1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
/*-------------------------------------------------------------------------
*
* nodeSetOp.c
* Routines to handle INTERSECT and EXCEPT selection
*
* The input of a SetOp node consists of two relations (outer and inner)
* with identical column sets. In EXCEPT queries the outer relation is
* always the left side, while in INTERSECT cases the planner tries to
* make the outer relation be the smaller of the two inputs.
*
* In SETOP_SORTED mode, each input has been sorted according to all the
* grouping columns. The SetOp node essentially performs a merge join on
* the grouping columns, except that it is only interested in counting how
* many tuples from each input match. Then it is a simple matter to emit
* the output demanded by the SQL spec for INTERSECT, INTERSECT ALL, EXCEPT,
* or EXCEPT ALL.
*
* In SETOP_HASHED mode, the inputs are delivered in no particular order.
* We read the outer relation and build a hash table in memory with one entry
* for each group of identical tuples, counting the number of tuples in the
* group. Then we read the inner relation and count the number of tuples
* matching each outer group. (We can disregard any tuples appearing only
* in the inner relation, since they cannot result in any output.) After
* seeing all the input, we scan the hashtable and generate the correct
* output using those counts.
*
* This node type is not used for UNION or UNION ALL, since those can be
* implemented more cheaply (there's no need to count the number of
* matching tuples).
*
* Note that SetOp does no qual checking nor projection. The delivered
* output tuples are just copies of the first-to-arrive tuple in each
* input group.
*
*
* Portions Copyright (c) 1996-2025, PostgreSQL Global Development Group
* Portions Copyright (c) 1994, Regents of the University of California
*
*
* IDENTIFICATION
* src/backend/executor/nodeSetOp.c
*
*-------------------------------------------------------------------------
*/
#include "postgres.h"
#include "access/htup_details.h"
#include "executor/executor.h"
#include "executor/nodeSetOp.h"
#include "miscadmin.h"
#include "utils/memutils.h"
/*
* SetOpStatePerGroupData - per-group working state
*
* In SETOP_SORTED mode, we need only one of these structs, and it's just a
* local in setop_retrieve_sorted. In SETOP_HASHED mode, the hash table
* contains one of these for each tuple group.
*/
typedef struct SetOpStatePerGroupData
{
int64 numLeft; /* number of left-input dups in group */
int64 numRight; /* number of right-input dups in group */
} SetOpStatePerGroupData;
typedef SetOpStatePerGroupData *SetOpStatePerGroup;
static TupleTableSlot *setop_retrieve_sorted(SetOpState *setopstate);
static void setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan,
SetOpState *setopstate);
static int setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2,
SetOpState *setopstate);
static void setop_fill_hash_table(SetOpState *setopstate);
static TupleTableSlot *setop_retrieve_hash_table(SetOpState *setopstate);
/*
* Initialize the hash table to empty.
*/
static void
build_hash_table(SetOpState *setopstate)
{
SetOp *node = (SetOp *) setopstate->ps.plan;
ExprContext *econtext = setopstate->ps.ps_ExprContext;
TupleDesc desc = ExecGetResultType(outerPlanState(setopstate));
Assert(node->strategy == SETOP_HASHED);
Assert(node->numGroups > 0);
/*
* If both child plans deliver the same fixed tuple slot type, we can tell
* BuildTupleHashTable to expect that slot type as input. Otherwise,
* we'll pass NULL denoting that any slot type is possible.
*/
setopstate->hashtable = BuildTupleHashTable(&setopstate->ps,
desc,
ExecGetCommonChildSlotOps(&setopstate->ps),
node->numCols,
node->cmpColIdx,
setopstate->eqfuncoids,
setopstate->hashfunctions,
node->cmpCollations,
node->numGroups,
sizeof(SetOpStatePerGroupData),
setopstate->ps.state->es_query_cxt,
setopstate->tableContext,
econtext->ecxt_per_tuple_memory,
false);
}
/*
* We've completed processing a tuple group. Decide how many copies (if any)
* of its representative row to emit, and store the count into numOutput.
* This logic is straight from the SQL92 specification.
*/
static void
set_output_count(SetOpState *setopstate, SetOpStatePerGroup pergroup)
{
SetOp *plannode = (SetOp *) setopstate->ps.plan;
switch (plannode->cmd)
{
case SETOPCMD_INTERSECT:
if (pergroup->numLeft > 0 && pergroup->numRight > 0)
setopstate->numOutput = 1;
else
setopstate->numOutput = 0;
break;
case SETOPCMD_INTERSECT_ALL:
setopstate->numOutput =
(pergroup->numLeft < pergroup->numRight) ?
pergroup->numLeft : pergroup->numRight;
break;
case SETOPCMD_EXCEPT:
if (pergroup->numLeft > 0 && pergroup->numRight == 0)
setopstate->numOutput = 1;
else
setopstate->numOutput = 0;
break;
case SETOPCMD_EXCEPT_ALL:
setopstate->numOutput =
(pergroup->numLeft < pergroup->numRight) ?
0 : (pergroup->numLeft - pergroup->numRight);
break;
default:
elog(ERROR, "unrecognized set op: %d", (int) plannode->cmd);
break;
}
}
/* ----------------------------------------------------------------
* ExecSetOp
* ----------------------------------------------------------------
*/
static TupleTableSlot * /* return: a tuple or NULL */
ExecSetOp(PlanState *pstate)
{
SetOpState *node = castNode(SetOpState, pstate);
SetOp *plannode = (SetOp *) node->ps.plan;
TupleTableSlot *resultTupleSlot = node->ps.ps_ResultTupleSlot;
CHECK_FOR_INTERRUPTS();
/*
* If the previously-returned tuple needs to be returned more than once,
* keep returning it.
*/
if (node->numOutput > 0)
{
node->numOutput--;
return resultTupleSlot;
}
/* Otherwise, we're done if we are out of groups */
if (node->setop_done)
return NULL;
/* Fetch the next tuple group according to the correct strategy */
if (plannode->strategy == SETOP_HASHED)
{
if (!node->table_filled)
setop_fill_hash_table(node);
return setop_retrieve_hash_table(node);
}
else
return setop_retrieve_sorted(node);
}
/*
* ExecSetOp for non-hashed case
*/
static TupleTableSlot *
setop_retrieve_sorted(SetOpState *setopstate)
{
PlanState *outerPlan;
PlanState *innerPlan;
TupleTableSlot *resultTupleSlot;
/*
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
innerPlan = innerPlanState(setopstate);
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
/*
* If first time through, establish the invariant that setop_load_group
* expects: each side's nextTupleSlot is the next output from the child
* plan, or empty if there is no more output from it.
*/
if (setopstate->need_init)
{
setopstate->need_init = false;
setopstate->leftInput.nextTupleSlot = ExecProcNode(outerPlan);
/*
* If the outer relation is empty, then we will emit nothing, and we
* don't need to read the inner relation at all.
*/
if (TupIsNull(setopstate->leftInput.nextTupleSlot))
{
setopstate->setop_done = true;
return NULL;
}
setopstate->rightInput.nextTupleSlot = ExecProcNode(innerPlan);
/* Set flags that we've not completed either side's group */
setopstate->leftInput.needGroup = true;
setopstate->rightInput.needGroup = true;
}
/*
* We loop retrieving groups until we find one we should return
*/
while (!setopstate->setop_done)
{
int cmpresult;
SetOpStatePerGroupData pergroup;
/*
* Fetch the rest of the current outer group, if we didn't already.
*/
if (setopstate->leftInput.needGroup)
setop_load_group(&setopstate->leftInput, outerPlan, setopstate);
/*
* If no more outer groups, we're done, and don't need to look at any
* more of the inner relation.
*/
if (setopstate->leftInput.numTuples == 0)
{
setopstate->setop_done = true;
break;
}
/*
* Fetch the rest of the current inner group, if we didn't already.
*/
if (setopstate->rightInput.needGroup)
setop_load_group(&setopstate->rightInput, innerPlan, setopstate);
/*
* Determine whether we have matching groups on both sides (this is
* basically like the core logic of a merge join).
*/
if (setopstate->rightInput.numTuples == 0)
cmpresult = -1; /* as though left input is lesser */
else
cmpresult = setop_compare_slots(setopstate->leftInput.firstTupleSlot,
setopstate->rightInput.firstTupleSlot,
setopstate);
if (cmpresult < 0)
{
/* Left group is first, and has no right matches */
pergroup.numLeft = setopstate->leftInput.numTuples;
pergroup.numRight = 0;
/* We'll need another left group next time */
setopstate->leftInput.needGroup = true;
}
else if (cmpresult == 0)
{
/* We have matching groups */
pergroup.numLeft = setopstate->leftInput.numTuples;
pergroup.numRight = setopstate->rightInput.numTuples;
/* We'll need to read from both sides next time */
setopstate->leftInput.needGroup = true;
setopstate->rightInput.needGroup = true;
}
else
{
/* Right group has no left matches, so we can ignore it */
setopstate->rightInput.needGroup = true;
continue;
}
/*
* Done scanning these input tuple groups. See if we should emit any
* copies of result tuple, and if so return the first copy. (Note
* that the result tuple is the same as the left input's firstTuple
* slot.)
*/
set_output_count(setopstate, &pergroup);
if (setopstate->numOutput > 0)
{
setopstate->numOutput--;
return resultTupleSlot;
}
}
/* No more groups */
ExecClearTuple(resultTupleSlot);
return NULL;
}
/*
* Load next group of tuples from one child plan or the other.
*
* On entry, we've already read the first tuple of the next group
* (if there is one) into input->nextTupleSlot. This invariant
* is maintained on exit.
*/
static void
setop_load_group(SetOpStatePerInput *input, PlanState *inputPlan,
SetOpState *setopstate)
{
input->needGroup = false;
/* If we've exhausted this child plan, report an empty group */
if (TupIsNull(input->nextTupleSlot))
{
ExecClearTuple(input->firstTupleSlot);
input->numTuples = 0;
return;
}
/* Make a local copy of the first tuple for comparisons */
ExecStoreMinimalTuple(ExecCopySlotMinimalTuple(input->nextTupleSlot),
input->firstTupleSlot,
true);
/* and count it */
input->numTuples = 1;
/* Scan till we find the end-of-group */
for (;;)
{
int cmpresult;
/* Get next input tuple, if there is one */
input->nextTupleSlot = ExecProcNode(inputPlan);
if (TupIsNull(input->nextTupleSlot))
break;
/* There is; does it belong to same group as firstTuple? */
cmpresult = setop_compare_slots(input->firstTupleSlot,
input->nextTupleSlot,
setopstate);
Assert(cmpresult <= 0); /* else input is mis-sorted */
if (cmpresult != 0)
break;
/* Still in same group, so count this tuple */
input->numTuples++;
}
}
/*
* Compare the tuples in the two given slots.
*/
static int
setop_compare_slots(TupleTableSlot *s1, TupleTableSlot *s2,
SetOpState *setopstate)
{
/* We'll often need to fetch all the columns, so just do it */
slot_getallattrs(s1);
slot_getallattrs(s2);
for (int nkey = 0; nkey < setopstate->numCols; nkey++)
{
SortSupport sortKey = setopstate->sortKeys + nkey;
AttrNumber attno = sortKey->ssup_attno;
Datum datum1 = s1->tts_values[attno - 1],
datum2 = s2->tts_values[attno - 1];
bool isNull1 = s1->tts_isnull[attno - 1],
isNull2 = s2->tts_isnull[attno - 1];
int compare;
compare = ApplySortComparator(datum1, isNull1,
datum2, isNull2,
sortKey);
if (compare != 0)
return compare;
}
return 0;
}
/*
* ExecSetOp for hashed case: phase 1, read inputs and build hash table
*/
static void
setop_fill_hash_table(SetOpState *setopstate)
{
PlanState *outerPlan;
PlanState *innerPlan;
ExprContext *econtext = setopstate->ps.ps_ExprContext;
bool have_tuples = false;
/*
* get state info from node
*/
outerPlan = outerPlanState(setopstate);
innerPlan = innerPlanState(setopstate);
/*
* Process each outer-plan tuple, and then fetch the next one, until we
* exhaust the outer plan.
*/
for (;;)
{
TupleTableSlot *outerslot;
TupleHashEntryData *entry;
bool isnew;
outerslot = ExecProcNode(outerPlan);
if (TupIsNull(outerslot))
break;
have_tuples = true;
/* Find or build hashtable entry for this tuple's group */
entry = LookupTupleHashEntry(setopstate->hashtable,
outerslot,
&isnew, NULL);
/* If new tuple group, initialize counts to zero */
if (isnew)
{
entry->additional = (SetOpStatePerGroup)
MemoryContextAllocZero(setopstate->hashtable->tablecxt,
sizeof(SetOpStatePerGroupData));
}
/* Advance the counts */
((SetOpStatePerGroup) entry->additional)->numLeft++;
/* Must reset expression context after each hashtable lookup */
ResetExprContext(econtext);
}
/*
* If the outer relation is empty, then we will emit nothing, and we don't
* need to read the inner relation at all.
*/
if (have_tuples)
{
/*
* Process each inner-plan tuple, and then fetch the next one, until
* we exhaust the inner plan.
*/
for (;;)
{
TupleTableSlot *innerslot;
TupleHashEntryData *entry;
innerslot = ExecProcNode(innerPlan);
if (TupIsNull(innerslot))
break;
/* For tuples not seen previously, do not make hashtable entry */
entry = LookupTupleHashEntry(setopstate->hashtable,
innerslot,
NULL, NULL);
/* Advance the counts if entry is already present */
if (entry)
((SetOpStatePerGroup) entry->additional)->numRight++;
/* Must reset expression context after each hashtable lookup */
ResetExprContext(econtext);
}
}
setopstate->table_filled = true;
/* Initialize to walk the hash table */
ResetTupleHashIterator(setopstate->hashtable, &setopstate->hashiter);
}
/*
* ExecSetOp for hashed case: phase 2, retrieving groups from hash table
*/
static TupleTableSlot *
setop_retrieve_hash_table(SetOpState *setopstate)
{
TupleHashEntryData *entry;
TupleTableSlot *resultTupleSlot;
/*
* get state info from node
*/
resultTupleSlot = setopstate->ps.ps_ResultTupleSlot;
/*
* We loop retrieving groups until we find one we should return
*/
while (!setopstate->setop_done)
{
CHECK_FOR_INTERRUPTS();
/*
* Find the next entry in the hash table
*/
entry = ScanTupleHashTable(setopstate->hashtable, &setopstate->hashiter);
if (entry == NULL)
{
/* No more entries in hashtable, so done */
setopstate->setop_done = true;
return NULL;
}
/*
* See if we should emit any copies of this tuple, and if so return
* the first copy.
*/
set_output_count(setopstate, (SetOpStatePerGroup) entry->additional);
if (setopstate->numOutput > 0)
{
setopstate->numOutput--;
return ExecStoreMinimalTuple(entry->firstTuple,
resultTupleSlot,
false);
}
}
/* No more groups */
ExecClearTuple(resultTupleSlot);
return NULL;
}
/* ----------------------------------------------------------------
* ExecInitSetOp
*
* This initializes the setop node state structures and
* the node's subplan.
* ----------------------------------------------------------------
*/
SetOpState *
ExecInitSetOp(SetOp *node, EState *estate, int eflags)
{
SetOpState *setopstate;
/* check for unsupported flags */
Assert(!(eflags & (EXEC_FLAG_BACKWARD | EXEC_FLAG_MARK)));
/*
* create state structure
*/
setopstate = makeNode(SetOpState);
setopstate->ps.plan = (Plan *) node;
setopstate->ps.state = estate;
setopstate->ps.ExecProcNode = ExecSetOp;
setopstate->setop_done = false;
setopstate->numOutput = 0;
setopstate->numCols = node->numCols;
setopstate->need_init = true;
/*
* create expression context
*/
ExecAssignExprContext(estate, &setopstate->ps);
/*
* If hashing, we also need a longer-lived context to store the hash
* table. The table can't just be kept in the per-query context because
* we want to be able to throw it away in ExecReScanSetOp.
*/
if (node->strategy == SETOP_HASHED)
setopstate->tableContext =
AllocSetContextCreate(CurrentMemoryContext,
"SetOp hash table",
ALLOCSET_DEFAULT_SIZES);
/*
* initialize child nodes
*
* If we are hashing then the child plans do not need to handle REWIND
* efficiently; see ExecReScanSetOp.
*/
if (node->strategy == SETOP_HASHED)
eflags &= ~EXEC_FLAG_REWIND;
outerPlanState(setopstate) = ExecInitNode(outerPlan(node), estate, eflags);
innerPlanState(setopstate) = ExecInitNode(innerPlan(node), estate, eflags);
/*
* Initialize locally-allocated slots. In hashed mode, we just need a
* result slot. In sorted mode, we need one first-tuple-of-group slot for
* each input; we use the result slot for the left input's slot and create
* another for the right input. (Note: the nextTupleSlot slots are not
* ours, but just point to the last slot returned by the input plan node.)
*/
ExecInitResultTupleSlotTL(&setopstate->ps, &TTSOpsMinimalTuple);
if (node->strategy != SETOP_HASHED)
{
setopstate->leftInput.firstTupleSlot =
setopstate->ps.ps_ResultTupleSlot;
setopstate->rightInput.firstTupleSlot =
ExecInitExtraTupleSlot(estate,
setopstate->ps.ps_ResultTupleDesc,
&TTSOpsMinimalTuple);
}
/* Setop nodes do no projections. */
setopstate->ps.ps_ProjInfo = NULL;
/*
* Precompute fmgr lookup data for inner loop. We need equality and
* hashing functions to do it by hashing, while for sorting we need
* SortSupport data.
*/
if (node->strategy == SETOP_HASHED)
execTuplesHashPrepare(node->numCols,
node->cmpOperators,
&setopstate->eqfuncoids,
&setopstate->hashfunctions);
else
{
int nkeys = node->numCols;
setopstate->sortKeys = (SortSupport)
palloc0(nkeys * sizeof(SortSupportData));
for (int i = 0; i < nkeys; i++)
{
SortSupport sortKey = setopstate->sortKeys + i;
sortKey->ssup_cxt = CurrentMemoryContext;
sortKey->ssup_collation = node->cmpCollations[i];
sortKey->ssup_nulls_first = node->cmpNullsFirst[i];
sortKey->ssup_attno = node->cmpColIdx[i];
/* abbreviated key conversion is not useful here */
sortKey->abbreviate = false;
PrepareSortSupportFromOrderingOp(node->cmpOperators[i], sortKey);
}
}
/* Create a hash table if needed */
if (node->strategy == SETOP_HASHED)
{
build_hash_table(setopstate);
setopstate->table_filled = false;
}
return setopstate;
}
/* ----------------------------------------------------------------
* ExecEndSetOp
*
* This shuts down the subplans and frees resources allocated
* to this node.
* ----------------------------------------------------------------
*/
void
ExecEndSetOp(SetOpState *node)
{
/* free subsidiary stuff including hashtable */
if (node->tableContext)
MemoryContextDelete(node->tableContext);
ExecEndNode(outerPlanState(node));
ExecEndNode(innerPlanState(node));
}
void
ExecReScanSetOp(SetOpState *node)
{
PlanState *outerPlan = outerPlanState(node);
PlanState *innerPlan = innerPlanState(node);
ExecClearTuple(node->ps.ps_ResultTupleSlot);
node->setop_done = false;
node->numOutput = 0;
if (((SetOp *) node->ps.plan)->strategy == SETOP_HASHED)
{
/*
* In the hashed case, if we haven't yet built the hash table then we
* can just return; nothing done yet, so nothing to undo. If subnode's
* chgParam is not NULL then it will be re-scanned by ExecProcNode,
* else no reason to re-scan it at all.
*/
if (!node->table_filled)
return;
/*
* If we do have the hash table and the subplans do not have any
* parameter changes, then we can just rescan the existing hash table;
* no need to build it again.
*/
if (outerPlan->chgParam == NULL && innerPlan->chgParam == NULL)
{
ResetTupleHashIterator(node->hashtable, &node->hashiter);
return;
}
/* Release any hashtable storage */
if (node->tableContext)
MemoryContextReset(node->tableContext);
/* And rebuild an empty hashtable */
ResetTupleHashTable(node->hashtable);
node->table_filled = false;
}
else
{
/* Need to re-read first input from each side */
node->need_init = true;
}
/*
* if chgParam of subnode is not null then plan will be re-scanned by
* first ExecProcNode.
*/
if (outerPlan->chgParam == NULL)
ExecReScan(outerPlan);
if (innerPlan->chgParam == NULL)
ExecReScan(innerPlan);
}
|