)
{
/* If we found no repeated values, assume it's a unique column */
stats->stadistinct = -1.0;
}
else if (toowide_cnt == 0 && nmultiple == ndistinct)
{
/*
* Every value in the sample appeared more than once. Assume
* the column has just these values.
*/
stats->stadistinct = ndistinct;
}
else
{
/*----------
* Estimate the number of distinct values using the estimator
* proposed by Haas and Stokes in IBM Research Report RJ 10025:
* n*d / (n - f1 + f1*n/N)
* where f1 is the number of distinct values that occurred
* exactly once in our sample of n rows (from a total of N),
* and d is the total number of distinct values in the sample.
* This is their Duj1 estimator; the other estimators they
* recommend are considerably more complex, and are numerically
* very unstable when n is much smaller than N.
*
* Overwidth values are assumed to have been distinct.
*----------
*/
int f1 = ndistinct - nmultiple + toowide_cnt;
int d = f1 + nmultiple;
double numer,
denom,
stadistinct;
numer = (double) numrows *(double) d;
denom = (double) (numrows - f1) +
(double) f1 *(double) numrows / totalrows;
stadistinct = numer / denom;
/* Clamp to sane range in case of roundoff error */
if (stadistinct < (double) d)
stadistinct = (double) d;
if (stadistinct > totalrows)
stadistinct = totalrows;
stats->stadistinct = floor(stadistinct + 0.5);
}
/*
* If we estimated the number of distinct values at more than 10%
* of the total row count (a very arbitrary limit), then assume
* that stadistinct should scale with the row count rather than be
* a fixed value.
*/
if (stats->stadistinct > 0.1 * totalrows)
stats->stadistinct = -(stats->stadistinct / totalrows);
/*
* Decide how many values are worth storing as most-common values.
* If we are able to generate a complete MCV list (all the values
* in the sample will fit, and we think these are all the ones in
* the table), then do so. Otherwise, store only those values
* that are significantly more common than the (estimated)
* average. We set the threshold rather arbitrarily at 25% more
* than average, with at least 2 instances in the sample. Also,
* we won't suppress values that have a frequency of at least 1/K
* where K is the intended number of histogram bins; such values
* might otherwise cause us to emit duplicate histogram bin
* boundaries.
*/
if (track_cnt == ndistinct && toowide_cnt == 0 &&
stats->stadistinct > 0 &&
track_cnt <= num_mcv)
{
/* Track list includes all values seen, and all will fit */
num_mcv = track_cnt;
}
else
{
double ndistinct = stats->stadistinct;
double avgcount,
mincount,
maxmincount;
if (ndistinct < 0)
ndistinct = -ndistinct * totalrows;
/* estimate # of occurrences in sample of a typical value */
avgcount = (double) numrows / ndistinct;
/* set minimum threshold count to store a value */
mincount = avgcount * 1.25;
if (mincount < 2)
mincount = 2;
/* don't let threshold exceed 1/K, however */
maxmincount = (double) numrows / (double) num_bins;
if (mincount > maxmincount)
mincount = maxmincount;
if (num_mcv > track_cnt)
num_mcv = track_cnt;
for (i = 0; i < num_mcv; i++)
{
if (track[i].count < mincount)
{
num_mcv = i;
break;
}
}
}
/* Generate MCV slot entry */
if (num_mcv > 0)
{
MemoryContext old_context;
Datum *mcv_values;
float4 *mcv_freqs;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(anl_context);
mcv_values = (Datum *) palloc(num_mcv * sizeof(Datum));
mcv_freqs = (float4 *) palloc(num_mcv * sizeof(float4));
for (i = 0; i < num_mcv; i++)
{
mcv_values[i] = datumCopy(values[track[i].first].value,
stats->attr->attbyval,
stats->attr->attlen);
mcv_freqs[i] = (double) track[i].count / (double) numrows;
}
MemoryContextSwitchTo(old_context);
stats->stakind[slot_idx] = STATISTIC_KIND_MCV;
stats->staop[slot_idx] = stats->eqopr;
stats->stanumbers[slot_idx] = mcv_freqs;
stats->numnumbers[slot_idx] = num_mcv;
stats->stavalues[slot_idx] = mcv_values;
stats->numvalues[slot_idx] = num_mcv;
slot_idx++;
}
/*
* Generate a histogram slot entry if there are at least two
* distinct values not accounted for in the MCV list. (This
* ensures the histogram won't collapse to empty or a singleton.)
*/
num_hist = ndistinct - num_mcv;
if (num_hist > num_bins)
num_hist = num_bins + 1;
if (num_hist >= 2)
{
MemoryContext old_context;
Datum *hist_values;
int nvals;
/* Sort the MCV items into position order to speed next loop */
qsort((void *) track, num_mcv,
sizeof(ScalarMCVItem), compare_mcvs);
/*
* Collapse out the MCV items from the values[] array.
*
* Note we destroy the values[] array here... but we don't need
* it for anything more. We do, however, still need
* values_cnt. nvals will be the number of remaining entries
* in values[].
*/
if (num_mcv > 0)
{
int src,
dest;
int j;
src = dest = 0;
j = 0; /* index of next interesting MCV item */
while (src < values_cnt)
{
int ncopy;
if (j < num_mcv)
{
int first = track[j].first;
if (src >= first)
{
/* advance past this MCV item */
src = first + track[j].count;
j++;
continue;
}
ncopy = first - src;
}
else
ncopy = values_cnt - src;
memmove(&values[dest], &values[src],
ncopy * sizeof(ScalarItem));
src += ncopy;
dest += ncopy;
}
nvals = dest;
}
else
nvals = values_cnt;
Assert(nvals >= num_hist);
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(anl_context);
hist_values = (Datum *) palloc(num_hist * sizeof(Datum));
for (i = 0; i < num_hist; i++)
{
int pos;
pos = (i * (nvals - 1)) / (num_hist - 1);
hist_values[i] = datumCopy(values[pos].value,
stats->attr->attbyval,
stats->attr->attlen);
}
MemoryContextSwitchTo(old_context);
stats->stakind[slot_idx] = STATISTIC_KIND_HISTOGRAM;
stats->staop[slot_idx] = stats->ltopr;
stats->stavalues[slot_idx] = hist_values;
stats->numvalues[slot_idx] = num_hist;
slot_idx++;
}
/* Generate a correlation entry if there are multiple values */
if (values_cnt > 1)
{
MemoryContext old_context;
float4 *corrs;
double corr_xsum,
corr_x2sum;
/* Must copy the target values into anl_context */
old_context = MemoryContextSwitchTo(anl_context);
corrs = (float4 *) palloc(sizeof(float4));
MemoryContextSwitchTo(old_context);
/*----------
* Since we know the x and y value sets are both
* 0, 1, ..., values_cnt-1
* we have sum(x) = sum(y) =
* (values_cnt-1)*values_cnt / 2
* and sum(x^2) = sum(y^2) =
* (values_cnt-1)*values_cnt*(2*values_cnt-1) / 6.
*----------
*/
corr_xsum = ((double) (values_cnt - 1)) *
((double) values_cnt) / 2.0;
corr_x2sum = ((double) (values_cnt - 1)) *
((double) values_cnt) * (double) (2 * values_cnt - 1) / 6.0;
/* And the correlation coefficient reduces to */
corrs[0] = (values_cnt * corr_xysum - corr_xsum * corr_xsum) /
(values_cnt * corr_x2sum - corr_xsum * corr_xsum);
stats->stakind[slot_idx] = STATISTIC_KIND_CORRELATION;
stats->staop[slot_idx] = stats->ltopr;
stats->stanumbers[slot_idx] = corrs;
stats->numnumbers[slot_idx] = 1;
slot_idx++;
}
}
/* We don't need to bother cleaning up any of our temporary palloc's */
}
/*
* qsort comparator for sorting ScalarItems
*
* Aside from sorting the items, we update the datumCmpTupnoLink[] array
* whenever two ScalarItems are found to contain equal datums. The array
* is indexed by tupno; for each ScalarItem, it contains the highest
* tupno that that item's datum has been found to be equal to. This allows
* us to avoid additional comparisons in compute_scalar_stats().
*/
static int
compare_scalars(const void *a, const void *b)
{
Datum da = ((ScalarItem *) a)->value;
int ta = ((ScalarItem *) a)->tupno;
Datum db = ((ScalarItem *) b)->value;
int tb = ((ScalarItem *) b)->tupno;
int32 compare;
compare = ApplySortFunction(datumCmpFn, datumCmpFnKind,
da, false, db, false);
if (compare != 0)
return compare;
/*
* The two datums are equal, so update datumCmpTupnoLink[].
*/
if (datumCmpTupnoLink[ta] < tb)
datumCmpTupnoLink[ta] = tb;
if (datumCmpTupnoLink[tb] < ta)
datumCmpTupnoLink[tb] = ta;
/*
* For equal datums, sort by tupno
*/
return ta - tb;
}
/*
* qsort comparator for sorting ScalarMCVItems by position
*/
static int
compare_mcvs(const void *a, const void *b)
{
int da = ((ScalarMCVItem *) a)->first;
int db = ((ScalarMCVItem *) b)->first;
return da - db;
}
/*
* update_attstats() -- update attribute statistics for one relation
*
* Statistics are stored in several places: the pg_class row for the
* relation has stats about the whole relation, and there is a
* pg_statistic row for each (non-system) attribute that has ever
* been analyzed. The pg_class values are updated by VACUUM, not here.
*
* pg_statistic rows are just added or updated normally. This means
* that pg_statistic will probably contain some deleted rows at the
* completion of a vacuum cycle, unless it happens to get vacuumed last.
*
* To keep things simple, we punt for pg_statistic, and don't try
* to compute or store rows for pg_statistic itself in pg_statistic.
* This could possibly be made to work, but it's not worth the trouble.
* Note analyze_rel() has seen to it that we won't come here when
* vacuuming pg_statistic itself.
*
* Note: if two backends concurrently try to analyze the same relation,
* the second one is likely to fail here with a "tuple concurrently
* updated" error. This is slightly annoying, but no real harm is done.
* We could prevent the problem by using a stronger lock on the
* relation for ANALYZE (ie, ShareUpdateExclusiveLock instead
* of AccessShareLock); but that cure seems worse than the disease,
* especially now that ANALYZE doesn't start a new transaction
* for each relation. The lock could be held for a long time...
*/
static void
update_attstats(Oid relid, int natts, VacAttrStats **vacattrstats)
{
Relation sd;
int attno;
sd = heap_openr(StatisticRelationName, RowExclusiveLock);
for (attno = 0; attno < natts; attno++)
{
VacAttrStats *stats = vacattrstats[attno];
HeapTuple stup,
oldtup;
int i,
k,
n;
Datum values[Natts_pg_statistic];
char nulls[Natts_pg_statistic];
char replaces[Natts_pg_statistic];
/* Ignore attr if we weren't able to collect stats */
if (!stats->stats_valid)
continue;
/*
* Construct a new pg_statistic tuple
*/
for (i = 0; i < Natts_pg_statistic; ++i)
{
nulls[i] = ' ';
replaces[i] = 'r';
}
i = 0;
values[i++] = ObjectIdGetDatum(relid); /* starelid */
values[i++] = Int16GetDatum(stats->attnum); /* staattnum */
values[i++] = Float4GetDatum(stats->stanullfrac); /* stanullfrac */
values[i++] = Int32GetDatum(stats->stawidth); /* stawidth */
values[i++] = Float4GetDatum(stats->stadistinct); /* stadistinct */
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
values[i++] = Int16GetDatum(stats->stakind[k]); /* stakindN */
}
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
values[i++] = ObjectIdGetDatum(stats->staop[k]); /* staopN */
}
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
int nnum = stats->numnumbers[k];
if (nnum > 0)
{
Datum *numdatums = (Datum *) palloc(nnum * sizeof(Datum));
ArrayType *arry;
for (n = 0; n < nnum; n++)
numdatums[n] = Float4GetDatum(stats->stanumbers[k][n]);
/* XXX knows more than it should about type float4: */
arry = construct_array(numdatums, nnum,
FLOAT4OID,
sizeof(float4), false, 'i');
values[i++] = PointerGetDatum(arry); /* stanumbersN */
}
else
{
nulls[i] = 'n';
values[i++] = (Datum) 0;
}
}
for (k = 0; k < STATISTIC_NUM_SLOTS; k++)
{
if (stats->numvalues[k] > 0)
{
ArrayType *arry;
arry = construct_array(stats->stavalues[k],
stats->numvalues[k],
stats->attr->atttypid,
stats->attrtype->typlen,
stats->attrtype->typbyval,
stats->attrtype->typalign);
values[i++] = PointerGetDatum(arry); /* stavaluesN */
}
else
{
nulls[i] = 'n';
values[i++] = (Datum) 0;
}
}
/* Is there already a pg_statistic tuple for this attribute? */
oldtup = SearchSysCache(STATRELATT,
ObjectIdGetDatum(relid),
Int16GetDatum(stats->attnum),
0, 0);
if (HeapTupleIsValid(oldtup))
{
/* Yes, replace it */
stup = heap_modifytuple(oldtup,
sd,
values,
nulls,
replaces);
ReleaseSysCache(oldtup);
simple_heap_update(sd, &stup->t_self, stup);
}
else
{
/* No, insert new tuple */
stup = heap_formtuple(sd->rd_att, values, nulls);
simple_heap_insert(sd, stup);
}
/* update indexes too */
CatalogUpdateIndexes(sd, stup);
heap_freetuple(stup);
}
heap_close(sd, RowExclusiveLock);
}
|