1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
|
/*-------------------------------------------------------------------------
*
* vacuumlazy.c
* Concurrent ("lazy") vacuuming.
*
*
* The major space usage for LAZY VACUUM is storage for the array of dead tuple
* TIDs. We want to ensure we can vacuum even the very largest relations with
* finite memory space usage. To do that, we set upper bounds on the number of
* tuples we will keep track of at once.
*
* We are willing to use at most maintenance_work_mem (or perhaps
* autovacuum_work_mem) memory space to keep track of dead tuples. We
* initially allocate an array of TIDs of that size, with an upper limit that
* depends on table size (this limit ensures we don't allocate a huge area
* uselessly for vacuuming small tables). If the array threatens to overflow,
* we suspend the heap scan phase and perform a pass of index cleanup and page
* compaction, then resume the heap scan with an empty TID array.
*
* If we're processing a table with no indexes, we can just vacuum each page
* as we go; there's no need to save up multiple tuples to minimize the number
* of index scans performed. So we don't use maintenance_work_mem memory for
* the TID array, just enough to hold as many heap tuples as fit on one page.
*
*
* Portions Copyright (c) 1996-2018, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/commands/vacuumlazy.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include <math.h>
#include "access/genam.h"
#include "access/heapam.h"
#include "access/heapam_xlog.h"
#include "access/htup_details.h"
#include "access/multixact.h"
#include "access/transam.h"
#include "access/visibilitymap.h"
#include "access/xlog.h"
#include "catalog/storage.h"
#include "commands/dbcommands.h"
#include "commands/progress.h"
#include "commands/vacuum.h"
#include "miscadmin.h"
#include "pgstat.h"
#include "portability/instr_time.h"
#include "postmaster/autovacuum.h"
#include "storage/bufmgr.h"
#include "storage/freespace.h"
#include "storage/lmgr.h"
#include "utils/lsyscache.h"
#include "utils/memutils.h"
#include "utils/pg_rusage.h"
#include "utils/timestamp.h"
#include "utils/tqual.h"
/*
* Space/time tradeoff parameters: do these need to be user-tunable?
*
* To consider truncating the relation, we want there to be at least
* REL_TRUNCATE_MINIMUM or (relsize / REL_TRUNCATE_FRACTION) (whichever
* is less) potentially-freeable pages.
*/
#define REL_TRUNCATE_MINIMUM 1000
#define REL_TRUNCATE_FRACTION 16
/*
* Timing parameters for truncate locking heuristics.
*
* These were not exposed as user tunable GUC values because it didn't seem
* that the potential for improvement was great enough to merit the cost of
* supporting them.
*/
#define VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL 20 /* ms */
#define VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL 50 /* ms */
#define VACUUM_TRUNCATE_LOCK_TIMEOUT 5000 /* ms */
/*
* When a table has no indexes, vacuum the FSM after every 8GB, approximately
* (it won't be exact because we only vacuum FSM after processing a heap page
* that has some removable tuples). When there are indexes, this is ignored,
* and we vacuum FSM after each index/heap cleaning pass.
*/
#define VACUUM_FSM_EVERY_PAGES \
((BlockNumber) (((uint64) 8 * 1024 * 1024 * 1024) / BLCKSZ))
/*
* Guesstimation of number of dead tuples per page. This is used to
* provide an upper limit to memory allocated when vacuuming small
* tables.
*/
#define LAZY_ALLOC_TUPLES MaxHeapTuplesPerPage
/*
* Before we consider skipping a page that's marked as clean in
* visibility map, we must've seen at least this many clean pages.
*/
#define SKIP_PAGES_THRESHOLD ((BlockNumber) 32)
/*
* Size of the prefetch window for lazy vacuum backwards truncation scan.
* Needs to be a power of 2.
*/
#define PREFETCH_SIZE ((BlockNumber) 32)
typedef struct LVRelStats
{
/* hasindex = true means two-pass strategy; false means one-pass */
bool hasindex;
/* Overall statistics about rel */
BlockNumber old_rel_pages; /* previous value of pg_class.relpages */
BlockNumber rel_pages; /* total number of pages */
BlockNumber scanned_pages; /* number of pages we examined */
BlockNumber pinskipped_pages; /* # of pages we skipped due to a pin */
BlockNumber frozenskipped_pages; /* # of frozen pages we skipped */
BlockNumber tupcount_pages; /* pages whose tuples we counted */
double old_live_tuples; /* previous value of pg_class.reltuples */
double new_rel_tuples; /* new estimated total # of tuples */
double new_live_tuples; /* new estimated total # of live tuples */
double new_dead_tuples; /* new estimated total # of dead tuples */
BlockNumber pages_removed;
double tuples_deleted;
BlockNumber nonempty_pages; /* actually, last nonempty page + 1 */
/* List of TIDs of tuples we intend to delete */
/* NB: this list is ordered by TID address */
int num_dead_tuples; /* current # of entries */
int max_dead_tuples; /* # slots allocated in array */
ItemPointer dead_tuples; /* array of ItemPointerData */
int num_index_scans;
TransactionId latestRemovedXid;
bool lock_waiter_detected;
} LVRelStats;
/* A few variables that don't seem worth passing around as parameters */
static int elevel = -1;
static TransactionId OldestXmin;
static TransactionId FreezeLimit;
static MultiXactId MultiXactCutoff;
static BufferAccessStrategy vac_strategy;
/* non-export function prototypes */
static void lazy_scan_heap(Relation onerel, int options,
LVRelStats *vacrelstats, Relation *Irel, int nindexes,
bool aggressive);
static void lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats);
static bool lazy_check_needs_freeze(Buffer buf, bool *hastup);
static void lazy_vacuum_index(Relation indrel,
IndexBulkDeleteResult **stats,
LVRelStats *vacrelstats);
static void lazy_cleanup_index(Relation indrel,
IndexBulkDeleteResult *stats,
LVRelStats *vacrelstats);
static int lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
int tupindex, LVRelStats *vacrelstats, Buffer *vmbuffer);
static bool should_attempt_truncation(LVRelStats *vacrelstats);
static void lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats);
static BlockNumber count_nondeletable_pages(Relation onerel,
LVRelStats *vacrelstats);
static void lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks);
static void lazy_record_dead_tuple(LVRelStats *vacrelstats,
ItemPointer itemptr);
static bool lazy_tid_reaped(ItemPointer itemptr, void *state);
static int vac_cmp_itemptr(const void *left, const void *right);
static bool heap_page_is_all_visible(Relation rel, Buffer buf,
TransactionId *visibility_cutoff_xid, bool *all_frozen);
/*
* lazy_vacuum_rel() -- perform LAZY VACUUM for one heap relation
*
* This routine vacuums a single heap, cleans out its indexes, and
* updates its relpages and reltuples statistics.
*
* At entry, we have already established a transaction and opened
* and locked the relation.
*/
void
lazy_vacuum_rel(Relation onerel, int options, VacuumParams *params,
BufferAccessStrategy bstrategy)
{
LVRelStats *vacrelstats;
Relation *Irel;
int nindexes;
PGRUsage ru0;
TimestampTz starttime = 0;
long secs;
int usecs;
double read_rate,
write_rate;
bool aggressive; /* should we scan all unfrozen pages? */
bool scanned_all_unfrozen; /* actually scanned all such pages? */
TransactionId xidFullScanLimit;
MultiXactId mxactFullScanLimit;
BlockNumber new_rel_pages;
BlockNumber new_rel_allvisible;
double new_live_tuples;
TransactionId new_frozen_xid;
MultiXactId new_min_multi;
Assert(params != NULL);
/* measure elapsed time iff autovacuum logging requires it */
if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
{
pg_rusage_init(&ru0);
starttime = GetCurrentTimestamp();
}
if (options & VACOPT_VERBOSE)
elevel = INFO;
else
elevel = DEBUG2;
pgstat_progress_start_command(PROGRESS_COMMAND_VACUUM,
RelationGetRelid(onerel));
vac_strategy = bstrategy;
vacuum_set_xid_limits(onerel,
params->freeze_min_age,
params->freeze_table_age,
params->multixact_freeze_min_age,
params->multixact_freeze_table_age,
&OldestXmin, &FreezeLimit, &xidFullScanLimit,
&MultiXactCutoff, &mxactFullScanLimit);
/*
* We request an aggressive scan if the table's frozen Xid is now older
* than or equal to the requested Xid full-table scan limit; or if the
* table's minimum MultiXactId is older than or equal to the requested
* mxid full-table scan limit; or if DISABLE_PAGE_SKIPPING was specified.
*/
aggressive = TransactionIdPrecedesOrEquals(onerel->rd_rel->relfrozenxid,
xidFullScanLimit);
aggressive |= MultiXactIdPrecedesOrEquals(onerel->rd_rel->relminmxid,
mxactFullScanLimit);
if (options & VACOPT_DISABLE_PAGE_SKIPPING)
aggressive = true;
vacrelstats = (LVRelStats *) palloc0(sizeof(LVRelStats));
vacrelstats->old_rel_pages = onerel->rd_rel->relpages;
vacrelstats->old_live_tuples = onerel->rd_rel->reltuples;
vacrelstats->num_index_scans = 0;
vacrelstats->pages_removed = 0;
vacrelstats->lock_waiter_detected = false;
/* Open all indexes of the relation */
vac_open_indexes(onerel, RowExclusiveLock, &nindexes, &Irel);
vacrelstats->hasindex = (nindexes > 0);
/* Do the vacuuming */
lazy_scan_heap(onerel, options, vacrelstats, Irel, nindexes, aggressive);
/* Done with indexes */
vac_close_indexes(nindexes, Irel, NoLock);
/*
* Compute whether we actually scanned the all unfrozen pages. If we did,
* we can adjust relfrozenxid and relminmxid.
*
* NB: We need to check this before truncating the relation, because that
* will change ->rel_pages.
*/
if ((vacrelstats->scanned_pages + vacrelstats->frozenskipped_pages)
< vacrelstats->rel_pages)
{
Assert(!aggressive);
scanned_all_unfrozen = false;
}
else
scanned_all_unfrozen = true;
/*
* Optionally truncate the relation.
*/
if (should_attempt_truncation(vacrelstats))
lazy_truncate_heap(onerel, vacrelstats);
/* Report that we are now doing final cleanup */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_FINAL_CLEANUP);
/*
* Update statistics in pg_class.
*
* A corner case here is that if we scanned no pages at all because every
* page is all-visible, we should not update relpages/reltuples, because
* we have no new information to contribute. In particular this keeps us
* from replacing relpages=reltuples=0 (which means "unknown tuple
* density") with nonzero relpages and reltuples=0 (which means "zero
* tuple density") unless there's some actual evidence for the latter.
*
* It's important that we use tupcount_pages and not scanned_pages for the
* check described above; scanned_pages counts pages where we could not
* get cleanup lock, and which were processed only for frozenxid purposes.
*
* We do update relallvisible even in the corner case, since if the table
* is all-visible we'd definitely like to know that. But clamp the value
* to be not more than what we're setting relpages to.
*
* Also, don't change relfrozenxid/relminmxid if we skipped any pages,
* since then we don't know for certain that all tuples have a newer xmin.
*/
new_rel_pages = vacrelstats->rel_pages;
new_live_tuples = vacrelstats->new_live_tuples;
if (vacrelstats->tupcount_pages == 0 && new_rel_pages > 0)
{
new_rel_pages = vacrelstats->old_rel_pages;
new_live_tuples = vacrelstats->old_live_tuples;
}
visibilitymap_count(onerel, &new_rel_allvisible, NULL);
if (new_rel_allvisible > new_rel_pages)
new_rel_allvisible = new_rel_pages;
new_frozen_xid = scanned_all_unfrozen ? FreezeLimit : InvalidTransactionId;
new_min_multi = scanned_all_unfrozen ? MultiXactCutoff : InvalidMultiXactId;
vac_update_relstats(onerel,
new_rel_pages,
new_live_tuples,
new_rel_allvisible,
vacrelstats->hasindex,
new_frozen_xid,
new_min_multi,
false);
/* report results to the stats collector, too */
pgstat_report_vacuum(RelationGetRelid(onerel),
onerel->rd_rel->relisshared,
new_live_tuples,
vacrelstats->new_dead_tuples);
pgstat_progress_end_command();
/* and log the action if appropriate */
if (IsAutoVacuumWorkerProcess() && params->log_min_duration >= 0)
{
TimestampTz endtime = GetCurrentTimestamp();
if (params->log_min_duration == 0 ||
TimestampDifferenceExceeds(starttime, endtime,
params->log_min_duration))
{
StringInfoData buf;
char *msgfmt;
TimestampDifference(starttime, endtime, &secs, &usecs);
read_rate = 0;
write_rate = 0;
if ((secs > 0) || (usecs > 0))
{
read_rate = (double) BLCKSZ * VacuumPageMiss / (1024 * 1024) /
(secs + usecs / 1000000.0);
write_rate = (double) BLCKSZ * VacuumPageDirty / (1024 * 1024) /
(secs + usecs / 1000000.0);
}
/*
* This is pretty messy, but we split it up so that we can skip
* emitting individual parts of the message when not applicable.
*/
initStringInfo(&buf);
if (aggressive)
msgfmt = _("automatic aggressive vacuum of table \"%s.%s.%s\": index scans: %d\n");
else
msgfmt = _("automatic vacuum of table \"%s.%s.%s\": index scans: %d\n");
appendStringInfo(&buf, msgfmt,
get_database_name(MyDatabaseId),
get_namespace_name(RelationGetNamespace(onerel)),
RelationGetRelationName(onerel),
vacrelstats->num_index_scans);
appendStringInfo(&buf, _("pages: %u removed, %u remain, %u skipped due to pins, %u skipped frozen\n"),
vacrelstats->pages_removed,
vacrelstats->rel_pages,
vacrelstats->pinskipped_pages,
vacrelstats->frozenskipped_pages);
appendStringInfo(&buf,
_("tuples: %.0f removed, %.0f remain, %.0f are dead but not yet removable, oldest xmin: %u\n"),
vacrelstats->tuples_deleted,
vacrelstats->new_rel_tuples,
vacrelstats->new_dead_tuples,
OldestXmin);
appendStringInfo(&buf,
_("buffer usage: %d hits, %d misses, %d dirtied\n"),
VacuumPageHit,
VacuumPageMiss,
VacuumPageDirty);
appendStringInfo(&buf, _("avg read rate: %.3f MB/s, avg write rate: %.3f MB/s\n"),
read_rate, write_rate);
appendStringInfo(&buf, _("system usage: %s"), pg_rusage_show(&ru0));
ereport(LOG,
(errmsg_internal("%s", buf.data)));
pfree(buf.data);
}
}
}
/*
* For Hot Standby we need to know the highest transaction id that will
* be removed by any change. VACUUM proceeds in a number of passes so
* we need to consider how each pass operates. The first phase runs
* heap_page_prune(), which can issue XLOG_HEAP2_CLEAN records as it
* progresses - these will have a latestRemovedXid on each record.
* In some cases this removes all of the tuples to be removed, though
* often we have dead tuples with index pointers so we must remember them
* for removal in phase 3. Index records for those rows are removed
* in phase 2 and index blocks do not have MVCC information attached.
* So before we can allow removal of any index tuples we need to issue
* a WAL record containing the latestRemovedXid of rows that will be
* removed in phase three. This allows recovery queries to block at the
* correct place, i.e. before phase two, rather than during phase three
* which would be after the rows have become inaccessible.
*/
static void
vacuum_log_cleanup_info(Relation rel, LVRelStats *vacrelstats)
{
/*
* Skip this for relations for which no WAL is to be written, or if we're
* not trying to support archive recovery.
*/
if (!RelationNeedsWAL(rel) || !XLogIsNeeded())
return;
/*
* No need to write the record at all unless it contains a valid value
*/
if (TransactionIdIsValid(vacrelstats->latestRemovedXid))
(void) log_heap_cleanup_info(rel->rd_node, vacrelstats->latestRemovedXid);
}
/*
* lazy_scan_heap() -- scan an open heap relation
*
* This routine prunes each page in the heap, which will among other
* things truncate dead tuples to dead line pointers, defragment the
* page, and set commit status bits (see heap_page_prune). It also builds
* lists of dead tuples and pages with free space, calculates statistics
* on the number of live tuples in the heap, and marks pages as
* all-visible if appropriate. When done, or when we run low on space for
* dead-tuple TIDs, invoke vacuuming of indexes and call lazy_vacuum_heap
* to reclaim dead line pointers.
*
* If there are no indexes then we can reclaim line pointers on the fly;
* dead line pointers need only be retained until all index pointers that
* reference them have been killed.
*/
static void
lazy_scan_heap(Relation onerel, int options, LVRelStats *vacrelstats,
Relation *Irel, int nindexes, bool aggressive)
{
BlockNumber nblocks,
blkno;
HeapTupleData tuple;
char *relname;
TransactionId relfrozenxid = onerel->rd_rel->relfrozenxid;
TransactionId relminmxid = onerel->rd_rel->relminmxid;
BlockNumber empty_pages,
vacuumed_pages,
next_fsm_block_to_vacuum;
double num_tuples, /* total number of nonremovable tuples */
live_tuples, /* live tuples (reltuples estimate) */
tups_vacuumed, /* tuples cleaned up by vacuum */
nkeep, /* dead-but-not-removable tuples */
nunused; /* unused item pointers */
IndexBulkDeleteResult **indstats;
int i;
PGRUsage ru0;
Buffer vmbuffer = InvalidBuffer;
BlockNumber next_unskippable_block;
bool skipping_blocks;
xl_heap_freeze_tuple *frozen;
StringInfoData buf;
const int initprog_index[] = {
PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_TOTAL_HEAP_BLKS,
PROGRESS_VACUUM_MAX_DEAD_TUPLES
};
int64 initprog_val[3];
pg_rusage_init(&ru0);
relname = RelationGetRelationName(onerel);
if (aggressive)
ereport(elevel,
(errmsg("aggressively vacuuming \"%s.%s\"",
get_namespace_name(RelationGetNamespace(onerel)),
relname)));
else
ereport(elevel,
(errmsg("vacuuming \"%s.%s\"",
get_namespace_name(RelationGetNamespace(onerel)),
relname)));
empty_pages = vacuumed_pages = 0;
next_fsm_block_to_vacuum = (BlockNumber) 0;
num_tuples = live_tuples = tups_vacuumed = nkeep = nunused = 0;
indstats = (IndexBulkDeleteResult **)
palloc0(nindexes * sizeof(IndexBulkDeleteResult *));
nblocks = RelationGetNumberOfBlocks(onerel);
vacrelstats->rel_pages = nblocks;
vacrelstats->scanned_pages = 0;
vacrelstats->tupcount_pages = 0;
vacrelstats->nonempty_pages = 0;
vacrelstats->latestRemovedXid = InvalidTransactionId;
lazy_space_alloc(vacrelstats, nblocks);
frozen = palloc(sizeof(xl_heap_freeze_tuple) * MaxHeapTuplesPerPage);
/* Report that we're scanning the heap, advertising total # of blocks */
initprog_val[0] = PROGRESS_VACUUM_PHASE_SCAN_HEAP;
initprog_val[1] = nblocks;
initprog_val[2] = vacrelstats->max_dead_tuples;
pgstat_progress_update_multi_param(3, initprog_index, initprog_val);
/*
* Except when aggressive is set, we want to skip pages that are
* all-visible according to the visibility map, but only when we can skip
* at least SKIP_PAGES_THRESHOLD consecutive pages. Since we're reading
* sequentially, the OS should be doing readahead for us, so there's no
* gain in skipping a page now and then; that's likely to disable
* readahead and so be counterproductive. Also, skipping even a single
* page means that we can't update relfrozenxid, so we only want to do it
* if we can skip a goodly number of pages.
*
* When aggressive is set, we can't skip pages just because they are
* all-visible, but we can still skip pages that are all-frozen, since
* such pages do not need freezing and do not affect the value that we can
* safely set for relfrozenxid or relminmxid.
*
* Before entering the main loop, establish the invariant that
* next_unskippable_block is the next block number >= blkno that we can't
* skip based on the visibility map, either all-visible for a regular scan
* or all-frozen for an aggressive scan. We set it to nblocks if there's
* no such block. We also set up the skipping_blocks flag correctly at
* this stage.
*
* Note: The value returned by visibilitymap_get_status could be slightly
* out-of-date, since we make this test before reading the corresponding
* heap page or locking the buffer. This is OK. If we mistakenly think
* that the page is all-visible or all-frozen when in fact the flag's just
* been cleared, we might fail to vacuum the page. It's easy to see that
* skipping a page when aggressive is not set is not a very big deal; we
* might leave some dead tuples lying around, but the next vacuum will
* find them. But even when aggressive *is* set, it's still OK if we miss
* a page whose all-frozen marking has just been cleared. Any new XIDs
* just added to that page are necessarily newer than the GlobalXmin we
* computed, so they'll have no effect on the value to which we can safely
* set relfrozenxid. A similar argument applies for MXIDs and relminmxid.
*
* We will scan the table's last page, at least to the extent of
* determining whether it has tuples or not, even if it should be skipped
* according to the above rules; except when we've already determined that
* it's not worth trying to truncate the table. This avoids having
* lazy_truncate_heap() take access-exclusive lock on the table to attempt
* a truncation that just fails immediately because there are tuples in
* the last page. This is worth avoiding mainly because such a lock must
* be replayed on any hot standby, where it can be disruptive.
*/
next_unskippable_block = 0;
if ((options & VACOPT_DISABLE_PAGE_SKIPPING) == 0)
{
while (next_unskippable_block < nblocks)
{
uint8 vmstatus;
vmstatus = visibilitymap_get_status(onerel, next_unskippable_block,
&vmbuffer);
if (aggressive)
{
if ((vmstatus & VISIBILITYMAP_ALL_FROZEN) == 0)
break;
}
else
{
if ((vmstatus & VISIBILITYMAP_ALL_VISIBLE) == 0)
break;
}
vacuum_delay_point();
next_unskippable_block++;
}
}
if (next_unskippable_block >= SKIP_PAGES_THRESHOLD)
skipping_blocks = true;
else
skipping_blocks = false;
for (blkno = 0; blkno < nblocks; blkno++)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
bool tupgone,
hastup;
int prev_dead_count;
int nfrozen;
Size freespace;
bool all_visible_according_to_vm = false;
bool all_visible;
bool all_frozen = true; /* provided all_visible is also true */
bool has_dead_tuples;
TransactionId visibility_cutoff_xid = InvalidTransactionId;
/* see note above about forcing scanning of last page */
#define FORCE_CHECK_PAGE() \
(blkno == nblocks - 1 && should_attempt_truncation(vacrelstats))
pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_SCANNED, blkno);
if (blkno == next_unskippable_block)
{
/* Time to advance next_unskippable_block */
next_unskippable_block++;
if ((options & VACOPT_DISABLE_PAGE_SKIPPING) == 0)
{
while (next_unskippable_block < nblocks)
{
uint8 vmskipflags;
vmskipflags = visibilitymap_get_status(onerel,
next_unskippable_block,
&vmbuffer);
if (aggressive)
{
if ((vmskipflags & VISIBILITYMAP_ALL_FROZEN) == 0)
break;
}
else
{
if ((vmskipflags & VISIBILITYMAP_ALL_VISIBLE) == 0)
break;
}
vacuum_delay_point();
next_unskippable_block++;
}
}
/*
* We know we can't skip the current block. But set up
* skipping_blocks to do the right thing at the following blocks.
*/
if (next_unskippable_block - blkno > SKIP_PAGES_THRESHOLD)
skipping_blocks = true;
else
skipping_blocks = false;
/*
* Normally, the fact that we can't skip this block must mean that
* it's not all-visible. But in an aggressive vacuum we know only
* that it's not all-frozen, so it might still be all-visible.
*/
if (aggressive && VM_ALL_VISIBLE(onerel, blkno, &vmbuffer))
all_visible_according_to_vm = true;
}
else
{
/*
* The current block is potentially skippable; if we've seen a
* long enough run of skippable blocks to justify skipping it, and
* we're not forced to check it, then go ahead and skip.
* Otherwise, the page must be at least all-visible if not
* all-frozen, so we can set all_visible_according_to_vm = true.
*/
if (skipping_blocks && !FORCE_CHECK_PAGE())
{
/*
* Tricky, tricky. If this is in aggressive vacuum, the page
* must have been all-frozen at the time we checked whether it
* was skippable, but it might not be any more. We must be
* careful to count it as a skipped all-frozen page in that
* case, or else we'll think we can't update relfrozenxid and
* relminmxid. If it's not an aggressive vacuum, we don't
* know whether it was all-frozen, so we have to recheck; but
* in this case an approximate answer is OK.
*/
if (aggressive || VM_ALL_FROZEN(onerel, blkno, &vmbuffer))
vacrelstats->frozenskipped_pages++;
continue;
}
all_visible_according_to_vm = true;
}
vacuum_delay_point();
/*
* If we are close to overrunning the available space for dead-tuple
* TIDs, pause and do a cycle of vacuuming before we tackle this page.
*/
if ((vacrelstats->max_dead_tuples - vacrelstats->num_dead_tuples) < MaxHeapTuplesPerPage &&
vacrelstats->num_dead_tuples > 0)
{
const int hvp_index[] = {
PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_NUM_INDEX_VACUUMS
};
int64 hvp_val[2];
/*
* Before beginning index vacuuming, we release any pin we may
* hold on the visibility map page. This isn't necessary for
* correctness, but we do it anyway to avoid holding the pin
* across a lengthy, unrelated operation.
*/
if (BufferIsValid(vmbuffer))
{
ReleaseBuffer(vmbuffer);
vmbuffer = InvalidBuffer;
}
/* Log cleanup info before we touch indexes */
vacuum_log_cleanup_info(onerel, vacrelstats);
/* Report that we are now vacuuming indexes */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_VACUUM_INDEX);
/* Remove index entries */
for (i = 0; i < nindexes; i++)
lazy_vacuum_index(Irel[i],
&indstats[i],
vacrelstats);
/*
* Report that we are now vacuuming the heap. We also increase
* the number of index scans here; note that by using
* pgstat_progress_update_multi_param we can update both
* parameters atomically.
*/
hvp_val[0] = PROGRESS_VACUUM_PHASE_VACUUM_HEAP;
hvp_val[1] = vacrelstats->num_index_scans + 1;
pgstat_progress_update_multi_param(2, hvp_index, hvp_val);
/* Remove tuples from heap */
lazy_vacuum_heap(onerel, vacrelstats);
/*
* Forget the now-vacuumed tuples, and press on, but be careful
* not to reset latestRemovedXid since we want that value to be
* valid.
*/
vacrelstats->num_dead_tuples = 0;
vacrelstats->num_index_scans++;
/*
* Vacuum the Free Space Map to make newly-freed space visible on
* upper-level FSM pages. Note we have not yet processed blkno.
*/
FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum, blkno);
next_fsm_block_to_vacuum = blkno;
/* Report that we are once again scanning the heap */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_SCAN_HEAP);
}
/*
* Pin the visibility map page in case we need to mark the page
* all-visible. In most cases this will be very cheap, because we'll
* already have the correct page pinned anyway. However, it's
* possible that (a) next_unskippable_block is covered by a different
* VM page than the current block or (b) we released our pin and did a
* cycle of index vacuuming.
*
*/
visibilitymap_pin(onerel, blkno, &vmbuffer);
buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
RBM_NORMAL, vac_strategy);
/* We need buffer cleanup lock so that we can prune HOT chains. */
if (!ConditionalLockBufferForCleanup(buf))
{
/*
* If we're not performing an aggressive scan to guard against XID
* wraparound, and we don't want to forcibly check the page, then
* it's OK to skip vacuuming pages we get a lock conflict on. They
* will be dealt with in some future vacuum.
*/
if (!aggressive && !FORCE_CHECK_PAGE())
{
ReleaseBuffer(buf);
vacrelstats->pinskipped_pages++;
continue;
}
/*
* Read the page with share lock to see if any xids on it need to
* be frozen. If not we just skip the page, after updating our
* scan statistics. If there are some, we wait for cleanup lock.
*
* We could defer the lock request further by remembering the page
* and coming back to it later, or we could even register
* ourselves for multiple buffers and then service whichever one
* is received first. For now, this seems good enough.
*
* If we get here with aggressive false, then we're just forcibly
* checking the page, and so we don't want to insist on getting
* the lock; we only need to know if the page contains tuples, so
* that we can update nonempty_pages correctly. It's convenient
* to use lazy_check_needs_freeze() for both situations, though.
*/
LockBuffer(buf, BUFFER_LOCK_SHARE);
if (!lazy_check_needs_freeze(buf, &hastup))
{
UnlockReleaseBuffer(buf);
vacrelstats->scanned_pages++;
vacrelstats->pinskipped_pages++;
if (hastup)
vacrelstats->nonempty_pages = blkno + 1;
continue;
}
if (!aggressive)
{
/*
* Here, we must not advance scanned_pages; that would amount
* to claiming that the page contains no freezable tuples.
*/
UnlockReleaseBuffer(buf);
vacrelstats->pinskipped_pages++;
if (hastup)
vacrelstats->nonempty_pages = blkno + 1;
continue;
}
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
LockBufferForCleanup(buf);
/* drop through to normal processing */
}
vacrelstats->scanned_pages++;
vacrelstats->tupcount_pages++;
page = BufferGetPage(buf);
if (PageIsNew(page))
{
/*
* An all-zeroes page could be left over if a backend extends the
* relation but crashes before initializing the page. Reclaim such
* pages for use.
*
* We have to be careful here because we could be looking at a
* page that someone has just added to the relation and not yet
* been able to initialize (see RelationGetBufferForTuple). To
* protect against that, release the buffer lock, grab the
* relation extension lock momentarily, and re-lock the buffer. If
* the page is still uninitialized by then, it must be left over
* from a crashed backend, and we can initialize it.
*
* We don't really need the relation lock when this is a new or
* temp relation, but it's probably not worth the code space to
* check that, since this surely isn't a critical path.
*
* Note: the comparable code in vacuum.c need not worry because
* it's got exclusive lock on the whole relation.
*/
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
LockRelationForExtension(onerel, ExclusiveLock);
UnlockRelationForExtension(onerel, ExclusiveLock);
LockBufferForCleanup(buf);
if (PageIsNew(page))
{
ereport(WARNING,
(errmsg("relation \"%s\" page %u is uninitialized --- fixing",
relname, blkno)));
PageInit(page, BufferGetPageSize(buf), 0);
empty_pages++;
}
freespace = PageGetHeapFreeSpace(page);
MarkBufferDirty(buf);
UnlockReleaseBuffer(buf);
RecordPageWithFreeSpace(onerel, blkno, freespace);
continue;
}
if (PageIsEmpty(page))
{
empty_pages++;
freespace = PageGetHeapFreeSpace(page);
/* empty pages are always all-visible and all-frozen */
if (!PageIsAllVisible(page))
{
START_CRIT_SECTION();
/* mark buffer dirty before writing a WAL record */
MarkBufferDirty(buf);
/*
* It's possible that another backend has extended the heap,
* initialized the page, and then failed to WAL-log the page
* due to an ERROR. Since heap extension is not WAL-logged,
* recovery might try to replay our record setting the page
* all-visible and find that the page isn't initialized, which
* will cause a PANIC. To prevent that, check whether the
* page has been previously WAL-logged, and if not, do that
* now.
*/
if (RelationNeedsWAL(onerel) &&
PageGetLSN(page) == InvalidXLogRecPtr)
log_newpage_buffer(buf, true);
PageSetAllVisible(page);
visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr,
vmbuffer, InvalidTransactionId,
VISIBILITYMAP_ALL_VISIBLE | VISIBILITYMAP_ALL_FROZEN);
END_CRIT_SECTION();
}
UnlockReleaseBuffer(buf);
RecordPageWithFreeSpace(onerel, blkno, freespace);
continue;
}
/*
* Prune all HOT-update chains in this page.
*
* We count tuples removed by the pruning step as removed by VACUUM.
*/
tups_vacuumed += heap_page_prune(onerel, buf, OldestXmin, false,
&vacrelstats->latestRemovedXid);
/*
* Now scan the page to collect vacuumable items and check for tuples
* requiring freezing.
*/
all_visible = true;
has_dead_tuples = false;
nfrozen = 0;
hastup = false;
prev_dead_count = vacrelstats->num_dead_tuples;
maxoff = PageGetMaxOffsetNumber(page);
/*
* Note: If you change anything in the loop below, also look at
* heap_page_is_all_visible to see if that needs to be changed.
*/
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
itemid = PageGetItemId(page, offnum);
/* Unused items require no processing, but we count 'em */
if (!ItemIdIsUsed(itemid))
{
nunused += 1;
continue;
}
/* Redirect items mustn't be touched */
if (ItemIdIsRedirected(itemid))
{
hastup = true; /* this page won't be truncatable */
continue;
}
ItemPointerSet(&(tuple.t_self), blkno, offnum);
/*
* DEAD item pointers are to be vacuumed normally; but we don't
* count them in tups_vacuumed, else we'd be double-counting (at
* least in the common case where heap_page_prune() just freed up
* a non-HOT tuple).
*/
if (ItemIdIsDead(itemid))
{
lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
all_visible = false;
continue;
}
Assert(ItemIdIsNormal(itemid));
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
tuple.t_len = ItemIdGetLength(itemid);
tuple.t_tableOid = RelationGetRelid(onerel);
tupgone = false;
/*
* The criteria for counting a tuple as live in this block need to
* match what analyze.c's acquire_sample_rows() does, otherwise
* VACUUM and ANALYZE may produce wildly different reltuples
* values, e.g. when there are many recently-dead tuples.
*
* The logic here is a bit simpler than acquire_sample_rows(), as
* VACUUM can't run inside a transaction block, which makes some
* cases impossible (e.g. in-progress insert from the same
* transaction).
*/
switch (HeapTupleSatisfiesVacuum(&tuple, OldestXmin, buf))
{
case HEAPTUPLE_DEAD:
/*
* Ordinarily, DEAD tuples would have been removed by
* heap_page_prune(), but it's possible that the tuple
* state changed since heap_page_prune() looked. In
* particular an INSERT_IN_PROGRESS tuple could have
* changed to DEAD if the inserter aborted. So this
* cannot be considered an error condition.
*
* If the tuple is HOT-updated then it must only be
* removed by a prune operation; so we keep it just as if
* it were RECENTLY_DEAD. Also, if it's a heap-only
* tuple, we choose to keep it, because it'll be a lot
* cheaper to get rid of it in the next pruning pass than
* to treat it like an indexed tuple.
*
* If this were to happen for a tuple that actually needed
* to be deleted, we'd be in trouble, because it'd
* possibly leave a tuple below the relation's xmin
* horizon alive. heap_prepare_freeze_tuple() is prepared
* to detect that case and abort the transaction,
* preventing corruption.
*/
if (HeapTupleIsHotUpdated(&tuple) ||
HeapTupleIsHeapOnly(&tuple))
nkeep += 1;
else
tupgone = true; /* we can delete the tuple */
all_visible = false;
break;
case HEAPTUPLE_LIVE:
/* Tuple is good --- but let's do some validity checks */
if (onerel->rd_rel->relhasoids &&
!OidIsValid(HeapTupleGetOid(&tuple)))
elog(WARNING, "relation \"%s\" TID %u/%u: OID is invalid",
relname, blkno, offnum);
/*
* Count it as live. Not only is this natural, but it's
* also what acquire_sample_rows() does.
*/
live_tuples += 1;
/*
* Is the tuple definitely visible to all transactions?
*
* NB: Like with per-tuple hint bits, we can't set the
* PD_ALL_VISIBLE flag if the inserter committed
* asynchronously. See SetHintBits for more info. Check
* that the tuple is hinted xmin-committed because of
* that.
*/
if (all_visible)
{
TransactionId xmin;
if (!HeapTupleHeaderXminCommitted(tuple.t_data))
{
all_visible = false;
break;
}
/*
* The inserter definitely committed. But is it old
* enough that everyone sees it as committed?
*/
xmin = HeapTupleHeaderGetXmin(tuple.t_data);
if (!TransactionIdPrecedes(xmin, OldestXmin))
{
all_visible = false;
break;
}
/* Track newest xmin on page. */
if (TransactionIdFollows(xmin, visibility_cutoff_xid))
visibility_cutoff_xid = xmin;
}
break;
case HEAPTUPLE_RECENTLY_DEAD:
/*
* If tuple is recently deleted then we must not remove it
* from relation.
*/
nkeep += 1;
all_visible = false;
break;
case HEAPTUPLE_INSERT_IN_PROGRESS:
/*
* This is an expected case during concurrent vacuum.
*
* We do not count these rows as live, because we expect
* the inserting transaction to update the counters at
* commit, and we assume that will happen only after we
* report our results. This assumption is a bit shaky,
* but it is what acquire_sample_rows() does, so be
* consistent.
*/
all_visible = false;
break;
case HEAPTUPLE_DELETE_IN_PROGRESS:
/* This is an expected case during concurrent vacuum */
all_visible = false;
/*
* Count such rows as live. As above, we assume the
* deleting transaction will commit and update the
* counters after we report.
*/
live_tuples += 1;
break;
default:
elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
break;
}
if (tupgone)
{
lazy_record_dead_tuple(vacrelstats, &(tuple.t_self));
HeapTupleHeaderAdvanceLatestRemovedXid(tuple.t_data,
&vacrelstats->latestRemovedXid);
tups_vacuumed += 1;
has_dead_tuples = true;
}
else
{
bool tuple_totally_frozen;
num_tuples += 1;
hastup = true;
/*
* Each non-removable tuple must be checked to see if it needs
* freezing. Note we already have exclusive buffer lock.
*/
if (heap_prepare_freeze_tuple(tuple.t_data,
relfrozenxid, relminmxid,
FreezeLimit, MultiXactCutoff,
&frozen[nfrozen],
&tuple_totally_frozen))
frozen[nfrozen++].offset = offnum;
if (!tuple_totally_frozen)
all_frozen = false;
}
} /* scan along page */
/*
* If we froze any tuples, mark the buffer dirty, and write a WAL
* record recording the changes. We must log the changes to be
* crash-safe against future truncation of CLOG.
*/
if (nfrozen > 0)
{
START_CRIT_SECTION();
MarkBufferDirty(buf);
/* execute collected freezes */
for (i = 0; i < nfrozen; i++)
{
ItemId itemid;
HeapTupleHeader htup;
itemid = PageGetItemId(page, frozen[i].offset);
htup = (HeapTupleHeader) PageGetItem(page, itemid);
heap_execute_freeze_tuple(htup, &frozen[i]);
}
/* Now WAL-log freezing if necessary */
if (RelationNeedsWAL(onerel))
{
XLogRecPtr recptr;
recptr = log_heap_freeze(onerel, buf, FreezeLimit,
frozen, nfrozen);
PageSetLSN(page, recptr);
}
END_CRIT_SECTION();
}
/*
* If there are no indexes then we can vacuum the page right now
* instead of doing a second scan.
*/
if (nindexes == 0 &&
vacrelstats->num_dead_tuples > 0)
{
/* Remove tuples from heap */
lazy_vacuum_page(onerel, blkno, buf, 0, vacrelstats, &vmbuffer);
has_dead_tuples = false;
/*
* Forget the now-vacuumed tuples, and press on, but be careful
* not to reset latestRemovedXid since we want that value to be
* valid.
*/
vacrelstats->num_dead_tuples = 0;
vacuumed_pages++;
/*
* Periodically do incremental FSM vacuuming to make newly-freed
* space visible on upper FSM pages. Note: although we've cleaned
* the current block, we haven't yet updated its FSM entry (that
* happens further down), so passing end == blkno is correct.
*/
if (blkno - next_fsm_block_to_vacuum >= VACUUM_FSM_EVERY_PAGES)
{
FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum,
blkno);
next_fsm_block_to_vacuum = blkno;
}
}
freespace = PageGetHeapFreeSpace(page);
/* mark page all-visible, if appropriate */
if (all_visible && !all_visible_according_to_vm)
{
uint8 flags = VISIBILITYMAP_ALL_VISIBLE;
if (all_frozen)
flags |= VISIBILITYMAP_ALL_FROZEN;
/*
* It should never be the case that the visibility map page is set
* while the page-level bit is clear, but the reverse is allowed
* (if checksums are not enabled). Regardless, set the both bits
* so that we get back in sync.
*
* NB: If the heap page is all-visible but the VM bit is not set,
* we don't need to dirty the heap page. However, if checksums
* are enabled, we do need to make sure that the heap page is
* dirtied before passing it to visibilitymap_set(), because it
* may be logged. Given that this situation should only happen in
* rare cases after a crash, it is not worth optimizing.
*/
PageSetAllVisible(page);
MarkBufferDirty(buf);
visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr,
vmbuffer, visibility_cutoff_xid, flags);
}
/*
* As of PostgreSQL 9.2, the visibility map bit should never be set if
* the page-level bit is clear. However, it's possible that the bit
* got cleared after we checked it and before we took the buffer
* content lock, so we must recheck before jumping to the conclusion
* that something bad has happened.
*/
else if (all_visible_according_to_vm && !PageIsAllVisible(page)
&& VM_ALL_VISIBLE(onerel, blkno, &vmbuffer))
{
elog(WARNING, "page is not marked all-visible but visibility map bit is set in relation \"%s\" page %u",
relname, blkno);
visibilitymap_clear(onerel, blkno, vmbuffer,
VISIBILITYMAP_VALID_BITS);
}
/*
* It's possible for the value returned by GetOldestXmin() to move
* backwards, so it's not wrong for us to see tuples that appear to
* not be visible to everyone yet, while PD_ALL_VISIBLE is already
* set. The real safe xmin value never moves backwards, but
* GetOldestXmin() is conservative and sometimes returns a value
* that's unnecessarily small, so if we see that contradiction it just
* means that the tuples that we think are not visible to everyone yet
* actually are, and the PD_ALL_VISIBLE flag is correct.
*
* There should never be dead tuples on a page with PD_ALL_VISIBLE
* set, however.
*/
else if (PageIsAllVisible(page) && has_dead_tuples)
{
elog(WARNING, "page containing dead tuples is marked as all-visible in relation \"%s\" page %u",
relname, blkno);
PageClearAllVisible(page);
MarkBufferDirty(buf);
visibilitymap_clear(onerel, blkno, vmbuffer,
VISIBILITYMAP_VALID_BITS);
}
/*
* If the all-visible page is turned out to be all-frozen but not
* marked, we should so mark it. Note that all_frozen is only valid
* if all_visible is true, so we must check both.
*/
else if (all_visible_according_to_vm && all_visible && all_frozen &&
!VM_ALL_FROZEN(onerel, blkno, &vmbuffer))
{
/*
* We can pass InvalidTransactionId as the cutoff XID here,
* because setting the all-frozen bit doesn't cause recovery
* conflicts.
*/
visibilitymap_set(onerel, blkno, buf, InvalidXLogRecPtr,
vmbuffer, InvalidTransactionId,
VISIBILITYMAP_ALL_FROZEN);
}
UnlockReleaseBuffer(buf);
/* Remember the location of the last page with nonremovable tuples */
if (hastup)
vacrelstats->nonempty_pages = blkno + 1;
/*
* If we remembered any tuples for deletion, then the page will be
* visited again by lazy_vacuum_heap, which will compute and record
* its post-compaction free space. If not, then we're done with this
* page, so remember its free space as-is. (This path will always be
* taken if there are no indexes.)
*/
if (vacrelstats->num_dead_tuples == prev_dead_count)
RecordPageWithFreeSpace(onerel, blkno, freespace);
}
/* report that everything is scanned and vacuumed */
pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_SCANNED, blkno);
pfree(frozen);
/* save stats for use later */
vacrelstats->tuples_deleted = tups_vacuumed;
vacrelstats->new_dead_tuples = nkeep;
/* now we can compute the new value for pg_class.reltuples */
vacrelstats->new_live_tuples = vac_estimate_reltuples(onerel,
nblocks,
vacrelstats->tupcount_pages,
live_tuples);
/* also compute total number of surviving heap entries */
vacrelstats->new_rel_tuples =
vacrelstats->new_live_tuples + vacrelstats->new_dead_tuples;
/*
* Release any remaining pin on visibility map page.
*/
if (BufferIsValid(vmbuffer))
{
ReleaseBuffer(vmbuffer);
vmbuffer = InvalidBuffer;
}
/* If any tuples need to be deleted, perform final vacuum cycle */
/* XXX put a threshold on min number of tuples here? */
if (vacrelstats->num_dead_tuples > 0)
{
const int hvp_index[] = {
PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_NUM_INDEX_VACUUMS
};
int64 hvp_val[2];
/* Log cleanup info before we touch indexes */
vacuum_log_cleanup_info(onerel, vacrelstats);
/* Report that we are now vacuuming indexes */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_VACUUM_INDEX);
/* Remove index entries */
for (i = 0; i < nindexes; i++)
lazy_vacuum_index(Irel[i],
&indstats[i],
vacrelstats);
/* Report that we are now vacuuming the heap */
hvp_val[0] = PROGRESS_VACUUM_PHASE_VACUUM_HEAP;
hvp_val[1] = vacrelstats->num_index_scans + 1;
pgstat_progress_update_multi_param(2, hvp_index, hvp_val);
/* Remove tuples from heap */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_VACUUM_HEAP);
lazy_vacuum_heap(onerel, vacrelstats);
vacrelstats->num_index_scans++;
}
/*
* Vacuum the remainder of the Free Space Map. We must do this whether or
* not there were indexes.
*/
if (blkno > next_fsm_block_to_vacuum)
FreeSpaceMapVacuumRange(onerel, next_fsm_block_to_vacuum, blkno);
/* report all blocks vacuumed; and that we're cleaning up */
pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_VACUUMED, blkno);
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_INDEX_CLEANUP);
/* Do post-vacuum cleanup and statistics update for each index */
for (i = 0; i < nindexes; i++)
lazy_cleanup_index(Irel[i], indstats[i], vacrelstats);
/* If no indexes, make log report that lazy_vacuum_heap would've made */
if (vacuumed_pages)
ereport(elevel,
(errmsg("\"%s\": removed %.0f row versions in %u pages",
RelationGetRelationName(onerel),
tups_vacuumed, vacuumed_pages)));
/*
* This is pretty messy, but we split it up so that we can skip emitting
* individual parts of the message when not applicable.
*/
initStringInfo(&buf);
appendStringInfo(&buf,
_("%.0f dead row versions cannot be removed yet, oldest xmin: %u\n"),
nkeep, OldestXmin);
appendStringInfo(&buf, _("There were %.0f unused item pointers.\n"),
nunused);
appendStringInfo(&buf, ngettext("Skipped %u page due to buffer pins, ",
"Skipped %u pages due to buffer pins, ",
vacrelstats->pinskipped_pages),
vacrelstats->pinskipped_pages);
appendStringInfo(&buf, ngettext("%u frozen page.\n",
"%u frozen pages.\n",
vacrelstats->frozenskipped_pages),
vacrelstats->frozenskipped_pages);
appendStringInfo(&buf, ngettext("%u page is entirely empty.\n",
"%u pages are entirely empty.\n",
empty_pages),
empty_pages);
appendStringInfo(&buf, _("%s."), pg_rusage_show(&ru0));
ereport(elevel,
(errmsg("\"%s\": found %.0f removable, %.0f nonremovable row versions in %u out of %u pages",
RelationGetRelationName(onerel),
tups_vacuumed, num_tuples,
vacrelstats->scanned_pages, nblocks),
errdetail_internal("%s", buf.data)));
pfree(buf.data);
}
/*
* lazy_vacuum_heap() -- second pass over the heap
*
* This routine marks dead tuples as unused and compacts out free
* space on their pages. Pages not having dead tuples recorded from
* lazy_scan_heap are not visited at all.
*
* Note: the reason for doing this as a second pass is we cannot remove
* the tuples until we've removed their index entries, and we want to
* process index entry removal in batches as large as possible.
*/
static void
lazy_vacuum_heap(Relation onerel, LVRelStats *vacrelstats)
{
int tupindex;
int npages;
PGRUsage ru0;
Buffer vmbuffer = InvalidBuffer;
pg_rusage_init(&ru0);
npages = 0;
tupindex = 0;
while (tupindex < vacrelstats->num_dead_tuples)
{
BlockNumber tblk;
Buffer buf;
Page page;
Size freespace;
vacuum_delay_point();
tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
buf = ReadBufferExtended(onerel, MAIN_FORKNUM, tblk, RBM_NORMAL,
vac_strategy);
if (!ConditionalLockBufferForCleanup(buf))
{
ReleaseBuffer(buf);
++tupindex;
continue;
}
tupindex = lazy_vacuum_page(onerel, tblk, buf, tupindex, vacrelstats,
&vmbuffer);
/* Now that we've compacted the page, record its available space */
page = BufferGetPage(buf);
freespace = PageGetHeapFreeSpace(page);
UnlockReleaseBuffer(buf);
RecordPageWithFreeSpace(onerel, tblk, freespace);
npages++;
}
if (BufferIsValid(vmbuffer))
{
ReleaseBuffer(vmbuffer);
vmbuffer = InvalidBuffer;
}
ereport(elevel,
(errmsg("\"%s\": removed %d row versions in %d pages",
RelationGetRelationName(onerel),
tupindex, npages),
errdetail_internal("%s", pg_rusage_show(&ru0))));
}
/*
* lazy_vacuum_page() -- free dead tuples on a page
* and repair its fragmentation.
*
* Caller must hold pin and buffer cleanup lock on the buffer.
*
* tupindex is the index in vacrelstats->dead_tuples of the first dead
* tuple for this page. We assume the rest follow sequentially.
* The return value is the first tupindex after the tuples of this page.
*/
static int
lazy_vacuum_page(Relation onerel, BlockNumber blkno, Buffer buffer,
int tupindex, LVRelStats *vacrelstats, Buffer *vmbuffer)
{
Page page = BufferGetPage(buffer);
OffsetNumber unused[MaxOffsetNumber];
int uncnt = 0;
TransactionId visibility_cutoff_xid;
bool all_frozen;
pgstat_progress_update_param(PROGRESS_VACUUM_HEAP_BLKS_VACUUMED, blkno);
START_CRIT_SECTION();
for (; tupindex < vacrelstats->num_dead_tuples; tupindex++)
{
BlockNumber tblk;
OffsetNumber toff;
ItemId itemid;
tblk = ItemPointerGetBlockNumber(&vacrelstats->dead_tuples[tupindex]);
if (tblk != blkno)
break; /* past end of tuples for this block */
toff = ItemPointerGetOffsetNumber(&vacrelstats->dead_tuples[tupindex]);
itemid = PageGetItemId(page, toff);
ItemIdSetUnused(itemid);
unused[uncnt++] = toff;
}
PageRepairFragmentation(page);
/*
* Mark buffer dirty before we write WAL.
*/
MarkBufferDirty(buffer);
/* XLOG stuff */
if (RelationNeedsWAL(onerel))
{
XLogRecPtr recptr;
recptr = log_heap_clean(onerel, buffer,
NULL, 0, NULL, 0,
unused, uncnt,
vacrelstats->latestRemovedXid);
PageSetLSN(page, recptr);
}
/*
* End critical section, so we safely can do visibility tests (which
* possibly need to perform IO and allocate memory!). If we crash now the
* page (including the corresponding vm bit) might not be marked all
* visible, but that's fine. A later vacuum will fix that.
*/
END_CRIT_SECTION();
/*
* Now that we have removed the dead tuples from the page, once again
* check if the page has become all-visible. The page is already marked
* dirty, exclusively locked, and, if needed, a full page image has been
* emitted in the log_heap_clean() above.
*/
if (heap_page_is_all_visible(onerel, buffer, &visibility_cutoff_xid,
&all_frozen))
PageSetAllVisible(page);
/*
* All the changes to the heap page have been done. If the all-visible
* flag is now set, also set the VM all-visible bit (and, if possible, the
* all-frozen bit) unless this has already been done previously.
*/
if (PageIsAllVisible(page))
{
uint8 vm_status = visibilitymap_get_status(onerel, blkno, vmbuffer);
uint8 flags = 0;
/* Set the VM all-frozen bit to flag, if needed */
if ((vm_status & VISIBILITYMAP_ALL_VISIBLE) == 0)
flags |= VISIBILITYMAP_ALL_VISIBLE;
if ((vm_status & VISIBILITYMAP_ALL_FROZEN) == 0 && all_frozen)
flags |= VISIBILITYMAP_ALL_FROZEN;
Assert(BufferIsValid(*vmbuffer));
if (flags != 0)
visibilitymap_set(onerel, blkno, buffer, InvalidXLogRecPtr,
*vmbuffer, visibility_cutoff_xid, flags);
}
return tupindex;
}
/*
* lazy_check_needs_freeze() -- scan page to see if any tuples
* need to be cleaned to avoid wraparound
*
* Returns true if the page needs to be vacuumed using cleanup lock.
* Also returns a flag indicating whether page contains any tuples at all.
*/
static bool
lazy_check_needs_freeze(Buffer buf, bool *hastup)
{
Page page = BufferGetPage(buf);
OffsetNumber offnum,
maxoff;
HeapTupleHeader tupleheader;
*hastup = false;
/* If we hit an uninitialized page, we want to force vacuuming it. */
if (PageIsNew(page))
return true;
/* Quick out for ordinary empty page. */
if (PageIsEmpty(page))
return false;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
itemid = PageGetItemId(page, offnum);
/* this should match hastup test in count_nondeletable_pages() */
if (ItemIdIsUsed(itemid))
*hastup = true;
/* dead and redirect items never need freezing */
if (!ItemIdIsNormal(itemid))
continue;
tupleheader = (HeapTupleHeader) PageGetItem(page, itemid);
if (heap_tuple_needs_freeze(tupleheader, FreezeLimit,
MultiXactCutoff, buf))
return true;
} /* scan along page */
return false;
}
/*
* lazy_vacuum_index() -- vacuum one index relation.
*
* Delete all the index entries pointing to tuples listed in
* vacrelstats->dead_tuples, and update running statistics.
*/
static void
lazy_vacuum_index(Relation indrel,
IndexBulkDeleteResult **stats,
LVRelStats *vacrelstats)
{
IndexVacuumInfo ivinfo;
PGRUsage ru0;
pg_rusage_init(&ru0);
ivinfo.index = indrel;
ivinfo.analyze_only = false;
ivinfo.estimated_count = true;
ivinfo.message_level = elevel;
/* We can only provide an approximate value of num_heap_tuples here */
ivinfo.num_heap_tuples = vacrelstats->old_live_tuples;
ivinfo.strategy = vac_strategy;
/* Do bulk deletion */
*stats = index_bulk_delete(&ivinfo, *stats,
lazy_tid_reaped, (void *) vacrelstats);
ereport(elevel,
(errmsg("scanned index \"%s\" to remove %d row versions",
RelationGetRelationName(indrel),
vacrelstats->num_dead_tuples),
errdetail_internal("%s", pg_rusage_show(&ru0))));
}
/*
* lazy_cleanup_index() -- do post-vacuum cleanup for one index relation.
*/
static void
lazy_cleanup_index(Relation indrel,
IndexBulkDeleteResult *stats,
LVRelStats *vacrelstats)
{
IndexVacuumInfo ivinfo;
PGRUsage ru0;
pg_rusage_init(&ru0);
ivinfo.index = indrel;
ivinfo.analyze_only = false;
ivinfo.estimated_count = (vacrelstats->tupcount_pages < vacrelstats->rel_pages);
ivinfo.message_level = elevel;
/*
* Now we can provide a better estimate of total number of surviving
* tuples (we assume indexes are more interested in that than in the
* number of nominally live tuples).
*/
ivinfo.num_heap_tuples = vacrelstats->new_rel_tuples;
ivinfo.strategy = vac_strategy;
stats = index_vacuum_cleanup(&ivinfo, stats);
if (!stats)
return;
/*
* Now update statistics in pg_class, but only if the index says the count
* is accurate.
*/
if (!stats->estimated_count)
vac_update_relstats(indrel,
stats->num_pages,
stats->num_index_tuples,
0,
false,
InvalidTransactionId,
InvalidMultiXactId,
false);
ereport(elevel,
(errmsg("index \"%s\" now contains %.0f row versions in %u pages",
RelationGetRelationName(indrel),
stats->num_index_tuples,
stats->num_pages),
errdetail("%.0f index row versions were removed.\n"
"%u index pages have been deleted, %u are currently reusable.\n"
"%s.",
stats->tuples_removed,
stats->pages_deleted, stats->pages_free,
pg_rusage_show(&ru0))));
pfree(stats);
}
/*
* should_attempt_truncation - should we attempt to truncate the heap?
*
* Don't even think about it unless we have a shot at releasing a goodly
* number of pages. Otherwise, the time taken isn't worth it.
*
* Also don't attempt it if we are doing early pruning/vacuuming, because a
* scan which cannot find a truncated heap page cannot determine that the
* snapshot is too old to read that page. We might be able to get away with
* truncating all except one of the pages, setting its LSN to (at least) the
* maximum of the truncated range if we also treated an index leaf tuple
* pointing to a missing heap page as something to trigger the "snapshot too
* old" error, but that seems fragile and seems like it deserves its own patch
* if we consider it.
*
* This is split out so that we can test whether truncation is going to be
* called for before we actually do it. If you change the logic here, be
* careful to depend only on fields that lazy_scan_heap updates on-the-fly.
*/
static bool
should_attempt_truncation(LVRelStats *vacrelstats)
{
BlockNumber possibly_freeable;
possibly_freeable = vacrelstats->rel_pages - vacrelstats->nonempty_pages;
if (possibly_freeable > 0 &&
(possibly_freeable >= REL_TRUNCATE_MINIMUM ||
possibly_freeable >= vacrelstats->rel_pages / REL_TRUNCATE_FRACTION) &&
old_snapshot_threshold < 0)
return true;
else
return false;
}
/*
* lazy_truncate_heap - try to truncate off any empty pages at the end
*/
static void
lazy_truncate_heap(Relation onerel, LVRelStats *vacrelstats)
{
BlockNumber old_rel_pages = vacrelstats->rel_pages;
BlockNumber new_rel_pages;
int lock_retry;
/* Report that we are now truncating */
pgstat_progress_update_param(PROGRESS_VACUUM_PHASE,
PROGRESS_VACUUM_PHASE_TRUNCATE);
/*
* Loop until no more truncating can be done.
*/
do
{
PGRUsage ru0;
pg_rusage_init(&ru0);
/*
* We need full exclusive lock on the relation in order to do
* truncation. If we can't get it, give up rather than waiting --- we
* don't want to block other backends, and we don't want to deadlock
* (which is quite possible considering we already hold a lower-grade
* lock).
*/
vacrelstats->lock_waiter_detected = false;
lock_retry = 0;
while (true)
{
if (ConditionalLockRelation(onerel, AccessExclusiveLock))
break;
/*
* Check for interrupts while trying to (re-)acquire the exclusive
* lock.
*/
CHECK_FOR_INTERRUPTS();
if (++lock_retry > (VACUUM_TRUNCATE_LOCK_TIMEOUT /
VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL))
{
/*
* We failed to establish the lock in the specified number of
* retries. This means we give up truncating.
*/
vacrelstats->lock_waiter_detected = true;
ereport(elevel,
(errmsg("\"%s\": stopping truncate due to conflicting lock request",
RelationGetRelationName(onerel))));
return;
}
pg_usleep(VACUUM_TRUNCATE_LOCK_WAIT_INTERVAL * 1000L);
}
/*
* Now that we have exclusive lock, look to see if the rel has grown
* whilst we were vacuuming with non-exclusive lock. If so, give up;
* the newly added pages presumably contain non-deletable tuples.
*/
new_rel_pages = RelationGetNumberOfBlocks(onerel);
if (new_rel_pages != old_rel_pages)
{
/*
* Note: we intentionally don't update vacrelstats->rel_pages with
* the new rel size here. If we did, it would amount to assuming
* that the new pages are empty, which is unlikely. Leaving the
* numbers alone amounts to assuming that the new pages have the
* same tuple density as existing ones, which is less unlikely.
*/
UnlockRelation(onerel, AccessExclusiveLock);
return;
}
/*
* Scan backwards from the end to verify that the end pages actually
* contain no tuples. This is *necessary*, not optional, because
* other backends could have added tuples to these pages whilst we
* were vacuuming.
*/
new_rel_pages = count_nondeletable_pages(onerel, vacrelstats);
if (new_rel_pages >= old_rel_pages)
{
/* can't do anything after all */
UnlockRelation(onerel, AccessExclusiveLock);
return;
}
/*
* Okay to truncate.
*/
RelationTruncate(onerel, new_rel_pages);
/*
* We can release the exclusive lock as soon as we have truncated.
* Other backends can't safely access the relation until they have
* processed the smgr invalidation that smgrtruncate sent out ... but
* that should happen as part of standard invalidation processing once
* they acquire lock on the relation.
*/
UnlockRelation(onerel, AccessExclusiveLock);
/*
* Update statistics. Here, it *is* correct to adjust rel_pages
* without also touching reltuples, since the tuple count wasn't
* changed by the truncation.
*/
vacrelstats->pages_removed += old_rel_pages - new_rel_pages;
vacrelstats->rel_pages = new_rel_pages;
ereport(elevel,
(errmsg("\"%s\": truncated %u to %u pages",
RelationGetRelationName(onerel),
old_rel_pages, new_rel_pages),
errdetail_internal("%s",
pg_rusage_show(&ru0))));
old_rel_pages = new_rel_pages;
} while (new_rel_pages > vacrelstats->nonempty_pages &&
vacrelstats->lock_waiter_detected);
}
/*
* Rescan end pages to verify that they are (still) empty of tuples.
*
* Returns number of nondeletable pages (last nonempty page + 1).
*/
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
BlockNumber blkno;
BlockNumber prefetchedUntil;
instr_time starttime;
/* Initialize the starttime if we check for conflicting lock requests */
INSTR_TIME_SET_CURRENT(starttime);
/*
* Start checking blocks at what we believe relation end to be and move
* backwards. (Strange coding of loop control is needed because blkno is
* unsigned.) To make the scan faster, we prefetch a few blocks at a time
* in forward direction, so that OS-level readahead can kick in.
*/
blkno = vacrelstats->rel_pages;
StaticAssertStmt((PREFETCH_SIZE & (PREFETCH_SIZE - 1)) == 0,
"prefetch size must be power of 2");
prefetchedUntil = InvalidBlockNumber;
while (blkno > vacrelstats->nonempty_pages)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
bool hastup;
/*
* Check if another process requests a lock on our relation. We are
* holding an AccessExclusiveLock here, so they will be waiting. We
* only do this once per VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL, and we
* only check if that interval has elapsed once every 32 blocks to
* keep the number of system calls and actual shared lock table
* lookups to a minimum.
*/
if ((blkno % 32) == 0)
{
instr_time currenttime;
instr_time elapsed;
INSTR_TIME_SET_CURRENT(currenttime);
elapsed = currenttime;
INSTR_TIME_SUBTRACT(elapsed, starttime);
if ((INSTR_TIME_GET_MICROSEC(elapsed) / 1000)
>= VACUUM_TRUNCATE_LOCK_CHECK_INTERVAL)
{
if (LockHasWaitersRelation(onerel, AccessExclusiveLock))
{
ereport(elevel,
(errmsg("\"%s\": suspending truncate due to conflicting lock request",
RelationGetRelationName(onerel))));
vacrelstats->lock_waiter_detected = true;
return blkno;
}
starttime = currenttime;
}
}
/*
* We don't insert a vacuum delay point here, because we have an
* exclusive lock on the table which we want to hold for as short a
* time as possible. We still need to check for interrupts however.
*/
CHECK_FOR_INTERRUPTS();
blkno--;
/* If we haven't prefetched this lot yet, do so now. */
if (prefetchedUntil > blkno)
{
BlockNumber prefetchStart;
BlockNumber pblkno;
prefetchStart = blkno & ~(PREFETCH_SIZE - 1);
for (pblkno = prefetchStart; pblkno <= blkno; pblkno++)
{
PrefetchBuffer(onerel, MAIN_FORKNUM, pblkno);
CHECK_FOR_INTERRUPTS();
}
prefetchedUntil = prefetchStart;
}
buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
RBM_NORMAL, vac_strategy);
/* In this phase we only need shared access to the buffer */
LockBuffer(buf, BUFFER_LOCK_SHARE);
page = BufferGetPage(buf);
if (PageIsNew(page) || PageIsEmpty(page))
{
/* PageIsNew probably shouldn't happen... */
UnlockReleaseBuffer(buf);
continue;
}
hastup = false;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
itemid = PageGetItemId(page, offnum);
/*
* Note: any non-unused item should be taken as a reason to keep
* this page. We formerly thought that DEAD tuples could be
* thrown away, but that's not so, because we'd not have cleaned
* out their index entries.
*/
if (ItemIdIsUsed(itemid))
{
hastup = true;
break; /* can stop scanning */
}
} /* scan along page */
UnlockReleaseBuffer(buf);
/* Done scanning if we found a tuple here */
if (hastup)
return blkno + 1;
}
/*
* If we fall out of the loop, all the previously-thought-to-be-empty
* pages still are; we need not bother to look at the last known-nonempty
* page.
*/
return vacrelstats->nonempty_pages;
}
/*
* lazy_space_alloc - space allocation decisions for lazy vacuum
*
* See the comments at the head of this file for rationale.
*/
static void
lazy_space_alloc(LVRelStats *vacrelstats, BlockNumber relblocks)
{
long maxtuples;
int vac_work_mem = IsAutoVacuumWorkerProcess() &&
autovacuum_work_mem != -1 ?
autovacuum_work_mem : maintenance_work_mem;
if (vacrelstats->hasindex)
{
maxtuples = (vac_work_mem * 1024L) / sizeof(ItemPointerData);
maxtuples = Min(maxtuples, INT_MAX);
maxtuples = Min(maxtuples, MaxAllocSize / sizeof(ItemPointerData));
/* curious coding here to ensure the multiplication can't overflow */
if ((BlockNumber) (maxtuples / LAZY_ALLOC_TUPLES) > relblocks)
maxtuples = relblocks * LAZY_ALLOC_TUPLES;
/* stay sane if small maintenance_work_mem */
maxtuples = Max(maxtuples, MaxHeapTuplesPerPage);
}
else
{
maxtuples = MaxHeapTuplesPerPage;
}
vacrelstats->num_dead_tuples = 0;
vacrelstats->max_dead_tuples = (int) maxtuples;
vacrelstats->dead_tuples = (ItemPointer)
palloc(maxtuples * sizeof(ItemPointerData));
}
/*
* lazy_record_dead_tuple - remember one deletable tuple
*/
static void
lazy_record_dead_tuple(LVRelStats *vacrelstats,
ItemPointer itemptr)
{
/*
* The array shouldn't overflow under normal behavior, but perhaps it
* could if we are given a really small maintenance_work_mem. In that
* case, just forget the last few tuples (we'll get 'em next time).
*/
if (vacrelstats->num_dead_tuples < vacrelstats->max_dead_tuples)
{
vacrelstats->dead_tuples[vacrelstats->num_dead_tuples] = *itemptr;
vacrelstats->num_dead_tuples++;
pgstat_progress_update_param(PROGRESS_VACUUM_NUM_DEAD_TUPLES,
vacrelstats->num_dead_tuples);
}
}
/*
* lazy_tid_reaped() -- is a particular tid deletable?
*
* This has the right signature to be an IndexBulkDeleteCallback.
*
* Assumes dead_tuples array is in sorted order.
*/
static bool
lazy_tid_reaped(ItemPointer itemptr, void *state)
{
LVRelStats *vacrelstats = (LVRelStats *) state;
ItemPointer res;
res = (ItemPointer) bsearch((void *) itemptr,
(void *) vacrelstats->dead_tuples,
vacrelstats->num_dead_tuples,
sizeof(ItemPointerData),
vac_cmp_itemptr);
return (res != NULL);
}
/*
* Comparator routines for use with qsort() and bsearch().
*/
static int
vac_cmp_itemptr(const void *left, const void *right)
{
BlockNumber lblk,
rblk;
OffsetNumber loff,
roff;
lblk = ItemPointerGetBlockNumber((ItemPointer) left);
rblk = ItemPointerGetBlockNumber((ItemPointer) right);
if (lblk < rblk)
return -1;
if (lblk > rblk)
return 1;
loff = ItemPointerGetOffsetNumber((ItemPointer) left);
roff = ItemPointerGetOffsetNumber((ItemPointer) right);
if (loff < roff)
return -1;
if (loff > roff)
return 1;
return 0;
}
/*
* Check if every tuple in the given page is visible to all current and future
* transactions. Also return the visibility_cutoff_xid which is the highest
* xmin amongst the visible tuples. Set *all_frozen to true if every tuple
* on this page is frozen.
*/
static bool
heap_page_is_all_visible(Relation rel, Buffer buf,
TransactionId *visibility_cutoff_xid,
bool *all_frozen)
{
Page page = BufferGetPage(buf);
BlockNumber blockno = BufferGetBlockNumber(buf);
OffsetNumber offnum,
maxoff;
bool all_visible = true;
*visibility_cutoff_xid = InvalidTransactionId;
*all_frozen = true;
/*
* This is a stripped down version of the line pointer scan in
* lazy_scan_heap(). So if you change anything here, also check that code.
*/
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff && all_visible;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
HeapTupleData tuple;
itemid = PageGetItemId(page, offnum);
/* Unused or redirect line pointers are of no interest */
if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid))
continue;
ItemPointerSet(&(tuple.t_self), blockno, offnum);
/*
* Dead line pointers can have index pointers pointing to them. So
* they can't be treated as visible
*/
if (ItemIdIsDead(itemid))
{
all_visible = false;
*all_frozen = false;
break;
}
Assert(ItemIdIsNormal(itemid));
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
tuple.t_len = ItemIdGetLength(itemid);
tuple.t_tableOid = RelationGetRelid(rel);
switch (HeapTupleSatisfiesVacuum(&tuple, OldestXmin, buf))
{
case HEAPTUPLE_LIVE:
{
TransactionId xmin;
/* Check comments in lazy_scan_heap. */
if (!HeapTupleHeaderXminCommitted(tuple.t_data))
{
all_visible = false;
*all_frozen = false;
break;
}
/*
* The inserter definitely committed. But is it old enough
* that everyone sees it as committed?
*/
xmin = HeapTupleHeaderGetXmin(tuple.t_data);
if (!TransactionIdPrecedes(xmin, OldestXmin))
{
all_visible = false;
*all_frozen = false;
break;
}
/* Track newest xmin on page. */
if (TransactionIdFollows(xmin, *visibility_cutoff_xid))
*visibility_cutoff_xid = xmin;
/* Check whether this tuple is already frozen or not */
if (all_visible && *all_frozen &&
heap_tuple_needs_eventual_freeze(tuple.t_data))
*all_frozen = false;
}
break;
case HEAPTUPLE_DEAD:
case HEAPTUPLE_RECENTLY_DEAD:
case HEAPTUPLE_INSERT_IN_PROGRESS:
case HEAPTUPLE_DELETE_IN_PROGRESS:
{
all_visible = false;
*all_frozen = false;
break;
}
default:
elog(ERROR, "unexpected HeapTupleSatisfiesVacuum result");
break;
}
} /* scan along page */
return all_visible;
}
|